
Functional Parallel Programming with
Revised Bulk Synchronous Parallel ML

Wadoud Bousdira∗, Frédéric Gava†, Louis Gesbert‡, Frédéric Loulergue§, and Guillaume Petiot¶
∗LIFO, Université d’Orléans, France, Wadoud.Bousdira@univ-orleans.fr

†LACL, Université Paris-Est Créteil, France, Frederic.Gava@univ-paris-est.fr
‡MLstate, Paris, France, Louis.Gesbert@mlstate.com

§LIFO, Université d’Orléans, France, Frederic.Loulergue@univ-orleans.fr
¶LIFO, Université d’Orléans, France, Guillaume.Petiot@etu.univ-orleans.fr

Abstract— Bulk Synchronous Parallel ML or BSML is a
high-level language for programming parallel algorithms. Built
upon the Objective Caml language, it provides a safe setting
for implementing Bulk Synchronous Parallel (BSP) algorithms.
It avoids concurrency related problems: deadlocks and non-
determinism. BSML is based on a very small core of parallel
primitives that extended functional sequential programming to
functional BSP programming with a parallel data structure and
operations to manipulate it. However, in practice the primitives
for writing the parallel non-communicating parts of the program
are not so easy to use. Thus we designed a new syntax that makes
programs easier to write and read. Revised BSML is presented
and its expressiveness and performance are illustrated through
an application example.

I. INTRODUCTION

In the context of “Think Parallel or Perish”, parallel code
would be the norm. But many programmers are not able to
manipulate low-level routines [?] without introducing bugs
as deadlocks and non-determinism. Furthermore, low-level
programming forbids optimisations that could be done with a
more structured parallelism. Collective operations and skele-
tons [?] offer a global view of the application and exhibit
a more structured parallelism. However such high-level pro-
gramming is still rare. One of the reasons is that they often
do not provide a sufficiently wide set of patterns for a
practical and efficient programming. That makes the design of
new, robust and general parallel programming languages an
important area of research. Creating such a language involves
a tradeoff between expressiveness, by offering the programmer
the freedom to write all the parallel details of algorithms, and
structure necessary to build more easily correct programs with
predictable performances.

Bulk Synchronous Parallel ML or BSML [?], is an extension
of Objective Caml [?] to code Bulk Synchronous Parallel
(BSP) algorithms [?], [?]. It combines the high degree of
abstraction of ML and good performance with the scalable
and predictable performances of BSP. In the BSP model,
programs are written as a sequence of steps, called super-
steps, each alternates a phase of computation, a phase of
communication and a finishes with a global barrier. Communi-
cations are bulk and collective. That simplify parallel programs
because programmer is not responsible for managing low-level
communication details (how data are packaged, routed and

received by other processors). Within a super-step, the work
is done in parallel but the global structure of the algorithm
is sequential. This simple structure has proven to be worth
in practice for many parallel applications ([?] contains many
references).

BSML is based on a structured model of parallelism, but is
universal for this model: Any BSP algorithm could be written
using BSML. Other structured parallelism approaches such as
algorithmic skeletons first define a set of parallel patterns, the
skeletons, and the model of parallelism is then derived from
this set. When the set is not fit to a particular algorithm, it
may be extended: This requires of course of lot of work for
the library implementor and does not help the user of the
library who has to choose among a bigger set of skeletons.

On the contrary, BSML offers a very small set of parallel
primitives over a parallel data structure, called parallel vector:
four functions to create and manipulate this structure as well as
four constants to access the BSP parameters of the underlying
architecture. By comparison, the standard BSPlib [?] library
for BSP programming in C offers about fifteen primitives, and
MPI more than a hundred.

However one of the primitive used to describe communica-
tions in BSML is not very simple to use with the current non-
communicating primitives. Moreover the non-nesting require-
ment (explained below) of parallel vectors introduces addi-
tional constraints that makes a lot of construction/deconstruc-
tion of parallel vectors necessary. Novice BSML programmers
offer find these two aspects difficult to deal with.

