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Chapter 1

Introduction

Security protocols are small and standard components of systems that communicate over un-
trusted networks. Their relatively small size, combined with their critical role, makes them
a suitable target for formal analysis [25]. Model-checking (MC) is common solution to find
flaws [2]. Ideally, we would also like to have a proof of the protocolâĂŹs correctness or of the
finding attack: generated a “certificate” [63] that can be checked later. But the generation of
large discrete state spaces of some non traditional protocols [66] (especially when complex data-
structures are used by the agents as lists of trusted servers etc.) is so a computationally intensive
activity that the use of distributed machines is desirable and is a great challenge of research.
But MCs, especially distributed ones [?], like any complex softwares are subject to bugs. And

generate distributed certificates to be later machine-checked using a theorem prover as Coq is
currently not reasonable since provers are critical softwares that can not be altered without
much attention. For this purpose, we proposed to prove the correctness of the distributed MC
itself and not its results as “certifying MC” [63] generally done.
But despite [71] where authors only focus on safety properties as no overflows, no deadlocks

etc., we use the condition generator (VCG) Why [38] and extend the deductive verification to the
correctness of the final result: has the full state-space been well computed (in parallel) without
adding unknown states? We consider mechanised verifying different annotated algorithms: a
sequential one as an introduction of the methodology; the traditional distributed state space
algorithm and three specialised distributed algorithms for computing the state space of security
protocols [43]. All distributed algorithms used a model of parallel computation called BSP [17].
The annotated source codes are available at http://lacl.fr/gava/cert-mc.tar.gz.
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Chapter 2

Security protocols

Cryptographic protocols are communication protocols that use cryptography to achieve security
goals such as secrecy, authentication, and agreement in the presence of adversaries.
Designing security protocols is complex and often error prone: various attacks are reported

in the literature to protocols thought to be “correct” for many years. These attacks exploit
weaknesses in the protocol that are due to the complex and unexpected interleavings of different
protocol sessions as well as to the possible interference of malicious participants.
Furthermore, they are not as easy that they appear [13] : the attacker is powerful enough

to perform a number of potentially dangerous actions as intercepting messages flowing over the
network, or replacing them by new ones using the knowledge he has previously gained; or is able
to perform encryption and decryption using the keys within his knowledge [32]. Consequently
the number of possible testing attacks generally growing exponentially of the size of the session.
Formal methods offer a promising approach for automated security analysis of protocols:

the intuitive notions are translated into formal specifications, which is essential for a careful
design and analysis, and protocol executions can be simulated, making it easier to verify certain
security properties. Formally verifying security protocols is now an old subject but still relevant.
Different approach exist as [3, 5, 40] and tools were dedicated for this work as [4, 27].

2.1 Example

2.2 Motivations

The possibility of violations and attacks of security protocols sometimes stems from subtle
misconceptions in the design of the protocols. Typically, these attacks are simply overlooked,
as it is difficult for humans, even by careful inspection of simple protocols, to determine all
the complex ways that different protocol sessions could be interleaved together, with possible
interference of a malicious intruder, the attacker.
The question of whether a protocol indeed achieves its security requirements or not is, in the

general case, undecidable [1,34,35]. This has been proved by showing that a well-known undecid-
able problem (e.g.the Post Correspondence Problem, the halting problem for Turing machines,
etc.) can be reduced to a protocol insecurity problem. Despite this strong undecidability result,
the problem of deciding whether a protocol is correct or not it is still worthwhile to be tackled
by the introduction of some restrictions can lead to identify decidable subclasses: by focusing
on verification of a bounded number of sessions the problem is known to be NP-complete. This
can be done by simply enumerating and exploring all traces of the protocol’s state transition
system looking for a violation to some of the requirements.
Although, if the general verification problem is undecidable, for many protocols, verification

can be reduced to verification of a bounded number of sessions. Moreover, even for those
protocols that should theorically be checked under a unbounded number of concurrent protocol
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executions, violations in their security requirements often exploit only a small number of sessions.
For these reasons, in many cases of interest it is sufficient to consider a finite number of sessions
in which each agent performs a fixed number of steps. For instance all the attacks on the well-
know SPORE and Clark-Jacob’s libraries [23] can be discovered by modelling each protocol with
only two protocol sessions.
However the specific nature of security protocols that make them particularly suited to be

checked by specific tools. That also need how formalise those protocols to be latter checked.

2.3 Informal definition of security protocols

Communication protocols specify an exchange of messages between principals, i.e.the agents par-
ticipating in a protocol execution (e.g.users, hosts, or processes). Messages are sent over open
networks, such as the Internet, that cannot be considered secure. As a consequence, protocols
should be designed “robust” enough to work even under worst-case assumptions, namely mes-
sages may be eavesdropped or tampered with by an intruder or dishonest or careless principals.
A specific category of protocols has been devised with the purpose of securing communications
over insecure networks: security (or cryptographic) protocols are communication protocols that
aim at providing security guarantees such as authentication of principals or secrecy of some piece
of information through the application of cryptographic primitives.
The goal of cryptographic is to convert a plain-text P into a cipher-text C (and vice versa)

that is unintelligible to anyone (a spy) that monitoring the network. The process of converting
P into C is called encryption, while the reverse procedure is called decryption. The main feature
of computer’s encryption is the used of an additional parameter K known as the encryption key.
In order to recover the original plain-text the intended receiver should use a second key K−1

called the inverse key where is no way to compute easally it from K — and vice versa.
The best-known cryptographic algorithms for key are the well-known DES (Digital Encryption

Standard) and the RSA (Rivest, Shamir, and Adleman) algorithm. The security of cryptographic
algorithms relies in the difficulty of breaking them by performing a brute-force search of the key
space. Hence the use of keys sufficiently long to prevent a brute force attack in a reasonable
time entirely justifies the standard assumption adopted in formal analysis of security protocols
and called perfect cryptography. The idea underlying such an assumption is that an encrypted
message can be decrypted only by using the appropriate decryption key, i.e.it is possible to
retrieve M from MK only by using K−1 as decryption key.
Protocols are normally expressed as narrations, where some finer details are abstracted away.

