CLC

A Polymorphic Type System for BSML

Frédéric Gava

Technical Report TR-2002-12

Laboratory of Algorithms, Complexity and Logic
University of Paris XII, Val-de-Marne
61, avenue du Général de Gaulle
F-94010 CRETEIL Cedex — FRANCE
Tel: +33 (0)1 45 17 16 47
Fax: 433 (0)1 45 17 66 01

Presentation

Le projet CARAML

Description
Certains problémes comme la simulation de

phénomeénes physiques ou chimiques ou la gestion

de bases de données de grande taille nécessitent des

performances que seules les machines massivement
paralléles peuvent offrir. Leur programmation
demeure néanmoins plus difficile que celle des
machines séquentielles. La conception de langages
adaptés est un sujet de recherche actif. Le but du
projet CARAML (CoordinAtion et Répartition
des Applications Multiprocesseurs en objective
camL) est le développement de bibliothéques pour
le calcul haute-performance et globalisé autour
du langage CAML de 'INRIA, dans son dialecte
Objective Caml (OCaml). Ceci peut étre effectué
par la création de bibliothéques de primitives paralléles et globalisées, bibliothéques applicatives orientées
SGBD et calcul numérique et enfin d’exemples d’applications & la simulation moléculaire.

Ce projet est commun aux universités de Paris VII, Paris XII, université d’Orléans et de I'INRIA. Il est
dirigé par M. Hains de 'université d’Orléans.

Motivation

CAML est un langage de programmation de haut niveau qui offre de nombreux avantages pour le
développement de logiciel : programmation fonctionnelle et impérative, typage fort implicite, gestion dy-
namique de la mémoire, implantations efficaces et nombreuses bibliothéques. Le dialecte OCaml y ajoute
un systéme de programmation orientée objet ainsi que plusieurs nouveautés. Le développement du lan-
gage par 'INRIA et son utilisation répandue en recherche et en enseignement en font un vecteur idéal pour
Pavancement et la popularisation des technologies du logiciel paralléle et réparti. Le paradigme GRID (ACI
Globalisation des ressources informatiques et des données), fondé sur la fusion de ces deux domaines de
I'informatique, se diffusera rapidement dans l’enseignement et la recherche en informatique si on intégre
a4 OCaml les fonctionnalités appropriées : multi-programmation de systémes data-paralléles, algorithmes
en mémoire répartie et disques répartis, équilibrage de charge, répartition géographique des applications,
tolérance aux pannes. Le projet CARAML propose de développer ces fonctionnalités sous forme de biblio-
théques simples d’utilisation et maximisant les performances du matériel. L’utilité du projet est d’alimenter
I’enseignement et la recherche par des outils logiciels pertinents, simples d’utilisation et bien modélisés. Les
fonctionnalités proposées par CARAML, bien qu’individuellement présentes dans la littérature scientifique,
ne sont actuellement réunies par aucun systéme. Il existe par exemple : des systémes paralléles tolérants
aux pannes mais restreints aux calculs asynchrones sans communications internes, des systémes de program-
mation paralléle/répartie fonctionnelle sans modéle de performance ou sans globalisation, etc. L’originalité
du projet est de proposer une intégration de la programmation déclarative, paralléle et concurrente dans
un cadre de gestion dynamique des performances, d’extensibilité aux grands systémes et de tolérance aux
pannes.

Contexte

Le parallélisme de données est un paradigme de programmation paralléle dans lequel un programme
décrit une séquence d’actions sur des tableaux a accés parallele. Le modéle BSP vise & maximiser la
portabilité des performances en ajoutant une notion de processus explicite au parallélisme de données. Un
programme BSP est écrit en fonction du nombre de processeurs de 'architecture sur laquelle il s’exécute. Le
modeéle d’exécution BSP sépare synchronisation et communication et oblige les deux & étre des opérations
collectives. Il propose un modéle de coiit fiable et simple permettant de prévoir les performances de fagon
réaliste et portable.

Le projet BSlambda/BSML a deux objectifs principaux : parvenir a des langages universels et dans
lesquels le programmeur peut se faire une idée du colit & partir du code source. Cette derniére exigence
nécessite que soient explicites dans les programmes les lieux du réseau statique de processeurs de la machine.

Le BSlambda-calcul est un lambda-calcul étendu par des opérations paralléles BSP qui s’avére confluent
et universel pour les algorithmes BSP. La BSMLIib est une implantation partielle de ces opérations sous forme
d’une bibliothéque pour le langage Objective CAML. Cette bibliothéque permet d’écrire des programmes
paralléles BSP portable sur une grande variété d’architectures allant du PC & deux processeurs au systéme

massivement paralléle Cray comprenant plusieurs centaines de processeurs, en passant par des clusters de
PC.

Description

Le BSlambda-calcul est un calcul non-typé. Il faut alors concevoir un systéme de typage polymorphe
compatible avec les deux niveaux de termes du BSlambda-calcul. Un tel systéme est indispensable & un
langage BSML complet ayant Objective Caml comme cas particulier.

La premiére partie de ce stage a donc pour objectifs de concevoir un systéme de typage polymorphe le
plus expressif possible et de prouver la correction du typage par rapport & I’évaluation.

La seconde partie consiste en la création d’un algorithme de synthése de types, de prouver sa correction
et sa complétude puis de 'implanter. Pourront étre ajoutées, quelques extensions comme les "nuples", les
types concrets et enfin 'utilisation de traits impératifs.

Le projet CARAML promeut 'utilisation de la BSMLIib comme base pour le calcul par grille (Grid). Ce
stage s’intégre donc dans le projet dans le sens qu’un systéme de types est le premier pas vers la siireté (puis
de la sécurité) demandé a un langage de haut niveau comme BSML.

Déroulement

Ce texte est a l'origine un mémoire de DEA (DEA Programmation de I'Université de Paris VII année
2002). 11 a été écrit au cours d’un stage d’initiation a la recherche au LACL (Laboratoire d’algorithmique,
complexité, logique de I"Université de Paris XII) sous la direction de Frédéric Loulergue qui est membre du
projet CARAML. Le titre du mémoire était: Un systéme de types polymorphes pour le langage BSML.

Contents

1 Introduction
1.1 Thesubject e e e e
1.2 Bulk-Synchronous Parallelism
1.3 BSA-calculi e
1.3.1 The BSX-calculus
1.3.2 The BSAp-calculus
1.4 The BSMLLIB library L . o e e e e e
2 A Type System for mini-BSML
2.1 Definition of our language L e
2.1.1 The mini-BSML language e
2.1.2 Evaluation rules e
2.2 The type system of BSML L
2.2.1 Types for BSML e
2.2.2 Inductive rules of the type system L
3 Technical lemmas
3.1 Construction of the constraintso L
3.1.1 The correct constraints L
3.1.2 Relationship between free variables on constraints and types
3.2 Substitution L L e
3.2.1 Substitution and Gen
3.2.2 Relationship between types, constraints and substitution
3.3 Relation between our objects L
3.4 Stability
4 Typing safety
4.1 ToolS e e e e e
4.1.1 Lemma of indifference
4.1.2 Values and type derivations L L L e
4.1.3 Lemma of substitution
4.2 Typing safety e
421 From mini-BSML to BSA,
4.2.2 Validity of the type system
4.3 The small step semantics Lo e e e e
4.3.1 Definition e
4.3.2 Subject reduction e
4.3.3 Safety e
5 An Algorithm for type inference
5.1 Presentation of algorithm W
5.1.1 Tools e e e e e e
5.1.2 The algorithm W o
51.3 Example e
5.2 Correction
5.3 Completenesso e e