We have thus make the choice to design a revised syntax for
BSML. Even if this syntax is just syntax and do not modify the
principles of BSML programming, it makes BSML programs
simpler to read and write. In practice, we believe simple syntax
may be as important as simple semantics.

This paper describes our new syntax and illustrate it with
application examples. First, we describe the classic and revised
BSML syntax and informal semantics in section ??. Section ??
is devoted to the implementation of bigger examples together
with some timings. Section ?? presents related work. Future
work and conclusion are discussed in Section ??.

Some basic knowledge of any ML programming language is
assumed. We refer to [?, Manual, chapter 1] for an Objective
Caml tutorial.

II. REVISED BULK SYNCHRONOUS PARALLEL ML

BSML is currently implemented as a library for the Objec-
tive Caml language [?]. The version used for this paper can
be downloaded [?]. Before presenting the classic and revised
syntax and informal semantics of BSML, lets us present the
bulk synchronous parallel model on which BSML is based.

The bulk synchronous parallel model [?], [?] offers an
abstract model of parallel architecture, a model of parallel
program execution together with a performance model. A
BSP computer is a homogeneous distributed memory machine
with global synchronisation unit. Any general purpose parallel
architecture can be seen as a BSP computer. A BSP program
is executed as a sequence of super-steps. A super-step is
composed of three successive and logically disjointed phases.
In the local computation phase, each processor used its local
data to perform sequential computations. Each processor may
only requests data transfers to or/and from other processors. In
the communication phase the network delivers the requested
data transfers. A synchronisation barrier involving all the
processors of the BSP computer is the third phase and ends
the super-step. It is only at the end of this third phase that the
transferred data becomes available for the local computation
phase of the next super-step.

The performance of a BSP computer is characterised by
3 parameters. The parameter p is the number of processor-
memory pairs. The communication and synchronisation per-
formances are characterised by the parameter L that is the
time required for a global synchronisation, and the parameter
g that is the time for collectively delivering a 1-relation
(communication phase where every processor receives or/and
sends at most one word). The network can deliver a h-
relation in time g × h for any natural h. In practice the BSP
parameters can be determined using benchmarks (usually a
fourth parameter r, the computing power of the processors, is
first determined).

For a super-step, if at processor i, wi is the local sequential
work performed during the computation phase, h+i is the size
of data sent from i to other processors, and h−i the size of the
received data by processor i from other processors, then the
execution time (or cost) of the super-step is:

max
0≤i<bsp_p

wi + max
0≤i<bsp_p

max(h+i , h
−
i)× g + L

The cost of a BSP program is the sum of the costs of its
super-steps.

BSML is based on a data-type called parallel vector which,
among all Objective Caml types, enables parallelism. A paral-
lel vector has type ’a par and embeds p values of any type ’a
at each of the p different processors in the parallel machine.
The nesting of parallel vectors is not allowed. As BSML is
currently implemented as a library, nested evaluation of an
expression of type (t par) par for a given type t would lead to
an unspecified behaviour. A type system could ensure that no
such expression exist in the program [?]. However the current
implementation of BSML as a library does not offer this
specific type system. Only an implementation of BSML as a

full language could offer such a feature. It is thus currently the
responsibility of the programmer to avoid nesting of parallel
vectors.

The number p of processors is fixed throughout the execu-
tion of the program. It can be accessed in BSML using the
integer constant bsp_p. The other BSP parameters are also
accessible as float values through constants bsp_g, bsp_l and
bsp_r.

BSML comes, as Objective Caml, with three modes of
compilation/evaluation:

• a byte-code compiler (a set of scripts calling the Objective
Caml byte-code compiler with the appropriate BSML
modules, in a similar way mpicc is not a full compiler;
there are several scripts as there are several available
implementations of BSML depending on the underlying
low-level communication used: TCP, MPI or sequential),

• a native code compiler (also a set of scripts),
• an interactive loop also called top-level.