A protocol narration is a simple sequence of message exchanges between the different participat-
ing principals and can be interpreted as the intended trace of the ideal execution of the protocols.
Informally, the scenario we are interesting in involves a set of honest agents that, according to
a security protocol, exchange messages over insecure communication channels controlled by a
malicious agent called intruder with the ultimate goal of achieving some security requirements.
Participants (agents) perform sequence of data exchange (sending or received operators) which
could be seen as “ping-pong”.

2.3.1 Security Properties and possible “attacks”

What kind of attacks do there exist against security properties of protocols ? This question
cannot be answered before having defined what we expect from a given security protocol. We
give here an informal definition of possible and well-known “attacks” and security properties as
well as some vocabulary of protocols.

Vocabulary Let us recall some elemetary vocabulary on security protocols:
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• Fresh Terms. A protocol insecurity problem can allow for the generation of fresh terms
e.g.Nonce. This allow to have a new value each time the protocol is used. Random
numbers from the system can be used.

• Step. The number of steps that an honest agent can perform to execute a session of the
protocol.

• Sessions. An agent can execute more than one time the protocol. Each use of the
protocol is call a session.

• Agents. The participants of the protocols including intruders.

In general, the cryptographic protocol consists of agents who are willing to engage in a secure
communication using an insecure network and sometime using trusted server, which generates
the fresh session key used for exchanging data securely between the principals. The session key is
abandoned after data exchanging is over. In fact, it is not possible to establish an authenticated
session key without existing secure channels already being available [19]. Therefore it is essential
that some keys are already shared between different principals, which are often referred to as
master keys. Different from session keys, which expire after each session, master keys are changed
less frequently, and consequently leaking master keys always causes cryptographic protocols to
be broken.

Security Attacks Let us now enumerate some typical attacks. They can be categorised into
the following:

• Interruption. The communications are destroyed or becomes unavailable or unusable.
Examples include destruction of a piece of hardware, i.e.a hard disk, or the cutting
of a physical communication line, i.e.a cable. An agent (as a server or else) is then
unattainable.

• Eavesdropping. An unauthorised party gains access to the communication. The unau-
thorised party could be a person, a program, or a computer. Examples include wiretap-
ping to capture data in a network, and the illegally copying of files or programs.

• Modification. An unauthorised party not only gains access to but tampers with the
network. Examples include changing values in a data file, altering a program so that
it performs differently, and modifying the content of messages being transmitted in a
network.

• Fabrication. An unauthorised party inserts counterfeit data into the network. Examples
include the inserting of spurious message in a network or the addition of records to a file.

• Traffic analysis. An unauthorised party intercepts and examines the messages flowing
over the network in order to deduce information from the message patterns. It can be
performed even when the messages are encrypted and can not be decrypted.

There are many kinds of attacking security protocol. Some well-known strategies that an
intruder might employ are:

• Man-in-the-middle This style of attack involves the intruder imposing himself between
the communications between the sender and receiver. If the protocol is purely designed
he may be able to subvert it in various ways; in particular he may be able to forge as
receiver to sender, for example.

• Replay The intruder monitors a run of the protocol and at some later time replays one
or more of the messages. If the protocol does not have the mechanism to distinguish
between separate runs or to detect the staleness of a message, it is possible to fool the
honest agents into rerunning all or parts of the protocol. Devices like nonces, identifiers
for runs and timestamps are used to try to foil such attacks.

• Interleave This is the most ingenious style of attack in which the intruder contrives for
two or more runs of the protocol to overlap.
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There are many other known styles of attack and presumably many more that have yet to
be discovered. Many involve combinations of these themes. This demonstrates the difficulty in
designing security protocols and emphasizes the need for a formal and rigorous analysis of these
protocols.
A protocol execution is considered as involving honest (participants) principals and active

attackers. The abilities of the attackers and relationship between participants and attackers
together constitute a threat model and the almost exclusively used threat model is the one
proposed by Dolev and Yao [32]. The Dolev-Yao threat model is a worst-case model in the
sense that the network, over which the participants communicate, is thought as being totally
controlled by an omnipotent attacker with all the capabilities listed above. Therefore, there is
no need to assume the existence of multiple attackers, because they together do not have more
abilities than the single omnipotent one. Dishonest principals do not need to be considered
either: they can be viewed as attackers. Furthermore, it is generally not interesting to consider
an attacker with less abilities than the omnipotent one except to verify less properties and to
accelerate the formal verification of a protocol.

Security properties Each cryptographic protocol is designed to achieve one or more security-
related goals after a successful execution, in other words, the principals involved may reason
about certain properties; for example, only certain principals have access to particular secret
information. They may then use this information to verify claims about subsequent communi-
cation, e.g.an encrypted message can only be decrypted by the principals who have access to
the corresponding encryption key. The most commonly considered security properties include:

• Authentication. It is concerned with assuring that a communication is authentic. In
the case of an ongoing interaction, such as the connection of a host to another host, two
aspects are involved. First, at the time of connection initiation, the two entities have to
be authentic, i.e.each is the entity that he claims to be. Second, during the connection,
there is no third party who interferes in such a way that he can masquerade as one of the
two legitimate parties for the purposes of unauthorized transmission or reception. For
example, fabrication is an attack on authenticity.