12
12
12
13
14
14
16

20
20
20
21
22
22
22
23
25

29
29
29
30
30
32
32
33
34
34
35
39

6.1.1 Description of the data structures 51
6.1.2 Definitionso 51

6.2 Tools on constraints 53
6.2.1 Solve 53
6.2.2 Simple 54

6.3 The W oalgorithm 0 e 95
6.3.1 Unification and trivial instance Lo oo 55
6.3.2 The W algorithm e 56

6.4 Mini-BSML e 57
6.4.1 Operating e e 57
6.4.2 Examples 58

7 Further extensions 62
7.1 A Trivial extension: the Nuples o 62
7.1.1 Definition oL e 62
7.1.2 0perators o e e 63
7.1.3 Exampleso 63
7.1.4 Validity and the algorithm L o 64

T2 Sum types e e 64
7.2.1 Declaration 64
7.2.2 Definitiono 64
7.2.3 Typesystem e e e 65

7.3 Imperative treats L e e 67
7.3.1 Dynamic semantics oL L e e e e 68
7.3.2 Typesystem e 70

A little Help

To facilitate the reading of this report, we give a sketch of the interactions of the lemmas in the next
page. From a box, the point of an arrow means the use of another box. In the box, we note the number of
the lemma, "p" for a proposition and "c" for a corollary.

Thanks

I thank Pierre Valarcher who told me of the existence of the DEA Programmation and Frédéric Loulergue
for his training course’s subject and his encouragements.

This work is supported by the ACI Grid program from the French Ministry of Research, under the project
CARAML.

) Well-typed normal forms are values (Subject reduction H 20 Preservation of the head reduct)
A
Y Y

22 Progress) /(19 Preservation for the operators)

(21 Delta-rule for the value

[Surety of the type system 14 Indifference of the type derivation beside unless hypothesis j

[18 Less type for context \
Y / (15 Stability of the derivation with more general type scheme j

(16 Forms of the values

(10 Locality and subtitution

[17 Substitution

(8 Free variables of a type and its locality) A

A
\ y /[11 Type constraints and substitution
Free variables of a type and type constraints 2 Relation between ype and constraints j

A Correction of W)
(Completness of W 13 Stablhty of substitution

\f !

1 Commutativity between Gen and a substitution j

(5 Solve and Locality
A A

(6 Locality is local)
A

(7 Solve and type constraints)

p2 BSML type

[Validity of the type system j

Chapter 1

Introduction

1.1 The subject

Some problems, like the simulation of physical or chemistry problems require performance that only
massively parallel computers offer whose programming is still difficult. The BSP execution model represents
a parallel computation on p processors as an alternating sequence of computation superstep (p asynchronous
computations) and communications (data exchanges between processors) with global synchronisation.
These two operations are collective. A BSP program is written, according to the number of processors in
the computer on which it is computed. The BSP cost model facilitates performance prediction by a simple
formula for the execution times.

An algorithm is in direct mode when its physical process structure is made explicit. This makes it less
convenient to express but more efficient in many cases. This report outlines a type system for BSML, a
functional programming language for direct mode BSP algorithms.

In the first chapter, we introduce the theoritical calculus. In the second chapter, we introduce our
language, its syntax, its executions and the type system. Next, we give some technical lemmas of the
following elements. In the fourth chapter, we introduce a new dynamic semantics and prove some properties
of the type system. The fifth chapter gives an algorithm for the type reconstruction and we prove its
correction and completeness. In the next chapter we describe the implementation that has been done and in
the last, we introduce some possible extensions and further works.

1.2 Bulk-Synchronous Parallelism

BSP computing is a parallel programming model introduced by Valiant [Valiant, 1990] to offer a high
degree of abstraction like PRAM models and yet allow portable and predictable performance on a wide va-
riety of architectures. A BSP computer contains a set of processor-memory pairs, a communication network
allowing inter-processor delivery of messages and a global synchronization unit which executes collective
requests for a synchronization barrier. Its performance is characterized by 3 parameters expressed as multi-
ples of the local processing speed: the number of processor-memory pairs p, the time / required for a global
synchronization and the time g for collectively delivering a 1-relation (communication phase where every
processor receives/sends at most one word). The network can deliver an h-relation in time gh for any arity h.

A BSP program is executed as a sequence of supersteps, each one divided into (at most) three successive
and logically disjoint phases (figure 1.1).

In the first phase each processor uses its local data (only) to perform sequential computations and to
request data transfers to/from other nodes. In the second phase the network delivers the requested data
transfers and in the third phase a global synchronization barrier occurs, making the transferred data available
for the next superstep. The execution time of a superstep s is thus the sum of the maximal local processing
time, of the data delivery time and of the global synchronization time:

Time(s) = = max w§s) + max hgs) xg+1

i:processor i:processor

where wgs) = local processing time on processor ¢ during superstep s and hgs) = max{hz(-i),hgi)} where

synchronisation barrier

synchronisation barrier

Figure 1.1: A BSP superstep

hz(j_) (resp. hz(s_)) is the number of words transmitted (resp. received) by processor i during superstep s.

The execution time), Time(s) of a BSP program composed of S supersteps is therefore a sum of 3
terms:W + H x g+ S« where W = max; w'* and H = > Max; S general W, H and S are

i i
functions of p and of the size of data n, or of more complex parameters like data skew and histogram sizes.
To minimize execution time the BSP algorithm design must jointly minimize the number S of supersteps and

the total volume % (resp. W) and imbalance h(*) (resp. W(*)) of communication (resp. local computation).

1.3 BSM\-calculi

In this section we introduce an extension of the classical A-calculus called the BSA-calculus. This calculus
introduces operations for data-parallel programming but with explicit processes in the spirit of BSP. We now
describe the BSA syntax, its reductions with operational motivations and an important extension.

1.3.1 The BS)-calculus

Syntax
We consider a set V of local variables and a set V of global variables. Let #,7, ... denote local variables
and Z, 7, . .. denote global variables from now on. x will denote a variable which can be either local or global.

The syntax of BSA begins with local terms t from the A-calculus representing programs or values stored in
a processor’s local memory. The set 7 of local terms is given by the following grammar:

t o=
| tt application
| Az.t lambda abstraction
| c constants

where & denotes an arbitrary local variable. We will abbreviate to (t; — to, t3) the conditional terms ¢ ¢ t3.
The processors names are closed A-terms in such a way that the data fields could be intentionally expressed
per a special constant named m. We assume for the sake of simplicity a finite set N'= {0,... ,p — 1} which
represents the set of processors names, note n; for a processor name belonging to N and p the finite number
of processor.

The principal BSA terms E are called global and represent data fields, i.e. some functions from a fixed

Figure 1.2: The term 7 e

set of processors to values. The set T of global terms is given by the following grammar:

E =z
| EE application
| Ee application
| Az.E lambda abstraction
| \i.E lambda abstraction
| e
| E#E
| EE
| (ESE,E)

where T denotes an arbitrary local variable. Terms of the form (AzZ.E) e (respectively (Az.E) E) constitute
implicit errors because they represent a local argument to a global — global function (respectively a global
argument to a local — global function). Now we give the denotational meaning.