This interactive loop is a sequential simulator for BSML.
Thanks to BSML semantical properties it is ensured that
the parallel and the sequential implementations behave the
same [?].

On starting, the BSML top-level is as follows:

Bulk Synchronous Parallel ML version 0.5
The BSP Machine has 4 processors
o BSP parameters g = 20.3 flops/word
o BSP parameters L = 4571. flops
o BSP parameters r = 498952227. flops/s

#

The values of the BSP parameters are measured values of a
quad-core i7 machine. The # symbol is the prompt that invites
the user to enter an expression to be evaluated. The top-level
then gives an answer of the form: Name of the defined value
(possibly none, written “-”), type and pretty-printing of the
value. In case the value cannot be pretty-printed (for example
functions), an abstract representation is given (for example
<fun>).

The p processors are labelled with integers from 0 to p− 1
which we call pid (Processor Identifier) of the processors. We
distinguish this structure from an usual sequential vector or
array of size p because the different values, that will be called
local, are blind from each other: It is only possible to access
the local value xi in two cases: Locally, on processor i (by the
use of a specific primitive), or after some communications.

These restrictions are inherent to distributed memory par-
allelism. This makes parallelism explicit and programs more
readable. Since a BSML program deals with a whole parallel
machine and individual processors at the same time, a distinc-
tion between the levels of execution that take place will be
needed:

• Replicated execution is the default. Code that does not
involve BSML primitives (nor, as a consequence, parallel
vectors) is run by the parallel machine as it would be by a
single processor. Replicated code is executed at the same
time by every processor, and leads to the same result
everywhere.

• Local execution is what happens inside parallel vectors,
on each of their components: The processor uses its local
data to do computation that may be different from the
other’s.

• Global execution concerns the set of all processors
together, but as a whole and not as a single processor.
Typical example is the use of communication primitives.

The implementation of the classic BSML library is based
on the primitives of Figure ?? where the following denotes a
parallel vector: 〈x0, x1, . . . , xp−1〉 : ’a par. This vector holds
the value xi at processor i.

mkpar builds a parallel vector. The components of the
obtained parallel vector are the results of the application of
its argument function to the pid of every processor. Examples
evaluated in the top-level follow (still using the quad-code
machine):
open Bsml;;
let this = mkpar(fun pid→ pid);;
val this : int Bsml.par = <0, 1, 2, 3>
let replicate x = mkpar (fun _→ x);;
val replicate : ’a→ ’a Bsml.par = <fun>
let vec1 = replicate "PDAA";;
− : string Bsml.par = <"PDAA", "PDAA", "PDAA", "PDAA">

It is first necessary to open the Bsml module which contains
the BSML primitives or write Bsml.mkpar.

apply is another primitive for local computation. It applies
a parallel vector of functions to a parallel vector of values: At
each processor, it applies a local function to a local argument.
For example, if one wants to apply a same function at each
component of a parallel vector:
let parfun f v = apply (replicate f) v;;
val parfun : (’a→ ’b)→ ’a Bsml.par→ ’b Bsml.par = <fun>
parfun String.length vec1;;
− : int Bsml.par = <4, 4, 4, 4>

proj is the dual of mkpar, and the only way to extract a non-
parallel value from a parallel vector. Given a parallel vector, it
returns a function such that, applied to the pid of a processor,
it returns the value of the vector at this processor. proj is
often used at the end of a parallel computation to gather the
computed results. For example, if we want to convert a parallel
vector into a list, we write:
let list_of_par vec = List.map (proj vec) procs;;
val list_of_par : ’a Bsml.par→ ’a list = <fun>
list_of_par this;;
− : int list = [0; 1; 2; 3]

where procs is the list of pids [0; 1; ... ; bsp_p−1]. proj should
not be evaluated in the context of a mkpar. For example, if
vec’ as type t par for a given type t, the following code is
incorrect: let vec = mkpar(fun i→ proj vec’ 0) but should be
written: let vec = let x = proj vec’ 0 in mkpar(fun i→ x).