• Confidentiality. It is the protection of transmitted data from attacks. With respect to
the release of message contents, several levels of protection can be identified, including
the protection of a single message or even specificfields within a message. For example,
interception is an attack on confidentiality.

• Integrity. Integrity assures that messages are received as sent, with no duplication,
insertion, modification, reordering, or replays. As with confidenfitiality, integrity can
apply to a stream of messages, a single message, or selected fields within a message.
Modification is an attack on integrity.

• Availability. Availability assures that a service or a piece of information is accessible
to legitimate users or receivers upon request. There are two common ways to specify
availability. An approach is to specify failure factors (factors that could cause the system
or the communication to fail) [67], for example, the minimum number of host failures
needed to bring down the system or the communication. Interruption is, for example, an
attack on availability.

• Non-repudiation. Non-repudiation prevents either sender or receiver from denying a
transmitted message. Thus, when a message is sent, the receiver can prove that the
message was in fact sent by the alleged sender. Similarly, when a message is received, the
sender can prove that the message was in fact received by the alleged receiver.



7 2.4. WHY CRYPTOGRAPHIC PROTOCOLS GO WRONG?

2.4 Why cryptographic protocols go wrong?

The first reason for the security protocols easily go wrong is that protocols were first usually
expressed as narrations and most of the details of the actual deployment are ignored. And this
little details and ambiguities may be the reason of an attack.
Second, as mentioned before, cryptographic protocols are mainly deployed over an open net-

work such that everyone can join it, exceptions are where wireless or routing protocols attacker
control only a subpart of the network and where agents only communicate with their neigh-
bors [7, 15, 52, 73, 74]. One reason for security protocols easily going wrong is the existence of
the attacker: he can start sending and receiving messages to and from the principals across
it without the need of authorization or permission. In such an open environment, we mush
anticipate that the attacker will do all sorts of actions, not just passively eavesdropping, but
also actively altering, forging, duplicating, re-directing, deleting or injecting messages. These
fault messages can be malicious and cause a destructive effect to the protocol. Consequently,
any message received from the network is treated to have been received from the attacker after
his disposal. In other words, the attacker is considered to have the complete control of the
entire network and could be considered to be the network. And it is easy for humans to forget a
possible combination of the attacker. Instead, automatic verification (model-checking), which is
the subject of this document, would not forget one possible attack. And this number of attack
growing exponentially and reduce the time of computation of generating all these attacks using
parallel machine is the main goal of this document.
It is notice to say that nowadays a considerable number of cryptographic protocols have been

specified, implemented and verified. Consequently analysing cryptographic protocols in order to
find various kinds of attacks and to prevent them has received a lot of attention. As mentioned
before, the area is remarkably subtle and a very large portion of proposed protocols have been
shown to be flawed a long time after they were published. This has naturally encouraged research
in this area.
Designing secure protocols is a challenging problem. In spite of their apparent simplicity,

they are notoriously error-prone. In open networks, such as the Internet, protocols should work
even under worst-case assumptions, namely messages may be eavesdropped or tampered with
by an intruder (also called the attacker or spy) or dishonest or careless principals (where we call
principals the agents participating in a protocol execution). Surprisingly, severe attacks can be
conducted even without breaking cryptography, but by exploiting weaknesses in the protocols
themselves, for instance by carrying out man-in-the-middle attacks, where an attacker plays off
one protocol participant against another, or replay attacks, where messages from one session
(i.e.execution of an instance of the protocol) are used in another session.

Fail in security protocols The history of security protocols is full of examples, where weak-
nesses of supposedly correct published protocols that have been implemented and deployed in
real applications only to be found flawed years later. The most well-known case is the Needham-
Schroeder authentication protocol that was found vulnerable to a man-in-the-middle attack 17
years after its publication. It has been shwo by “The Computer Security Institute” 1 that the
number of vulnerabilities of protocols is highly growing up and a discovering one of them is a
daily thing for compagnies and researchers. But, generally speaking, security problems are un-
decidable for their dynamic behaviour due to, say, mis-behaved agents and unbounded sessions
of protocol executions. Therefore, verification of security properties is an important research
problem. This leads to the researches in searching for a way to verify whether a system is secure
or not.

1http://www.gocsi.com
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2.5 Model checking : a technic of verification

2.5.1 Generalities

In general, one may identify two basic approaches to model-checking. The first one uses a
global analysis to determine if a system satisfies a formula; the entire state space of the system
is constructed and subjected to analysis. However, these algorithms may be seen to perform
unnecessary work: in many cases (especially when a system does not satisfy a specification)
only a subset of the system state needs to be analyzed in order to determine whether or not a
system satisfies a formula. On the other hand, on-the-fly, or local, approaches to model-checking
attempt to take advantage of this observation by constructing the state space in a demand-driven
fashion.
For example, the paper [24] presents a local algorithm for model-checking a subpart of the

µ-calculus and [77] presents an algorithm for CTL — formally defined latter. [26] gives an
algorithm with the same time complexity as the one of [16] for determining when a system
satisfies a specification given as a Büchi automaton. In light of the correspondence between
such automata and the LTL fragment of CTL* (both formally defined later), it follows that
the algorithm from [26] may be used for LTL model-checking also. However, it is not clear
how this approach can be extended to handle full CTL* — an exception is the work of [57],
apply in [53] on security protocols, where specific game theoric automata are used for verifying
on-the-fly CTL* formulas on shared-memory multi-processors but it is also not clear how adapt
this method to distributed computations.
Results in an extended version of [14] suggest a model-checking algorithm for full CTL* which

allows the on-the-fly construction of the state space of the system. However, this approach
requires the a priori construction of the states of an amorphous Büchi tree automaton from the
formula being checked, and the time complexity is worse than the one of [16].