The term 7 e represents a data field whose values are given by the function e (figure 1.2). The global
terms denote some functions from A to local values, some functions between them, some functions from local
terms to such functions. In particular, the denotation of 7 e at processor n;, the value of e n; (figure 1.2).
The forms E1#E,; and E 7E, are respectively called parallel application (apply-par) and get. Apply-par
represents point-wise application of a field function to a fields values (the pure computation phase of a BSP
super-step). Get represents the communication phase of a BSP super-step, i.e., a collective data exchange
with a barrier synchronisation. In E17FEs, the resulting data field contains values from F; taken at processor
names defined in Es. The last form of global terms defines synchronous conditional expressions. The meaning
of (E1 — Es, E3) is Ey (respectevely FEs) if the data field denoted by E; has true (respectively false) value
at processor name denoted by e. We will formalise this in the next section.

Rules

We now define the reduction of BSA terms.

The reduction of local terms is simply S-reduction, obtained from the local G-contraction rule apply to

any sub-term.
(B) (Az.e)e' — e[t + €]

The reduction of global terms is defined by syntax-directed rules and context rules (any sub-terms) which
determine the applicability of the former. First, there are rules for global G-reduction:

(B) (Mi.E) E' — E[z « E)
(B") (\i.E) ¢ — E[i « ¢

Because the terms (A\z.E) E' is syntaxively correct, but the substitution E[z < E'] is not, we need these
two rules.

There are also axioms for the interaction of the data fields with other BSP operations:

(?7) (7 e1)?(w ex) = w(Ag.e1(ex)) where Vi e N, (ex i) > neN (figure 1.3)

(#7) (7 e1)#(m ex) = w(Az.(e1 T)(e2 T)) (figure 1.4)

These two equations encode the denational signification of the BSP’s operators on the fields. In particular,
get is the functional composition in the 7. The value of 7 e1?m e9 at processor n; is the value of e; (e2 n;), i.e.

el el

#Fo
me2 €21

77777777777777777 eli)e2d)
Figure 1.3: The rule (#m)
[J

el | | i |

?
me2

Figure 1.4: The rule (?)

the value of m e; at processor name given by the value of es n;. Notice that, in pratical, this represents an
operation whereby every processor receives one and only one value from one and only one other processor.
Next, the global conditional is defined by two rules:

(—e>) (7 e) i’> E\,E;) — E; where e €' — true
(£>) (7 e) i,> Ey,E;) — Ey where e ¢ — false

where €' belongs to N ((Figure 1.5).

The two cases generate the following bulk-synchronous computation: first a pure computation phase
where all processors evaluate the local term €' yielding to m; then processor n evaluates e n giving v'.
If v' = true (respectively false, then the processor n broadcasts the order for global evaluation of E
(respectively Es); otherwise the computation fails.

Theorem 1 The BSA-calculus is confluent. [Loulergue et al., 2000]

Figure 1.5: The rule (%)

The BSAj,-calculus is a confluent extension of the BSA-calculus where the basic parallel objects are
enumerated and correspond to the processor. Thus, its parallel data structures are flat and map directly
to physical processors. Now, the data fields are enumerated on the processor’s names 0,... ,p — 1 and the
abstract term 7 e of the BSA is remplaced by ((e 0),...,(e (p —1))) where the length of the sub-term
list is equal to p. In the rules, we will identify terms modulo renaming of bound variables and we will use
Barendregt’s variable convention: if terms t1,... , %, occur in a certain context then in these terms all bound
variables are chosen to be different from free variables. The rules of this calculus is applicable in context:

1. (Mi.e)e’ — e[z + €]

2. (\z.E) E' - E[z + PE']

N

—1)#(uo, - -+ s up—1) = (to uo,- .- tp—1 up-—1)

(
(
3. (\2.E) ¢ = E[1 « €]
- {to,-
(

5. ..)7(’]10, . ,np_1> — <tn0,. . ‘t'flp—1>
n

~~
6. (<t0,..., S ,...,tp_1>ﬁ>E1,E2)—>T

The global condition is defined by two rules where n belongs to N and T is E; (respectively Eo) when S is
true (respectively false). Those two rules are necessary to express algorithms of the form

Repeat Parallel Iteration Until Maz of local errors < epsilon

Because without them, the global control cannot take into account data computed locally, i.e. global
control cannot depend on data. For the exchange of data, the BSA, has another instruction that could
replace the get instruction: put noted ! that has the following rule:

U (fore s fpo1) = (e s MG =0 (fo i), (G =1= (f19),(...,me))...)) ,...)

e

i

where nc is the non-communication constant. With all these formal definitions, we could describe the library
that has been implemented.

1.4 The BSMLLIB library

BSML is a data parallel funtional language for programming BSP algorithms. BSMLLIB is based on
the following elements (|Loulergue, 2000]). It is without the pid variable of SPMD programs, but uses an
externally-bound variable bsp_p:unit->int so that the value of bsp_p() is p, the static number of processes.
The value of this variable does not change during execution. There is also a polymorphic type constructor
par such that ’a par represents the type of p-wide vectors of objects of type ’a, one per process. The
nesting of par types is prohibited. Our type system enforces this restriction. This improves on the earlier
design DPML/Caml Flight [Hains and Foisy, 1993| in which the global parallel control structure sync had
to be prevented dynamically from nesting.

Parallel objects are created by

mkpar: (int -> ’a) -> ’a par

so that (mkpar f) stores (f i) on process i for i =0,1,...,(p —1).

A BSP algorithm is expressed as a combination of asynchronous local computations and phases of global
communication with global synchronization. Readers familiar with BSPlib will observe that we ignore the
distinction between a communication request and its realization at the barrier. Asynchronous phases are
programmed with

apply: (’a -> ’b) par -> ’a par -> ’b par

10

e >~ T I S e R S & B

prescribes a synchromzatlon barrler between two successive uses of apply.
The communication and synchronization phases are expressed by

put: (int -> ’a option) par -> (int -> ’a option) par

where ’a option is defined by: type ’a option = None|Some of ’a.
Consider the expression:

put (mkpar (fun i->fs;)) (1.1)

To send a value v from process j to process i, the function fs; at process j must be so that (fs; i)
evaluates to Some v. To send no value from process j to process i, (fs; i) must evaluate to None.

Expression (1.1) evaluates to a parallel vector containing a function fd; of delivered messages on every
process. At process i, (fd; j) evaluates to None if process j sent no message to process i or evaluates to
Some v if process j sent the value v to the process i.

The full language would also contain a synchronous conditional operation

ifat: (bool par) * int * ’a * ’a -> ’a

such that ifat (v,i,v1,v2) will evaluate to vl or v2 depending on the value of v at process i . But
Objective Caml is an eager language and this synchronous conditional operation cannot be defined as a
function. That is why the core BSMLLIB contains the function: at:bool par -> int -> bool to be used
only in the contruction: if (at vec pid) then... else... where (vec:bool par) and (pid:int).
The meaning of if (at vec pid) then exprl else expr2 is that of ifat(vec,pid,exprl,expr2).