This kind of errors can also be detected by our type system
but currently the programmer is responsible of avoiding them.
The evaluation of an application of proj requires communica-
tion and synchronisation.

put is the comprehensive communication primitive: It al-
lows any local value to be transferred to any other processor.

It is synchronous, and ends the current super-step. Canonical
use of put is put (mkpar (fun sender sendto→ e)) where ex-
pression e computes (or usually, selects) the data that should
be sent depending on sender to sendto. The return value of put
is another vector of functions: At a processor j the function,
when applied to i, yields the value received from processor
i by processor j. Some values, as the empty list or the first
constructor without parameters in a sum type, are considered
to mean “no message”. A total exchange function could be
written as follows:
let total_exchange vec =

parfun
(fun f→ List.map f procs)
(put(apply (replicate(fun v dst→ v)) vec));;

val total_exchange : ’a Bsml.par→ ’a list Bsml.par = <fun>
total_exchange this;;
− : int list Bsml.par = <[0;1;2;3], [0;1;2;3], [0;1;2;3], [0;1;2;3]>

A simpler version of this function is given below in the new
syntax and commented.

Having a very small core of parallel operations is a great
strength for the formalisation of the language. It makes the
definitions clear and short. However, the program, even if
high-level, still has to deal with replicated values and parallel
vectors, and the use of the primitives can sometimes become
awkward. Indeed, every operation inside of parallel vectors
has to call a primitive and define an "ad hoc" function. This
gets worse when working with multiple vectors, with nested
calls to apply. Simply transforming a pair of vectors into a
vector of pairs is written:
let combine_vectors(v, w) = apply(parfun(fun v w→ v, w) v) w

This could be made simpler with the definition of
let parfun2 f x y = apply (parfun f x) y

We get then:
let combine_vectors(v, w) = parfun2(fun v w→ v, w) v w

which is easier to read, but still unsatisfactory because we have
to define, each time, a specific function. This implies creating
named parameters although our function will only be applied
to our vectors, and can be confusing:
let combine_vectors(v, w) = parfun2 (fun w v→ w, v) v w

which is exactly the same as above but can lead the program-
mer to errors.

Instead of a point of view based on primitives, we can
consider the execution levels such that one can declare code
that will be executed globally as in standard Objective Caml
and code that will be executed locally, inside a parallel vector.
Then, to access to local data in a local section, we need no
more to define additional functions because opening vectors
now can be done locally. A local section is represented by
� e� , as a parallel vector. Replicated information is available
inside the vector, as with the mkpar above. To access local
information, we add the syntax x to open the vector x
and get the local value it contains ; $ $ can obviously be
used only within local sections. It is now possible to write
combine_vectors as follows:

Primitive Type Description
mkpar (int→ ’a)→ ’a par f 7→ 〈f 0 , . . . , f (p− 1))〉
apply (’a→ ’b) par→ ’a par→ ’b par 〈f0, . . . , fp−1〉 7→ 〈v0, . . . , vp−1〉 7→ 〈f0 v0, . . . , fp−1 vp−1〉
proj ’a par→ int→ ’a 〈v0, . . . , vp−1〉 7→ (fun i→ vi)
put (int→ ’a) par→ (int→ ’a) par 〈f0, . . . , fp−1〉 7→ 〈fun i→ fi0, . . . , fun i→ fi(p− 1)〉

Fig. 1. Classic BSML Parallel Primitives

Primitive Type Description
� e� t par if e : t 〈e, . . . , e〉
$this$ (within a local section) int i on processor i
v (within a local section) t (if v : t par vi on processor i (if v = 〈v0, . . . , vp−1〉)

Fig. 2. Summary of Revised BSML Syntax

let combine_vectors (v, w) =� v, w�

which is shorter, clearer and thus less error-prone. Addition-
ally, the local pid can be accessed with $this$, to replace calls
to mkpar. Synchronous primitives (proj and put) do not need
a special syntax, but their use is already made more simple.