Figure 3.1. The BSP model of execution

Chapter 3

Verification

This chapter extends the works of [44,45].

3.1 Bulk-Synchronous Parallelism

Bulk-Synchronous Parallel Machines

A BSP computer has three components:

• a homogeneous set of uniform processor-memory pairs;
• a communication network allowing inter processor delivery of messages;
• a global synchronization unit which executes collective requests for a synchronization

barrier.

A wide range of actual architectures can be seen as BSP computers. For example share mem-
ory machines could be used in a way such as each processor only accesses a subpart of the shared
memory (which is then “private”) and communications could be performed using a dedicated
part of the shared memory. Moreover the synchronization unit is very rarely a hardware but
rather a software ( [55] presents global synchronization barrier algorithms). Supercomputers,
clusters of PCs, multi-core [47] and GPUs etc. can be thus considered as BSP computers.

The BSP’s execution model

A BSP program is executed as a sequence of super-steps, each one divided into (at most) three
successive and logically disjointed disjoint phases (see Fig. 3.1):

1. each processor only uses its local data to perform sequential computations and to request
data transfers to/from other nodes;

2. the network delivers the requested data;

3. a global (collective) synchronisation barrier occurs, making the transferred data available
for the next super-step.

9
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BSP’s cost model

The performance of the BSP machine is characterised by 4 parameters:

1. the local processing speed r;

2. the number of processor p;

3. the time L required for a barrier;

4. and the time g for collectively delivering a 1-relation, a communication phase where every
processor receives/sends at most one word.

The network can deliver an h-relation (every processor receives/sends at most h words) in
time g × h. To accurately estimate the execution time of a BSP program these 4 parameters
could be easily benchmarked [17].
The execution time (cost) of a super-step s is the sum of the maximal of the local processing,

the data delivery and the global synchronisation times. It is expressed by the following formula:

Cost(s) = max
0≤i<p

ws
i + max

0≤i<p
hs

i × g + L

where ws
i = local processing time on processor i during superstep s and hs

i is the maximal
number of words transmitted or received by processor i during superstep s.
The total cost (execution time) of a BSP program is the sum of its S super-steps costs that

is
∑

s Cost(s). It is, therefore, a sum of 3 terms:

W +H × g + S × L where
{
W =

∑
s maxiw

s
i

H =
∑

s maxi h
s
i

In general,W,H and S are functions of p and of the size of data n, or of more complex parameters
like data skew. To minimize execution time, the BSP algorithm design must jointly minimize
the number S of supersteps, the total volume h and imbalance of communication and the total
volume W and imbalance of local computation.

Advantages and inconvienients

As stated in [28]: “A comparison of the proceedings of the eminent conference in the field, the
ACM Symposium on Parallel Algorithms and Architectures between the late eighties and the
time from the mid-nineties to today reveals a startling change in research focus. Today, the
majority of research in parallel algorithms is within the coarse-grained, BSP style, domain”.

This model of parallelism enforces a strict separation of communication and computation:
during a super-step, no communication between the processors is allowed, only at the synchro-
nisation barrier they are able to exchange information. This execution policy has two main
advantages: first, it removes non-determinism and guarantees the absence of deadlocks; second,
it allows for an accurate model of performance prediction based on the throughput and latency
of the interconnection network, and on the speed of processors. This performance prediction
model can even be used online to dynamically make decisions, for instance choose whether to
communicate in order to re-balance data, or to continue an unbalanced computation.
However, on most of cheaper distributed architectures, barriers are often expensive when the

number of processors dramatically increases — more than 10 000. But proprietary architectures
and future shared memory architecture developments (such as multi-cores and GPUs) make them
much faster. Furthermore, barriers have also a number of attractions: it is harder to introduce
the possibility of deadlock or livelock, since barriers do not create circular data dependencies.
Barriers also permit novel forms of fault tolerance [68].
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The BSP model considers communication actions en masse. This is less flexible than asyn-
chronous messages, but easier to debug since there are many simultaneous communication ac-
tions in a parallel program, and their interactions are typically complex. Bulk sending also
provides better performances since, from an implementation point of view, grouping communi-
cation together in a seperate program phase permits a global optimization of the data exchange
by the communications library.
The simplicity and yet efficiency of the BSP model makes it a good framework for teaching

(few hours are needed to teach BSP programming and algorithms), low level model for multi-
cores/GPUs system optimisations [47], etc., since it has been conceived has a bridging model for
parallel computation. The simplicity and yet expressivity of BSP programming makes it look
like a good candidate for the formal proof of parallel computations. Since BSP programs are
portable and cost estimate features power consumption, they can enjoy cloud-computing [6]: we
can imagine a scheduler server that distributes the BSP programs depending on the cost of the
BSP program to optimise power consumption and the network.
This is also merely the most visible aspects of a parallel model that shifts the responsibility

for timing and synchronization issues from the applications to the communications library1. As
with other low/high level design decisions, the applications programmer gains simplicity but
gives up some flexibility and performance. In fact, the performance issue is not as simple as it
seems: while a skilled programmer can in principle always produce more efficient code with a
low-level tool (be it message passing or assembly language), it is not at all evident that a real-life
program, produced in a finite amount of time, can actually realize that theoretical advantage,
especially when the program is to be used on a wide range of machines [48,60].
Last advantage of BSP is that it greatly facilitates debugging. The computations going on