11

Chapter 2

A Type System for mini-BSML

Reasoning on the complete definition of a functional and parallel language such as BSML, would have
been complex and tedious. In order to simplify the presentation and to ease the formal reasoning, this
chapter introduces a core language. It is an attempt to trade between integrating the principal features of
functional and BSP language, and being simple. This chapter introduces its syntax, its dynamic and static
semantics together with some conventions, definitions and notation that are used in this technical report.

2.1 Definition of our language

2.1.1 The mini-BSML language

For the sake of conciseness, we limit our study to a subpart of the BSML language. The expressions of
mini-BSML, written e possibly with a prime or subscript, have the following abstract syntax:

en= 7 variables
| ¢ constants
| op primitive operations
| funz —e function abstraction
| (ee) application
| let z=ein e local binding
| (e,e) couple

In this grammar, z ranges over a countable set of identifiers. The form (e €') stands for the application
of a function or an operator e, to an argument e’. The form fun z — e is the so-called and well-known
lambda-abstraction that defines the first-class function whose parameter is and whose result is the value
of e. Constants c¢ are the integers 1, 2, the booleans and we assume having a unique value: (). The set
of primitive operations op contains arithmetic operations, fixpoint operator fix, conditional, test function
isnc of the nc constant (which plays the role of the None constructor in Objective Caml) and our parallel
operations (mkpar, apply, put, ifat).

We note F(e), the set of free variables of an expression e. let and fun are the binding operators. The
formal definition is:

F(c) =0

F(op) =0

F(z) = {=z}

.7:((61 62)) = .7:(61) U f(ez)
.7:((61,62)) = .7:(61) U]:(GQ)
F(fun z — e1) = Fler)\ {z}

F(let z =e; iney) = Fler)U(Flez)\ {z})

Before typing these expressions, we present the dynamic semantics of the language, i.e., how the expres-
sions of mini-BSML are computed to values. There is one semantics per value of p, the number of processes
of the parallel machine. In the following, Vi means Vi € {0,... ,p—1}. The values of mini-BSML are defined

12

vu= funz — e functional value

| ¢ constant

| op primitive

| (v,v) couple values

| (v,...,v) p-wide parallel vector value

Remark: values are not a sub-set of the expressions. So, we have to define the free variables of a parallel

p—1
vector: F({eq,... ep—1)) = U Fles)
=0

2.1.2 Evaluation rules

The dynamic semantics is defined by an evaluation mechanism that relates expressions to values. To
express this relation, we use the formalism of relational semantics (or natural semantics). It consists of a
predicate between expressions and values defined by a set of axioms and inference rules called evaluation
judgments. An evaluation judgment tells whether an expression evaluates to a given result. There are two
kinds of inductive rules, the first for the abstract syntax and the second for primitive operators. We wrote
ei[r < eg] the expression by substituting all the free occurences of z in e; by es. Now we give the first
inductive rules:

crc (1) op>op (2) (fun z — e) > (fun z — e) (3)
er>(funz —e) eydwy e[z vyldw () e1>v egr <+ vi>w e1> v egd Uy
(e1 e9)>w let z=e; ineybw (e1,e2) > (v1,v2)

For addition, conditional, projection, fixpoint operator with an extended syntax, the rules are:

e1>+ eybny eg3d>ng ny and ng integer and n = ny + no

€1 (625 63)
e1> (fun z — e2) eqfz « fix(er)|>w fix(0p) b o
fix(e;) > v p)®op
el >true egp> o e1 >false espw

if e; then eg else e3>v if e; then e; else e3> v

a) > fst ag > (’Ul, ’U2) ay > snd ag > (’Ul, ’1)2)
(a1 CLQ) > 1 (a1 a2) > v9
and for parallel operations, the rules are:

e1> (fun z —e) Vi(e[z < i]>v;)
mkpar e; > (vg, ..., Up—1)

er>(funz —ep,... . funz —e, ;) ead(vy, ... v, 1) Vi(ef[z < vi]>wi)
apply e1 e > (vo,- - ,Vp—1)
fo(fundst — e, ... ,fundst — e, 1) VjVi(ej[dst <] v;)

pUt f > <.f(l)a .. af;;71>
where Vi(f! = fun z — if z = 0 then v} else...if z = (p — 1) then ”;)—1 else nc()).

n n

~ = —~
er>(...,true,...) esbn eg>wvy e >(...,false,...) eabn eg>vy

if e; at ey else e3 then e4 > v3 if e; at ey else e3 then ey > vy
ebv v #nc() e nc()
isnc e> False isnc e> True

We have not written the evaluation rules that make an error, ie, return an special values err (too much
rules). For the sequentiel part, it is the classical rules and for the parallel operator, those rules are easy to
guess. This problem is not very important because, we will develop a type system that will protect us again
those incorrect expressions.

13

In this section, we present the static semantics of our language. The object of static typing is to detect
absurd programs like (fun z — z) + 1. The rules of the static semantics associate the expressions of our
language with their type in the same way as the dynamic semantics associate expressions with values. The
technic of typing ML programs is well-known [Milner, 1978], but is not suited for our language. For example,
consider the following expression:

let replicate = fun x->mkpar(fun i->x)
in replicate(mkpar(fun i->5))

Its type given by the Objective Caml system is (int par) par. If this expression was accepted by our
system, this would imply that one process could evaluate a whole parallel object. In this case, the cost
model would be very complex and the evaluation cost of an expression would depend on its context, making
the cost semantics non-compositional. Another example is for the projections (here fst’). We can write our
projection:
let fst’ = (fun x -> fun y -> x) in ...

We give four cases of the application of the fst’ to different kinds of objects.

1. (two local objects): (fst 1 2)
2. (two parallel objects): (fst (mkpar (fun i -> i)) (mkpar (fun i -> i)))
3. (first combination): (fst (mkpar (fun i -> i)) 1)

4. (second combination): (fst 1 (mkpar (fun i -> i)))

The problem is for the second combination. Its type given by the Objective Caml system is ¢nt. If this
expression was accepted by our type system, we would "hide" the fact that we have a whole parallel object
because during the evaluation, we will evaluate the mkpar whereas the final result is 1.

The goal of our type system is to reject such expressions. We are first going to equip the language with
a type system, then we will give the inference rules of the static semantics and give some examples.
2.2.1 Types for BSML
Type algebra

We begin by defining the term algebra for the basic kinds of semantic objects: the simple types. Simple
types are defined by the following grammar:

Tu= K base type (bool, int, unit etc.)
| @ type variable
| 71 — T2 type of function from 71 to T
| T1 % T2 type for couple
| (1 par) parallel vector type

We want to distinguish between three subsets of simple types. The set of local types L, which represent
usual Objective Caml types, the variable types V for polymorphic types and global types G, for parallel
objects. The local types (written 7) are:

Tu=k | 71T | TLxT
the variable types are (written 7):
Tuo=a | T | 1T | st
and the global types (written 7) are:
Tu=(Tpar) | =T |T1oT |TixTe |T1*xT | T1*Te

14

To attain this goal, we will use constraints to say which variable is local or not. For a simple type 7, £(7)
says that the simple type is local. For a polymorphic type system, with this kind of constraints, we introduce
a Milner’s style type scheme with constraints to generically represent the different types of an expression:

o == Vay...an.[7/C] ‘

Where 7 is a simple type and C is a constraint of classical propositional calculus given by the following
grammar:

C ::= False the false constraint
True the true constraint

C1 ANCy conjonction of 2 constraints
C1 = (5 implication of 2 constraints

|
| L(a) locality of variable of type
|
|

When the set of variables is empty, we simply write [7/C] (or 7/C) and do not write the constraints
when they are equal to True. A type scheme, consists of a simple type which is universally quantified over
a sequence of type variables. Next, we present how to have an instance of a type scheme, i.e., a simple type.