The total_exchange example could be rewritten:

let total_exchange vec =
let msg = put� fun dst→ vec� in
� List.map msg procs�

It is much clearer now that at each processor the function
given as argument to put is a function which returns the local
value of parallel vector vec for every destination processor
meaning that this local value will be sent to all processors.
Using the received values is also clearer: At each processor
the local function which encodes the messages received by
the processor will be applied to every processor identifier thus
yielding the list of all received messages.

Figure ?? gives a summary of the revised BSML syntax.

III. APPLICATIONS AND EXPERIMENTS

A. Heat Equation

We now illustrate how BSML could be used to implement a
scientific application. The heat equation describes the variation
in temperature over time in a given material. It can be used to
simulate the evolution of the distribution of heat in a material.
We will consider here the one dimensional heat equation:

δu

δt
− γ δ

2u

δ2x
= 0

where u(x, t) gives the temperature in position x at time t and
γ is the thermal diffusivity of the material.

Using a discretization method on time and space using steps
dx and dt we obtain the following equation:

u(x, t+dt)=
γdt

dx2
(
u(x+dx, t)+u(x−dx, t)−2u(x, t)

)
+u(x, t)

There exist parallel implementations of 1D heat equation
using algorithmic skeletons, for example using the SkeTo
library for C++ [?].

In sequential, using only functions List.map and List.map2
and with the following functions:

let rec remove_last l = match l with
| [x]→ [] | x::xs→ x::(remove_last xs);;

val remove_last : ’a list→ ’a list = <fun>
let shift_left a l = (List.tl l) @ [a];;
val shift_left : ’a→ ’a list→ ’a list = <fun>
let rec shift_right a l = a::remove_last l;;
val shift_right : ’a→ ’a list→ ’a list = <fun>

the function computing a step of the heat diffusion simulation
from a given state u (represented here as a list of floats) could
be written:
let heat gamma dx dt l_bound r_bound u =

let u_plus_dx = L.shift_right l_bound u
and u_minus_dx = L.shift_left r_bound u in
let u1 = List.map2 (+.) u_plus_dx u_minus_dx in
let u2 = List.map2 (fun v1 v2→ v1 −. 2.∗.v2) u1 u in
let u3 = List.map (fun v→ gamma∗.dt/.(dx∗.dx)∗.v) u2 in

List.map2 (+.) u3 u
val heat : float→ float→ float→ float→ float→

float list→ float list = <fun>

l_bound and r_bound are the bounding conditions, i.e. the
temperature at both ends of the material (outside the material).
These are constant float values. This program is quite similar
to SkeTo heat equation example. Skeleton libraries could not
easily be extended by the users to add new skeletons. On
the contrary it is easy in Objective Caml to define the map3
function and to rewrite the heat function which becomes both
easier to read and a bit more efficient:
let rec map3 f l1 l2 l3 = match (l1,l2,l3) with

| [], [], []→ []
| x1::xs1, x2::xs2, x3::xs3→

(f x1 x2 x3)::(map3 f xs1 xs2 xs3);;
val map3 : (’a→ ’b→ ’c→ ’d)→

’a list→ ’b list→ ’c list→ ’d list = <fun>
let heat2 gamma dx dt l_bound r_bound u =

let u_plus_dx = shift_right l_bound u
and u_minus_dx = shift_left r_bound u in
map3 (fun updx umdx u→

gamma∗.dt/.(dx∗.dx)∗.(updx+.umdx−.2.∗.u) +. u)
u_plus_dx u_minus_dx u;;

val heat2: float→ float→ float→ float→ float→
float list→ float list = <fun>

B. Parallel Heat Equation
Now if we want to develop a parallel version of this code,

we can distribute u which would have type float list par. In

this case, at each processor and at each step of the simulation
we would apply the sequential version of the heat function
on the local part of u. Of course to be able to do so for the
first and last elements of the local list u, one should have the
values of the last element of the local part of u held by the left
neighbour processor and the first element of the local part of
u held by the right neighbour processor. With a last function
defined as:

let last l = List.hd(List.rev l);;
val last : ’a list→ ’a = <fun>

we could implement the function that get the last values of
the left neighbours as:

let get_l_bounds l_bound u =
let msg = put� fun dst→
if dst=($this$+1) && $this$<>(bsp_p−1)
then [last u] else []� in
� if $this$=0

then l_bound
else List.hd (msg ($this$−1))� ;;

val get_l_bounds: ’a→ ’a list Bsml.par→ ’a Bsml.par = <fun>

For the vector of function needed to the put primitive, the case
of the last processor is specific as it should not send the last
value of the local part of u it holds to its right neighbour. The
case of the first processor is also specific when we retrieve
the sent values: No left processor sent it a value thus it should
use the l_bound boundary value. An example of use follows
where Tools.from_to n1 n2 builds an integer list from n1 to n2:

let vec =� Tools.from_to (2∗($this$)) (2∗($this$)+1)� ;;
val vec : int list Bsml.par = <[0; 1], [2; 3], [4; 5], [6; 7]>
get_l_bounds 10 vec;;
− : int Bsml.par = <10, 1, 3, 5>

The get_r_bounds could be written in a similar way (and has
the same type) using a first function equals to List.hd. With
these functions it is now possible to write a parallel version
of heat:

let par_heat gamma dx dt l_bound r_bound u =
let l_bounds = get_l_bounds l_bound u
and r_bounds = get_r_bounds r_bound u in
� heat2 gamma dx dt l_bounds r_bounds u� ;;

val par_heat : float→ float→ float→ float→ float→
float list Bsml.par→ float list Bsml.par = <fun>

get_l_bounds and get_r_bounds both need one super-step to be
evaluated. It is possible to mix them together to use only one
super-step and rewrite a parallel version of heat accordingly
(same type as heat):

let par_heat2 gamma dx dt l_bound r_bound u =
let l_bounds, r_bounds = get_bounds l_bound r_bound u in
� heat2 gamma dx dt l_bounds r_bounds u�

C. Parallel Heat Equation with Arrays

If we use the following functions:

let shift_right l_bound u = let len = Array.length u in
Array.init len (fun i→ if i=0 then l_bound else u.(i−1));;

val shift_right : ’a→ ’a array→ ’a array = <fun>
let shift_left r_bound u = let len = Array.length u in

Array.init len (fun i→ if i=len−1 then r_bound else u.(i+1))
val shift_left : ’a→ ’a array→ ’a array = <fun>
let map3 f a1 a2 a3 = let len = Array.length a1 in

Array.init len (fun i→ f (a1.(i))(a2.(i))(a3.(i)));;
val map3 : (’a→ ’b→ ’c→ ’d)→

’a array→ ’b array→ ’c array→ ’d array = <fun>

instead of the previous ones, the code of heat2 renamed heat3
would operate on arrays instead of lists. With the following
definitions of last and first:

let first a = a.(0);;
val first : ’a array→ ’a = <fun>
let last a = a.((Array.length a)−1);;
val last : ’a array→ ’a = <fun>

the code of get_bounds would operate on a parallel vector of
arrays instead of a parallel vector of lists. Then the following
function operates on a parallel vector of arrays:

let par_heat3 gamma dx dt l_bound r_bound u =
let l_bounds, r_bounds = get_bounds l_bound r_bound u in
� heat3 gamma dx dt l_bounds r_bounds u� ;;

val par_heat3 : float→ float→ float→ float→ float→
float array Bsml.par→ float array Bsml.par=<fun>