during a superstep are completely independent and can thus be debugged independently. This
facility will be used here to formally prove the correctness of our algorithms. Moreover, if it is
true for the correctness of the algorithm that stand true for the execution time of BSP programs:
it is easy to measure during the execution of a BSP program, time speding to communicate and
to synchronise by just adding chronos before and after the primitive of synchronisation. This
facility will be used here to compare differents algorithms.
All this capacities are is possibles only because the runtime system knows precisely which com-

putations are independent. In a asynchronous message-passing system as MPI, the independent
sections tend to be smaller, and identifying them is much harder. But, using BSP, programers
and designer have to keep in mind that some parallelism patterns are not really BSP friendly.
For example, BSP does not enjoy in an optimist manner pipeline and master/slave (also knowed
as farm of processes) schemes even if it is possible to have not too inefficient BSP programs from
these schemes [42]. Thus, some parallel computations and optmisations would never be BSP.
This is the drawback of all the restricted models of computations as well.
The BSP model has been used with success in a wide variety of problems such scientific

computing [8, 17, 18, 31, 56, 72], parallel data-structure [46, 51], genetic algorithms [20] and ge-
netic programming [33], neural network [65], parallel data-bases [9–11], constraints solver [50],
graphs [22,37,59,72], geometry [29], string search [36,58], implementation of tree skeletons [61],
etc.

3.2 Why ABCD
Why is a framework for algorithms verification. Basically, it is composed of two parts: a
(polymorphic first-order) logical language called Why with an infrastructure to translate it
to existing theorem provers and SMT solvers; and an intermediate verification programming
language called WhyML with a VCG. The examples of the standard library propose finite sets of
data and several operations with their axiomatisation — which can be proved using Coq. In the

1BSP libraries are generally implemented using MPI [69] or low level routines of the given specifics architectures
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logical formula, x@ is the notation for the value of x in the prestate, i.e. at the precondition point
and x@label for the value of x at a certain point (marked by a label) of the algorithm. Mutable
data types can be introduced, by means of polymorphic references: a reference r to a value of
type σ has type ref σ, is created with the function ref, is accessed with !r, and assigned with
r ← e. Algorithms are annotated using pre- and post-conditions, loop invariants, and variants to
ensure termination. VCG is computed using a weakest precondition calculus and then passed
to the back-end of Why to be sent to provers. Notice that in Why, sets are purely applicative
and thus only a reference on a set can be modified and assigned to another set.

3.3 Verification of a sequential algorithm

Fig. 3.2 gives a common sequential algorithm in WhyML (logical assertions are in curly brack-
ets) using an appropriate syntax for set operations. A set call known contains all the states
that have been processed and would finally contain StSpace. The set todo is used to hold all the
states whose successors have not been constructed yet; each state s from todo is processed in
turn (lines 4 and 12) and added to known (line 13) while its successors are added to todo unless
they are known already — line 14. Note that the algorithm can be made strictly depth-first by
choosing the most-recently discovered state (i.e. todo as a heap), and breadth-first by choosing
the least-recently one. This has not been studied here.
We need to prove three properties regarding this code: it does not fail, it indeed compute

the state-space and it terminates. The first property is immediate since the only operation that
could fail is pick (where the precondition is “not take any element from an empty set”) and this
is assured by the while’s boolean condition. Only four invariants (lines 6 − 9) are needed: (1)
known and todo are subsets of StSpace; at the end, todo will be empty which ensures (A); (2) these
sets are disjoint which ensures that only new states are added to known; (3) and (4) known is as
StSpace and when todo will be empty, then it ensures (B). Also, the termination of this algorithm
is ensured by the following variants: |StSpace set_diff known| and this variant holds at every step
since the algorithm only adds a new state s since (known set_inter todo)=set_empty.
All the obligations produced by the VCG of WhyML are automatically discharged by a combi-

nation of SMT provers: CVC3, Z3, Simplify, Alt-Ergo, Yices and Vampire. For each prover, we
give a timeout of 10 seconds. In the following table, we give the number of generated obligations
and how many are discharged by the provers:

Algo/SMT Total Alt-Ergo Simplify Z3 CVC3 Yices Vampire
Seq 11 2 10 11 7 3 3

One could notice that SMT solvers Simplify and Z3 give the best results. In practice, we mostly
used them: Simplify is the faster and Z3 sometime verified some obligations that had not be dis-
charged by Simplify. We also have worked with the provers as black-boxes and we have thus no
explanation for this fact. It also took a day for the first author to annotate this first algorithm.