Locality and contraints

Now, when we say that a simple type is local, we distinguish its expression from parallel vector of the
global networks objects. To affine this idea, we define rules to transform the locality of a type to constraints:

Vaer L) V1 L(T par)

T e CP Rt ¢
L(r1 — 1) L(11 % 729)

L AL) Ty AL O

In the type system and for the substitution of a type scheme we will use rules to construct constraints
from a simple type. We note C for this construction from the simple type 7 with the following rules:

T~ Cl T ™~ 02
(7'1,7'2) N C1 A 02

T atomic T~ O]

(CAtom) 7 par) ~ L) A O (CCouple)

(CPar)

T ~ True

7'1’\»01 7'2’\»02
(7'1 - 7'2) ~ CiNCy A (E(TQ) = [,(Tl))

(CArrow)

The last rule (C Arrow) says that if 75 is local then 7; must be also local.
Remark: this inductive construct rules can also be read like:

C: = True if 7 atomic (CAtom)
C(T par) = [,(7') NC; (CPCLT‘)
C(n *Tp) Cr, N Cry (CCouple)
Cirisr) = Cn ANCry ANL(T2) = L(11) (CArrow)

(this is the notation we will generally use in the following)

Substitution

The set of free variables (F) of a simple type, a type scheme and a constraint is calculated by:

Fk) = 0

Fla) = {o}

; False) =0
F(r — 1) = F(n)UF(r)

)

)

)

0

{a}

Ci = CQ) = .7:(01) UF(CQ)
CiACs) = F(C1)UF(C)

7
c
e
[

F(ryx19) = F(m1)UF(12)
F(r par) = F(1)
F(Vaq...an.[T/C]) = (F(r)UF(C))\{a1,-an}

BB
5
&
I

15

pu=lor ¢ Tiy-.. ,Qpn < Tp)
with {a1,... ,an} is the domain (Dom) of .

We generally note a substitution: ¢ ::= [a; < 7;]. We write g o¢' for the composition of the substitution
¢ and ¢'. The identity is written id. The application of a substitution ¢ to simple types and to constraints
is defined by

o(K) = K ¢(True) = True

(o) = 7; if & € Dom(yp) ¢(False) = False

o(7) = v if y € Dom(p) P(C1ACy) = (C1) Ap(Ca)

O(1a = 1) = ©(1a) = @(7p) o(Cr = Cy) = ¢(C1) = p(C2)
o(Ta*75) = @(1a) * (7s) o(L(a;)) = L(n) if o € Dom(yp)
o(t par) = (p(7) par) o(L(7)) = L(y) if v & Dom(y)

With this definition we can define a substitution on a type scheme.

Definition 2 (Substitution on a type scheme)

o(Vay ... an.[T/C]) =Vaq ...an.[p(1)/o(C) /\ Cous) if a1 ... an are out of reach of ¢
Bi€ Dom(p)NF(T/C)

We said that a variable « is out of reach of a substitution ¢ if
1. p(a) = a, i.e ¢ don’t modify « (or « is not in the domain of ¢)
2. « is not free in [7/C], then « is not free in p([7/C]), i.e, ¢ do not introduce « in its result.

Remark: the condition that o ..., are out of reach of ¢ can always be validated by renaming first
a1 ...ay with fresh variables (we suppose that we have an infinite set of variables).

Remark: on the following, it is a misuse of language if we apply a substitution ¢ on types, on type
schemes, on environments (see next section) and also on contraints. This is possible because the domain
(variables of type) and the co-domain are the same (simple type).

2.2.2 Inductive rules of the type system

Instantiation and generalisation

A type scheme can be seen like the set of types given by instantiation of the quantifier variables. We
introduce the notion of instance of a type scheme with contraints.

Definition 3 (Instantiation of a type scheme) [7/C] < Va...an.[7'/C'] if and only if, there ezists a
substitution ¢ of domain oy, ... ,a, where:

T=p(7") and C = o(C) A Co(s;)
Bi€Dom(yp)

We write E for an environment which associates type schemes to free variables of an expression. It is an
application from free variables (identifiers) of expressions to type scheme:

E:={z1:01,... ,2:0,}

and Dom(E) = {z1,... ,z,} for its domain, i.e the set of variables associated. We assume that all the
identifiers are distinct. The empty mapping is written) and E(z) for the type scheme associated with z in
E. The substitution ¢ on F is a point to point substitution on the domain of E:

o({z1:01,... yxn i on}) ={z1:0(01)s- o T (o)}

16

FE) = | FE@)

z€Dom(E)

Finally, we write E+ {z : o} for the extension of E to the mapping of z to o. If, before this operation, we
have x € Dom(FE), we can replace the range by the new type scheme for z. To continue with the introduction
of the type system, we define how to construct a type scheme. Yet, type schemes have universal quantified
variables, but not all the variables of a type scheme can.

Definition 4 (Generalisation of a type scheme) Given an environment E, a type scheme T without
universal quantification and constraints, we define an operator Gen to introduce universal quantification:

‘Gen([T/C],E) =Vay...apn.[7/C]| where {a1,...,an} = F (1) \ F(E) ‘

With this definition, we have introduced polymorphism. The universal quantification gives the choice for
the system to take the good type from a type scheme.

Inductive rules

We note T'C (figure 2.2) the function which associates a type scheme to the constants and to the primitive
operations. We formulate type inference by a deductive proof system that assigns a type to an expression of
the language. The context in which an expression is associated with a type is represented by an environment
which maps type scheme to identifiers. Deductions produce conclusions of the form E + e : [7/C] which
are called typing judgments, they could be read as: "in the type environment E, the expression e has the
type [7/C]". The static semantics manipulates type schemes by using the mechanism of generalisation and
instantiation specified in the previous sections. Now the inductive rules of the type system are given in the
Milner’s style. In all the inductives rules if a constraint C is such that Solve(C) = False then the inductive

[7/C] < E(x) [7/C1 < TC(c) [7/C] < TC(op)
Bre /o™ Erewjel M Hreimo P
E+{z:[r/Cy]} Fe:[r/C)] (Fun)
Er (funz —e):[r — 72/Clryom) A Co]
Etre: [t —1/C] El—eQ:[T'/CQ](App)

EF (61 62) : [T/Cl /\02]

Ete :[n/C] E +{z:Gen([r/C1],E)} F ey : [12/C5]
Etblet z =€ in ey :[1o/C1 ACoy A L(12) = L(11)]

(Let)

El_ell[Tl/Cl] El_62:[7—2/02]
E (61,62) : [T1 *7‘2/01 A CQ]

(Couple)

Figure 2.1: The inductive rules

rule cannot be applied and then the expression is not well typed. To Solve the constraints we use the classical
boolean reduct rules of propositional calculus and the rules to transform the locality of type to constraints.
Our constraints are a sub part of the propositional calculus, so Solve is a decidable function (quine method,
truth table etc.)