From the definition of map3 we see that we could write
a more efficient version of heat3 that does not requires the
creation of intermediate arrays u_plus_dx and u_minus_dx:

let heat4 gamma dx dt l_bound r_bound u =
let len = Array.length u in
Array.init len (fun i→
let updx = if i=(len−1) then r_bound else u.(i+1)
and umdx = if i=0 then l_bound else u.(i−1) in

gamma∗.dt/.(dx∗.dx)∗.(updx+.umdx−.2.∗.u.(i)) +. u.(i));;
val heat4 : float→ float→ float→ float→ float→

float array→ float array = <fun>

Using this new heat4 leads to a new par_heat4. It is even
possible to change the pure functional style of arrays to an
imperative style. For this we need two arrays:

let heat5 gamma dx dt l_bound r_bound u u’ =
let len = Array.length u in
for i=0 to len−1 do
u’.(i)←
let updx=if i=(len−1) then r_bound else u.(i+1)
and umdx=if i=0 then l_bound else u.(i−1) in
gamma∗.dt/.(dx∗.dx)∗.(updx+.umdx−.2.∗.u.(i)) +. u.(i);

done;;
val heat5 : float→ float→ float→ float→ float→

float array→ float array→ unit = <fun>

and the parallel version becomes:

let par_heat5 gamma dx dt l_bound r_bound u u’ =
let l_bounds, r_bounds = get_bounds l_bound r_bound u in
� heat5 gamma dx dt l_bounds r_bounds u $u’$�

val par_heat5 : float→ float→ float→ float→ float→
float array Bsml.par→ float array Bsml.par→
Bsml.par unit = <fun>

When we iterate, we switch the two arrays at each step.
Experiments were performed on a cluster of 8 nodes con-

nected by a giga-bit Ethernet network. Each node contains
two processors (Quad-Core AMD Opteron Processor 2376,
2.29 GHz, 16Gb of RAM) and runs Linux Ubuntu with kernel

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2 4 6 8 10 12 14 16

T
im

e
 (

s
)

Processors

parheat3
parheat4
parheat5

Fig. 3. Parallel Heat Diffusion Simulation (array versions)

2.6.24-24. The BSML programs were compiled in native code
with the MPI version of the communication module (OpenMPI
1.4.2 with gcc 4.3.2) and Objective Caml 3.11.1.

Arrays versions are much more efficient. The version
par_heat2 with lists, on 16 processors for a list of size 106

and 10 iterations, is about 17 times slower than the par_heat3
version. Figure ?? compares the versions with arrays on a
global array of size 107 with 100 iterations.

IV. RELATED WORK

As certain readers could point out, the notation � e�
introduced in this paper and which built a parallel vector, is
close to constructions like “e1 par e2” in parallel Haskell [?]
(if it is used p − 1 times) or like creation of processes in
Eden [?]. However the meaning of these constructions differ.
Fine-grained parallelism introduced by GPH’s par takes two
arguments that are to be evaluated in parallel. The expression
“e1 par e2” has the same value as “e2”. Its dynamic behaviour
is to indicate that “e1” could be evaluated by a new parallel
thread, with the parent thread continuing evaluation of “e2”.
Threads are then distributed on the processors at run-time.
Communications are implicit by the share of variables.

In our case, parallelism is explicit (as well as the com-
munications and the distribution of data) and especially it
is prohibited to nested parallelism to optimise performances
of the implementation [?]. BSML is clearly a lower level
programming language compared to algorithmic skeletons for
example but it comes with a realistic cost model and is well
adapt to the writing coarse-grain algorithms. Moreover, it can
be used to implement higher-order parallel functions that could
be used as algorithmic skeletons.

V. CONCLUSION AND FUTURE WORK

Parallel architectures are taking the lead in computer hard-
ware. There are many research in advanced programming
paradigms to find the best ways to accommodate parallelism.
We present in this paper a new syntax for our high-level BSP
language: BSML.

This new syntax reduces size of the code. Code is also
simpler to be read which ease debugging and reasoning about
performances. Our new syntax could be simulated by our
past BSML primitives making past codes compatible and
allowing the use of existing proofs developments about BSML
in Coq [?].

Future work includes the development of applications with
BSML, the integration of an exception handling mechanism
(that already exists [?]) in the public release. In a longer term,
we plan to work on an implementation of BSML as a full
language rather than a library. We are also working on proving
the correctness of the implementation of the Revised BSML
syntax.