3.4 Verification of BSP algorithms

Our tool BSPWhy extends WhyML with BSP primitives (message passing and synchronisation)
and definitions of collective operations. A special constant nprocs (equal to p the number of
processors) and a special variable my_pid (with range 0, . . . ,p− 1) were also added to WhyML
expressions. A special syntax for BSP annotations is also provided which is simple to use and
is sufficient to express conditions in most practical programs: we add the construct t<i> which
denotes the value of a term t at processor id i, and <x> denotes a p-values x (represented
by fparray, purely applicative arrays of constant size p) that is a value on each processor by
opposition to the simple notation x which means the value of x on the current processor.
We used the WhyML language as a back-end of our own BSPWhyML language. This trans-

formation is based on the fact that, for each super-step, if we execute sequentially the code for
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let seq_algo () =
let known = ref set_empty ESPACE in
let todo = ref {s0} in
while todo 6= ∅ do
{
invariant (1) (known set_union todo) Incl StSpace

and (2) (known set_inter todo)=set_empty
and (3) s0 In (known set_union todo)
and (4) (forall e:state. e In known → succ(e) Incl (known set_union todo))

variant |StSpace set_diff known|
}
let s = pick todo in

known← !known set_add s;
todo← !todo set_union (succ(s) set_diff !known)

done;
!known
{result=StSpace} (∗ result is the value of known∗)

Figure 3.2. Sequential annotated algorithm

each processor and then perform the simulation of the communications by copying the data, we
have the same results as in really truly doing it in parallel. Also, when transforming a if or
while structure, there is a risk that a global synchronous instruction (a collective operation)
might be executed on a processor and not on the others. We generate an assertion to forbid
this case, ensuring that the condition associated with the instruction will always be true on
every processor at the same time and thus forbidding deadlocks. The details and some examples
are available in [39]. This sequential algorithm can be easily parallelised in a SPMD (Single
Program, Multiple Data) fashion by using a partition function cpu that returns for each state
a processor id, i.e., the processor numbered cpu(s) is the owner of s. The idea is that each
processor computes the successors for only the states it owns. This is rendered as the BSP
algorithm of Fig. 3.3. Sets known and todo are still used but become local to each processor and
thus provide only a partial view on the ongoing computation. For lack of space, we only present
the code of the main parallel loop: other functions are available in the source code.
Function local_successors compute the successors of the states in todo where each computed

state that is not owned by the local processor is recorded in a set tosend together with its owner
number. The set pastsend contains all the states that have been sent during the past super-steps
— the past exchanges. This prevents returning a state already sent by the processors. Function
(synchronous) exchange is responsible for performing the actual communications: it returns the
set of received states that are not yet known locally together with the new value of total.
In order to terminate the algorithm, we use the additional variable total in which we count

the total number of sent states. We have thus not used any complicated methods as the ones
presented in [12, 41]. It can be noted that the value of total may be greater than the intended
count of states in todo sets. Indeed, it may happen that two processors compute a same state
owned by a third processor, in which case two states are exchanged but then only one is kept
upon reception. In the worst case, the termination requires one more super-step during which
all the processors will process an empty todo, resulting in an empty exchange and thus total=0
on every processor, yielding the termination. We use the following predicates:

• isproc(i) is defined what is a valid processor’s id that is 0≤ i<nprocs;
• sigma_union(p_set) is the union of the sets of the p-value p_set that is

⋃p
pid=0 p_set(pid);

• GoodPart(<p_set>) is used to indicate that each processor only contains the states it owns
that is forall i:int. isproc(i) → forall s:state. s In p_set<i> → cpu(s)=i.

As above, we need to prove that the code does not fail, indeed computes the entire state-space
and terminates. The first property is immediate since only pick is used as above. Absence of
deadlock (the main loop contains exchange which implies a global synchronisation of all the pro-
cessors) can easily be maintaining using invariant (4) (line 11): total have the same value on all
the processors during the entire execution of the algorithm. Let us now focus on the two other
properties.
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let naive_state_space () =
let known = ref set_empty ESPACE ESPACE ESPACE ESPACE ESPACE ESPACE ESPACE in

let todo = ref set_empty ESPACE in
let pastsend = ref set_empty ESPACE ESPACE ESPACE ESPACE in let total = ref 1 in
if cpu(s0) = bsp_pid then
todo ← s0 set_add !todo;
while total>0 do
{ invariant
(1) sigma_union(<known>) set_union sigma_union(<todo>) Incl StSpace

and (2) (sigma_union(<known>) set_inter sigma_union(<todo>))=set_empty
and (3) GoodPar(<known>) and GoodPart(<todo>)
and (4) (forall i,j:int. isproc(i) → isproc(j) → total<i> = total<j>)
and (5) total<0> ≥ |sigma_union(<todo>)|
and (6) s0 In (sigma_union(<known>) set_union sigma_union(<todo>))
and (7) (forall e:state. e In sigma_union(<known>) → succ(e) Incl (sigma_union(<known>) set_union sigma_union(<todo>)))
and (8) (forall e:state. forall i:int. isproc(i) → e In known<i> → succ(e) Incl (known<i> set_union pastsend<i>))
and (9) sigma_union(<pastsend>) Incl StSpace
and (10) (forall i:int. isproc(i) → forall e:state. e In pastsend<i> → cpu(e)<>i)
and (11) sigma_union(<pastsend>) Incl (sigma_union(<known>) set_union sigma_union(<todo>))

variant pair(total<0>,| S set_diff sigma_union(known) |) for lexico_order
}
let tosend=(local_successors known todo pastsend) in
exchange todo total !known !tosend

done;
!known
{sigma_union(<result>)=StSpace and GoodPart(<result>)}

Figure 3.3. Parallel annotated algorithm

The invariants (lines 8− 18) of the main parallel loop work as follow: (1) as in the sequential
algorithm, we need to maintain that known (even distributed) is a subset of StSpace which finally
ensures (A) when todo is empty; (2) as usual, the states to treated are not already known; (3) our
sets are well distributed (there is no duplicate state that is, each state is only keep in a unique
processor); (4) total is a global variable, we thus ensure that it is the same value on each processor;
(5) ensures that no state remain in todo (to be treated) when leaving the loop since total is upper
to the size of todo, total is an over-approximation of the number of sent states; (6) and (7) usually
ensure property (B); (8) states in known have their successors locally present or been sent; (9) past
sending states are in the state-space; (10) pastsend only contains states that are not own by the
processor and (11) all these states, that were sent, are finally received and store by a processor.
In the post-condition (line 25), we can also ensures that the result is well distributed: the