For the proof, we suppose that we work modulos these following equations that are natural for the A
operators: True A C = C,C AN C = C and the commutativity of the A operator.

17

A R e T /7 L2 & B

constraints like (£L(«) = False) = —L(«). Simple does not change the semantics but it is used to give
constraints more readable to users.

Afterwards, we need to know when a constraint is Solved to True, i.e., when a constraint could not be
an incorrect constraint. It will be important, notably for the validity of the type system.

TC(1) = int i=0,1,...

TC(b) = bool b= true or b= false

TC(() = unit

TC(+) = (int *xint) — int

TC(fix) = Va.[(a = a) = a/L(a) = L(a)]

TC(fst) = VapB.[(ax*f) = a/L(a) = L(B)] and its dual
TC(snd) — Vaf.[(a*B) > BL() = L(o)]

TC(ifthenelse) = Va.[(bool x a* a) = a/L(a) = L(a)]
TC(mkpar) = Va.[(int — o) = (a par)/L(a)]

TC(apply) = Vaﬁ [((ee = B) par * (a par)) — (B par)/L(c) A L(B)]
TC(ifat) = Va.[(int x (bool par) * a * a) — «a/L(a) = False]
TC(put) = Va.[(int = a) par — (int = «) par/L(a)]
TC(nc) = Va.[unit - a/L(a) = True]

TC(isnc) = Va.[a — bool/L(a)]

Figure 2.2: Definition of TC

Definition 5 (The trues constraints) We wrote ¢ |= C, if the substitution ¢ on the free variables of C
have the two following properties

1. F(e(C)) = 0.
2. Solve(p(C)) = True.

We also wrote the set ¢c = {p | ¢ = C}, to designe all the substitution that have these properties and
¢’é (respectively (]Sg) for the set of substitution where their co-domains are in L (respectively G). Example:

[a < int, B + (int — int)] = L(a) A L(S)
Definition 6 (Local and global expressions) Give Et+ e: [1/C]. e is said:
1. local when 7 € L or (1 €V and ¢& #0)

2. global when T € G or (1 €V and ¢Z # 0)

and totally polymorph when the two cases are possible.

Examples:
e (fun f — mkpar f) is global.
e (fun z — z) is totally polymorph.

Remark: Those definitions are decidable (propositional calculus)

Examples

For the example given at the beginning of this section, the type system calculates that replicate has
the type scheme: Va.[a — (@ par)/L(c)] and (mkpar (fun i — 5)) has type (int par). So after (App) and
(Op) rules, the substitution is a = (int par) and the constraint is Solved to False, so this expression is not
well-typed.

18

int < int
{a:int,b:int par} a:int
{b:int par} - fun b — a: [(int par) = int/Clint pary—int] int < TC(1)
Ffuna—>sfunb—a:? F1:int
F{funa—funb—a)l:? F: (mkpar (fun i — 5)) : int par
F ((fun @ — fun b — a) 1)(mkpar (fun i — 5)) : ?

Effectively, C' = Clint par)—int = L(int par) A... = False A ... so Solve(C) = False and this expression is
not well-typed.

Remark: the importance in (Let), (App) to have C1 A Cy comes that in C; we can have, for example,
that £(a) and =L(a) in Cs. If we forget one of these constraints, we don’t secure that a variable can not be
either global and local. Two examples:

fun z — let y = (mkpar (fun ¢ — z)) in (fun b — z)(mkpar (fun a — 5))
fun z — (fun y — (mkpar (fun ¢ — z))) ((fun b — z)(mkpar (fun a — 5)))

In these two cases, we have x that has the type int par. For the two cases, we have the sub-expression:
mkpar (fun a — z). But the nesting of par types is prohibited so it is not well-typed.

Remark: in (Let), we introduce the fact that £(7m2) = L(71) because an expression like let x = e; in es
can be seen like (fun z — e) e;. So we have to protect our type system against expression from global
values to local values like:

let x = mkpar(fun i — 5) in 8

that have the type int for Objective Caml, but is rejected by our type system. We will formalise these
intuitions in the next sections.

19

Chapter 3

Technical lemmas

In this Chapter, we present and prove some technical lemmas that will serve in further chapters. In the
first section, we present some technical lemmas of the constraints for the Solve operation and lemmas about
free variables on type and constraints. After, we give lemmas about the substitution on constraints and a
proposition on the generalisation. In the third section, we give a relationship between our objects and we
end with a very important technical lemma: the stability of substitution that will use next, particulary in
the inference algorithm.

3.1 Construction of the constraints

3.1.1 The correct constraints

Lemma 1 (Solve and A) If Solve(Cy A Cy) # False then Solve(Cy) # False and Solve(Cs) # False.

Proof: Solve uses classical boolean reduction rules of propositional calculus so to have in this calculus
v1 A vy # False you need v; # False and vy # False (see truth table) hence the result. O

Lemma 2 (typing and =) if E+ e: [r/C] then there ezists ¢ = C.
Proof: by definition of the constraints (propositional calculus), we have Solve(C) # False and the result. O
Lemma 3 (= and Solve) There ezists ¢ = C if and only if Solve(C) # False.
Lemma 4 (| and A) ifo = C and ¢ = C' then o = C A C'.
Proof (of the 2 lemmas): by definition of the propositional calculus. O
Lemma 5 (Solve and locality) if Solve(L(7)) # False then T ¢ G (i.e. T€V)
Proof: by structural induction on 7.
Case 7 = k. We have £(7) = True with 7 € V and the result.

Case 7 = a. We have Solve(L(7)) # False with 7 € V and the result.

Case 7 = 11 — 1. We have Solve(L(1)) = Solve(L(71) A L(72)). So by the Lemma 1 we have that
Solve(L(r1)) # False (idem for 75). So by induction we have 3 € V and 75 € V and the result.

Case 7 = 1 * T». Idem.

Case 7 = 11 par. We have Solve(L(7)) = Solve(False A L(7;)) = False and the result. O

Lemma 6 (Locality is local) We have:
e if T € L then Solve(L(T)) = True.
e if T € G then Solve(L(T)) = False.

20

Lemma 7 (Solve and Type Constraints) If Solve(C;) # False then T € GU V.

Proof: by structural induction on 7.

Case 7 = k. We have C; = True and 7 € L.

Case 7 = «. We have C, = True and 7 € L.

Case 7 =71 = 19. We have C; = Cp, A Cp, A (L(12) = L(711)). By induction, we have 7 € GUV and
9 € GUV. To have that 7 € G UV, we have to proof that the case 72 € L and 7 € G is impossible by
contradiction that Solve((L(m2) = L£(71))) # False (Lemma 1). By Lemma 6, if 7o € L and 71 € G then

we have Solve(L(72)) = True and Solve(L(71)) = False. So we have Solve((L(m2) = L(71))) = False, the
contradiction and the result.

Case 7 = (71 par). We have C; = C, AL(11). By induction, we have that m, € GUV. By the Lemma 1,
we have Solve(L(r1)) # False and by the Lemma 5, we get 71 € V and the result.

Case 7 = 71 * 7. We have C; = C;, A C,. By induction, we have C;;, € GUV (idem for 79) and the
result.

3.1.2 Relationship between free variables on constraints and types
Lemma 8 (Free variables of a type and its locality) F(L(1)) = F(7)
Proof: by structural induction on 7.
Case (base type): we have 7 € k, so F(7) = 0 and F(L(7)) = F(True) = 0 hence the result.
Case (variable): we have 7 = «, so F(7) = {a} = F(L(a)) hence the result.
Case (type of function): we have 7 = 7, — 7, 50 F(7) = F(70)UF (1) and F(L(7)) = F(L(1a) AL(Tp)) =
F(L(1y)) UF(L(15)). So by induction, we obtain that F(L(7,)) = F(74) and F(L(1)) = F(1). By the

definition of the U operator on sets we deduce the result.

Case (Couple): we have 7 = 74 % 1 so F(1) = F(1,) U F(1) and F(L(7)) = F(L(1,) A L(1)) =
F(L(1q)) UF(L(7p))- So by induction, we have F(L(7,)) = F(7,) and F(L(1p)) = F(73) hence the result.

Case (parallel vector): we have 7 = (71 par) so F(r) = F(m1) and
F(L(1)) = F(L(m par)) = F(False A L(11)) = F(L(m1)) so by induction we deduce the result.

Lemma 9 (Free variables of a type and type constraints) F(C,) C F(r)

Example: 7 = (o, 8) and C; = True so F(7) = {a, 8} and F(C;) = 0.
Proof: by strutural induction on 7.
Case (base type): we have 7 € k so C = C;, = True, so F(C;) = = F(7) and the result.
Case (variable): we have 7 = a so C; = C = True, so F(C;) = 0 C {a} = F(r) and the result.

o7, = Cr, NCry A L(1p) = L(74) s0
F(Cr) = F(Cr,) UF(Cr,) UF(L(1)) UF(L(1p)) and F(1) = F(1,) U F(7p). By induction, we obtain that

Case (type of function): we have 7 = 74 — 7, so C; = C..

21

Case (Couple): we have 7 = 7, % 7, s0o Cr = Cr 4y, = Cr, ANCy, so F(Cr) = F(Cr,) UF(Cy,) and
F(r) = F(14) U F(1). By induction, we obtain that F(C,) C F(7,) and also F(Cr,) C F(7) and the
result.

Case (parallel vector): we have 7 = (11 par) so C; = C(;; pary = L(11) A Cy s0 F(Cr) = F(L(11)) U
F(Cr,) and F(1) = F(11). By the Lemma 8, we get F(L(71)) = F(m1) and by induction F(Cr,) C F(m1),
hence the result.

a

3.2 Substitution

3.2.1 Swubstitution and Gen

Proposition 1 (Commutativity between Gen and a substitution) Given an environment E, a type
scheme without universal quantification [7/C| and a substitution ¢ such as all the generalisable variables of
F([r/C]) \ F(E) are all out of reach of p. Then Gen(p([T/C)]), p(E)) = p(Gen(|7/C], E)).

Proof: we have F(Cyg,)) € F(¢(8i)) (Lemma 9) for all 8; € Dom(e) so it is easy to see that a variable « out
of reach of ¢ is free in ¢([7/CY) if and only ifit is free in [7/C]. Thus F(¢([7/C]))\F(e(E)) = F([r/C])\F(E)
and the result.O

3.2.2 Relationship between types, constraints and substitution

Lemma 10 (Locality and substitution) Given a substitution ¢ = [a; < 7;], a type 7, then o(L(T)) =
L(p(7)).

Proof: by structural induction on 7.

Case (base type): we have 7 € k. L(7) = True so ¢(L(7)) = True and ¢(7) = 7 so L(p(7)) = L(7) =
True hence the result.

Case (variable): we have two cases:
1. 7 =y with v # «;, we have p(L(7)) = L(7) and L(¢(T)) = L(7).
2. 7= aj, 50 p(L(ey)) = L(7i) and L(p(0)) = L(7)

hence the result.

Case (type of function): we have 7 = 7, = 73 so
p(L(ra = 7)) = @(L(1a) AL(Ts)) _
(by deﬁnition) ﬁ(‘p(Ta — Tb)) - [’((10(7-0.) - @(Tb))

_ - (by definition)
= PN ion — Llp(ra)) A LLp(m)

= L(p(1a)) A L(p(75))

Case (Couple): we have 7 = 74 * 7 0

p(L(ta* 1)) = @(L(1a) A L(Th))
(by definition) L(o(ta 1)) = L{p(1a) * p(13))
= ©(L(1)) N p(L(Tp)) (by definition)
(by induction) = L(o(1a)) N L(p(1))
= L(p(1a)) N L(p(75))

hence the result

hence the result.

22

D N A N R L T A R N A L A A Y R L

result.

O

Lemma 11 (Constraints and substitution) Given a type T and a substitution ¢ = [o; < 7] then
CLp(T) = (10(07') /\ C‘P(ai)
a; EF(T)NDom(p)

Case (base type): we have 7 € k, C; = True so ¢(C;) = True and (1) = 7 s0 Cy(;) = C; = True.
Because F(7) =) we deduce the result.

Case (variable): we have two cases:

L. 7 =7 (v # a;). We have p(C;) = ¢(True) = True and C,,;) = C; = True. We have F(7) = {7} so
F(7) N Dom(p) = B and we deduct the result.

2. 7 = a;. We have C; = True so ¢(C;) = True and Cy(,,) = Cr. We have F(1) N Dom(p) = {a;}
and we deduce the result.

Case (functional) 7 = 7, — 73: we have

0(Cr) = @(Cr ANCr A (L(Ty) = L(14))) by definition of a substitution
= ¢(Cr) Np(Cr) Ap(L(7s)) = @(L(Ta)) by the Lemma 8
= @(Cr) Ao(Cr) A (L(o(m)) = L(¢(7a))) by induction
= Cyra) A Cai) N Cm) A A Cotar)
a; €F(1q)NDom(yp) a; €F(1p)NDom(yp)
ANL(o(1p)) = L(p(74))) property of A and N
= Ctp(’ra) /\ C‘P(ai) A
0 €(F(10)UF(1p))NDom(p)
Coryy N (L(p(T5)) = L(p(7a))) by definition
= Con) Clo(ar)

;i €((F(1a)UF(1y))NDom(y))
By definition, we have F(7, — 1) = F(74) U F(7p) and the result.

Case (parallel vector). 7 = (7

Coor) = Cp(ry par) = Co(r1) par =
By definition, we have F(7) = F(

71 par): we have C; = L(11) A Cr, so (Cr) = o(L(11)) A o(Cr,) and
L;,(©(711)) A Cy(r;)- With the Lemma 10, we have p(L(11)) = L(p(71))-

so by induction, we get Cy ;) = ¢(Cr,) A Cy(p;) and the
Bi€F(m1)NDom(yp)
result.

Case (Couple). 7 = (1,*7p): we have p(Cr) = ¢(Cr, AC7,) = ¢(Cr,) Ap(Cr,) and Co(r) = Cop(r) NCop(ry)-
By induction we get Cy ;) = »(Cr,) A Cy(a;) and Cyr,y = 0(Cr,) A Cy(as)- By
a; €F(1a)NDom(yp) a; €F(m,)NDom(p)
definition F(7) = F(1,) U F(7p) so like in case (functional) we have the result.