state-space is complete and each processor only contains the states it owns depending of the
function “cpu”.
For the local computations, the termination is ensure as in the sequential algorithm. The

main loop is more subtle: total is an over-approximation and thus could be greater to 0 whereas
todo empty. This happens when all the received states are already in known. The termination has
thus two cases: (1) in general the set known globally (that is in the point of view of all processor)
grows and we have thus the cardinal of StSpace minus known which is strictly decreasing; (2) if
there is no state in any todo of a processor (case of the last super-step), no new states would
be computed and thus total would be equal to 0 in the last stage of the main loop. We thus
used a lexicographic order (this relation is well-founded ensuring termination) on the total size
of the p values known following with total (which is the same value on each processor) when no
new states are computed and thus when no state would be send during the next super-step.
At least, one processor can no received states during a super-step. We thus need an invariant
in the local_successors for maintaining the fact that the set known potentially growth with at
least the states of todo. We also maintain that if todo is empty then no state would be send (in
local_successors) and received, making total equal to 0 after the exchange function.

With some obvious axioms on the predicates, all the produced obligations are automatically
discharged by a combination of the SMT solvers. In the following table, for each part of this
parallel algorithm, we give the number of obligations and how many are discharged by the
provers:
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part/SMT Total Alt-Ergo Simplify Z3 CVC3 Yices Vampire
main 106 49 90 92 0 0 81
successor 94 45 90 88 75 0 58
exchange 90 42 80 78 74 0 75

Now the combination of all provers is needed since none of them (or at least a couple of them)
is able to prove all the obligations. This is certainly due to their different heuristics. We also
note that Simplify and Z3 continue to remain the most efficient. It also takes one month for the
authors to annotated this parallel algorithm.
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Chapter 4

Case study

4.1 Dedicated algorithms for protocols

4.1.1 BSP computing the state-space of security protocols [43]

We models security protocols as a labelled transition system (LTS) where agents send messages
over a network which contains a Dolev-Yao attacker [32]. The intruder can overhear, intercept,
and synthesise any message and is only limited by the constraints of the cryptographic methods
used. It is enough to assume that the following properties hold: (P1) LTS function succ can
be partitioned into two successor functions succR and succL that correspond respectively to
transitions upon which an agent (except the intruder) receives information (and stores it), and
to all the other transitions; (P2) there is an initial state s0 and there exists a function slice
from states to natural numbers (a measure) such that if s′ ∈ succR(s) then there is no path
from s′ to any state s′′ such that slice(s) = slice(s′′) and slice(s′) = slice(s) + 1 (it is often call
a sweep-line progression); (P3) there exists a function cpu from states to natural numbers (a
hashing) such that for all state s if s′ ∈ succL(s) then cpu(s) = cpu(s′); mainly, the knowledge of
the intruder is not taken into account to compute the hash of a state; (P4) if s1, s2 ∈ succR(s)
and cpu(s1) 6= cpu(s2) then there is no possible path from s1 to s2 and vice versa. Based on the
following properties, we have designed in [43], in an incremental manner, three different BSP
algorithms for effectively computing the state space of security protocols. Only the functions
local_successors and exchange have been modified in the distributed algorithms.

In the first algorithm, called “Incr”, when the function local_successors is called, then all new
states from succL are added in todo (states to be proceeded) and states from succR are sent to be
treated at the next super-step, enforcing an order of exploration of the state space that match the
progression of the protocol. Another difference is the forgotten the variable “pastsend” since no
state could be send twice due to this order. Fig. 4.1 schemes this idea. In the second algorithm,
called “Sweep”, and using the previous hypothesis, at the beginning of each super-step, we also
dump from the main memory all the known states because they cannot be reached anymore due
to the sweep-line progression. In the third algorithm, call “Balance”, states to be sent are also
first balanced across the processors. Classes of states (consistent with partition function cpu)
are grouped on processors so there is no possibility of duplicated computation. Fig. 4.2 schemes
this idea. These algorithms (especially the third one) give better performances than a naive
distributed one for security protocols [43]. Note that partial-order reductions [75] can also be
trivially introduced.

4.1.2 Verification of these dedicated parallel algorithms

For all these algorithms, the termination is proved correct as above. For lack of space, we present
only the differences in the main loop of the algorithms and not in local_successor and exchange —
see the source code.
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Figure 4.1. Scheme of the “Incr” distributed algorithm

1
2

3

4

p0

p0

p0

p1

p1

p1

p2

p2

p0

class of states

balanced communications

slices

Figure 4.2. Scheme of the “Balance” distributed algorithm

Algorithm “Incr”

The invariants are the same of Fig 3.3 but with these changes. First, we need to forgotten all
the behaviour about pastsend in the invariants of Fig 3.3 that is invariants (10), (15) and (18)
since we no longer use this variable. Second, we introduce these two new invariants:
(12) and (forall e:state. e In sigma_union(<known>) → slice(e)<ghost_slice)
(13) and (forall e:state. e In sigma_union(<todo>) → slice(e)=ghost_slice)

We need here to introduce the ghost variable1 ghost_slice which is incremented at each super-step
and thus corresponds to the measure of progression of the protocol. Invariant (12) is need to
prove that the set known contains only states of the past slices and invariant (13) proves that in
todo there is only states of the current slice.

Algorithm “Sweep”

This algorithm works as “Incr” except that known is empty at the beginning of each super-step.
We thus need to maintain this fact by using another invariant (14) sigma_union(known)=set_empty.
Note that known only grows in function local_successor.

Also, we can thus not longer use known as the variable which contains the full state-space. We
thus introduce another ghost variable called ghost_known which will grows at each super-step by
recovering all the states of known. In this way, in all the previous invariants, we must replace
known per ghost_known for having the correctness of this algorithm.

Algorithm “Balance”

In this algorithm, we no longer used the partition function cpu since states are distributed
per class and classes are distributed across the processors using a balance. We thus need a
predicate class(e,e’) that logically define that two states belong to the same class. We also

1Additional codes not participating in the computation but accessing the program data and allowing the
verification of the original code.
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need to redefine the predicate GoodPart(<p_set>) as follow: forall i,j:int. isproc(i) → isproc(j) → i<>j → forall s,s’:state. s In p_set<i> →
s’ In p_set<j> → not class(e,e’) which denotes that two states belong of two different processors are
not in the same class.
We also need too assert that after the computation of the balance (currently axiomatising

since a heuristic of a NP-problem [43]), sent states respect the predicate GoodPart. We also
introduce this new invariant:
(14) and (forall i:int. isproc(i) → forall e,e’:state. e In ghost_known<i> → class(e,e’) → e’ In ghost_known<i>)

which denotes that known states respect the fact that all states in a class belong to the same
slice at the same processor. local_successor would verifying this fact.

“Proof obligation results”

In the following table, for each part of each parallel algorithm, we give the number of obligations
and how many are discharged by the provers:

Algorithm Part Total Alt-Ergo Simplify Z3 CVC3 Yices Vampire
Incr

main 109 50 93 85 0 0 85
successor 105 55 102 101 77 0 73
exchange 32 15 28 22 19 0 27

Sweep
main
successor
exchange

Balance
main
successor
exchange

As above, only the combination of all provers is able to prove all the obligations. And few of
them (not necessary the harder) need that provers run minutes. Simplify and Z3 still remain
the most efficient. An interesting point is that the second author, as a master student (when
writing this article), was able to perform the job (annotated these parallel algorithms) in three
months. Based on this fact, it seems conceivable that a more seasoned team in formal methods
can tackle more substantial algorithms (of model-checking) in a real programming language.

4.2 Related works
There are many tools dedicated to the verification of security protocols: see [25] for an overview.
The main idea of most known approaches to the distributed memory state space generation
is similar to the naive algorithm [?]. Some developments using theorem provers are related to
model checking. In [78] and [64], authors present development of BDDs and tree automata using
Coq. The verification of a µ-calculus computation has also been done in Coq in [70]. A sequen-
tial state-space algorithm (with a partial order reduction) has been checked in B in [76]. Our
methodology is also based on perfect cryptography. The author of [30] annotated cryptographic
algorithms to mechanized prove their correctness.
To our knowledge, there are three existing approaches for automatically generating machine-

checked protocol security proofs. The first approach is in [49] where a protocol and its properties
are model as a set of Horn-clauses and where the certificate is machine-checked in Coq. The
second [21] used the theorem prover Isabelle and compute a fixpoint of an abstraction of the
transition relation of the protocol of interest — this fixpoint over-approximates the set of reach-
able states of the protocol. The latter [62] also used Isabelle but two strong protocol-independent
invariants have been derived from an operational semantics of the protocols. We see three main
drawbacks to these approaches. First, they limits (reasonably) protocols and properties that
can be checked. Second, each time the proof of the tested property of the protocol need to be
machine-checked; in our approach, the results of the MC are correct by construction. Third,
there is currently no possibility of distributed computations for larger protocols.



Chapter 5

Conclusion

Designing security protocols is complex and often error prone: various attacks are reported in
the literature to protocols thought to be “correct” for many years. There are now many tools
that check the security of cryptographic protocols and model-checking is one of the solution [25].
But model checkers use sophisticated algorithms that can miss a state which can be an unknown
attack of the security protocol. Mechanized correctness is thus vital.
In this work, we focus on correctness of a well-known sequential algorithm for finite state-

space construction (which is the basis for explicit model-checking) and on distributed ones where
three are dedicated to security protocols. We annotated the algorithms for finite sets operations
(available in Coq) and used the VCG Why (certifying in Coq [54]) to obtain goals that were
entirely checked by SMT solvers. These goals ensure the termination of the algorithms as well
as their correctness for any successor function — assumed correct and generating a finite state-
space. We thus gained more confidence in the code. We also hope to have convinced that this
approach is humanly feasible and applicable to truly (parallel or not) model-checking algorithms.
In future works, we plan to check model-checking algorithms (in the sense of determine if

a logical LTL/CTL* formula holds a model) as Tarjan like algorithms. This is challenging in
general but using an appropriate VCG, we believe that a team can “quickly” do it. Compressions
aspects (symmetry, partial order, etc.) must also be studied since they can generated wrong
algorithms. The work of [76] which use the B method could be a good basis. Furthermore,
the transformation of BSPWhyML into WhyML is potentially not correct. The third authors
is working on this. The successor function (computation of the transitions of the state-space)
is currently an abstract function. A machine-checked proof of an implementation is needed.
Finally, we are currently proving algorithms and not the effective code. Regarding the code
structure, this is not really an issue and translating the resulting proof into a verification tool
for true programs should be straightforward, mostly if high level data-structures are used: the
Why framework allows a plugin of Frama-C (http://frama-c.com/) to generate WhyML codes
from C ones — a tool for Java’s codes is also present.
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