3.3 Relation between our objects

Lemma 12 (Relationship between contraints and types) Given an environment E such asVx € Dom(E),

z :Vai,...,an.[10/Co] then Co = Cr, A C|). Given an expression e such as E+ e : [1/C] then C = C; AC'.

Example:
a< «a
EF(funa—funb—a):[a— (8- a)/L(a) = L(B)] Erz:a
Etr (funa— funb—a)z: [= a/L(a) = L(B)] B<B
Er(funa—funb—a)z y: [— a/L(a) = L(F)] Ery:p

z:a,y:fF (funa— funb— a)z y: [a/L(a) = L(F)]
z:akFfuny - (funae—funb—a)z y: [— o/L(a) = L()]
Ffunz > funy— (funa—>funb—a)zy:|[a— (6 — a)/L(a) = L(F)]

23

Case (Var). We have the following derivation:

[r/C] < E(x)

Bras: o]

By hypothesis E(z) = VYau, ... ,an.[70/Cr A C}] and there exists a substitution ¢ as 7 = ¥(ry) and C =
P(Cro) Np(Cy) A Cysy with Dom(y) = {au,... ,a,}. By the Lemma 9 we have F(Cy,) € F(7)

Bi€Dom(y)
and so by the Lemma 11, we have
$(Cry) A Cyy = ¥(Cn) AN Cygy
Bi€F(10/Cry)NDom(v) Bi€ Dom(v)
Cw(fo)

hence the result.

Case (Const), (Op). We have the following derivation:

[r/C] < TC(op)
Etop:[r/C]

[r/C] < TC(c)

Etc:[rjc] (0o

(Op)

We verify trivially that for all typed 7 operator, C; are the constraints given by T'C' and by application of
the Lemma 11 we have the result. It is easy to see that the constants have the type, 7 € k (for example int,
bool, unit, ...), So, for the constants, we have C; = True and the result.

Case (App). We have the following derivation:

Ere:[7"—>71/Ci] Ebey:[r'/Cs]
EF (61 62) : [T/Cl /\CQ]

(App)

Apply the inductive hypothesis to the first premise, we obtain that Cy = Cp_,, A C'. By construction,
Cryr =Cr ANCp A (L(1) = L(7")) hence the result.

Case (Let). We have the following derivation:

Ete:[rn/C] E +{z:Gen([r1/C1],E)} F ea : [12/C5]
EtFlet z =€ iney:[r/Ci ACy ACyL A (L(12) = L(T1))]

(Let)

Like in (App), the result comes of the application of the induction hypothesis to the premises and we intro-
duce constraints as we want.

Case (Fun). We have the following derivation:

E+ {.’B : [7'1/07-1]} Fep: [TQ/CQ]
EF (funz —e1): 11— 72/Clrymy) A Co

(Fun)

The result is trival by construction and application of the induction hypothesis to the premise and we intro-
duce constraints as we want.

Case (Couple). We have the following derivation:

Etl e :[m/Ch] EFeg:[r/CY]
EF (61,62) : [T1 *TQ/Cl A CQ]

(Couple)

We can apply the induction hypothesis to the two premises. We obtain that C1 = Cr, AC' and Cy = C, AC"
hence the result.

24

Lemma 13 (Stability of typing per substitution) Given an expression e, an environment E such as

Ete:[r/C] and ¢ = [o; < 7i] a substitution as Solve(p(C) A Cy(s:)) # False then ¢(E) -
Bi€Dom(p)NF(1/C)

e:p([r/C))

Example: for the type derivation {y : 8,z : a} F ((fun ¢ — fun b — a) z) y : [a/L(a) = L(B)], if we
apply the substitution ¢ = {a < int, B < (int par)} to E and to the type scheme, it is easy to see that
we have the constraints Solve to False, and now, it is not a correct derivation. A substitution needs some
properties before being applied to a type derivation.

Proof: by structural induction on e.

Case ¢ = z. We have E z : [7/C]. So [r/C] < E(z) with E(z) = Vai,... ,a,.[10/Co]. After
renaming, if necessary, we can suppose that all the «; are out of reach of ¢. Given v a substitution, of
domain {ay,... ,an} as 7 = ¢Y(1a), C = %(Co) A Cyg,) by definition 2 and Solve(C) # False. (by

Bi€Dom (1)
definition of the (Var) rule). We have:

o(E(x)) = ¢Mai,...,an.[10/Co]) ¢ is out of reach so

= Vai,...,an.[p(10)/¢(Co) A Cos5)]
Bi€ Dom(p)NF(10/Co)

Given 0 a substitution, with domain {aq,... ,an} as 8(a;) = ¢(¥(a;)), we have:

plai)) = (i) = p@(es)) forall oy
0(p(B) = w(B) = @@(B)) forall g distinct of o;

and

) = 0(L(w)) = (L)) forall o
) = @(L(B) = eW(L(B))) forall g distinct of a;

Bi€Dom(p)NF(10/Co) Bi€Dom(8)
= 0(p(Cyh)) A Q(C(p(ﬂi)) A Co(yp(p;)) like for the simple type
Bi€ Dom(p)NF(10/Co) B;€Dom(v)
= ¢($(Cv)) 0Ces)) N Cowis)
Bi€Dom(p)NF(70/Co) Bi€Dom(y)
the a; is out of reach of ¢ and F(Cys,)) € F(p(B;)) (Lemma 9)

= ¢((¥(C)) A Coisy N Cu(sy) by the Lemma 11
Bi€Dom(p)NF(10/Ch) Bi€Dom(y)

= ¢(4(Co)) A Coy N (0(Cysy) A Co(m))
Bi€Dom(p)NF(10/Co) Bi€Dom(v) Y EF(Y(B;))NDom(yp)

= o®(Co)) A @(Cyey) A Coy A A Co(m)
Bi€Dom(3) Bi€Dom(p)NF(10/Co) Bi€ Dom(v) v €F ((Bs))NDom(yp)

(
C' = 6(e(Ch) A Cos)) N Cep,y by definition and Dom(6) = Dom(v))
)

So by definition of C' and to be more readable we have:

c' = »(C) A C‘P(ﬁi) A Ctp(ﬁi) for all the «;
Bi€Dom(p)NF(10/Co) Bi€ Dom(p)NF(Y(ai))
= ¢(C) A Cos:) for all the «;

Bi€Dom(p)N(F(10/Co)UF((a;)))

(with the definition of the A and N operator)

We have ¢([7/C]) = [p(1)/¢(C) A Cy(s;) 50 to conclude the result, we have to prove that C’
Bi€Dom(p)NF(r/C)

is equal to this expression.

By definition, Dom(yp) NF([1/C]) = Dom(p) N (F(p(19)) UF(C)). It is easy to see that for the substitution

¥ of domain aq,...,an, that F(r) U F(Y(ay)) = F((m)) U {a1,... ,an}. But the a; are out of reach

of ¢ s0 (o) = a; so Cy(a;) = True and because we work modulo D A True = D, we can ignore those

25

o e T e 7 R S NT ATV "'l/,}\'yi)/' R N N S T T T T

’YiED’O‘m(QI’)
F(Co)UF (i) = F((Co))U{a,... ,an} and like previously, we ignore the constraints for {ai,... ,a,}.
Moreover, it is easy to see, because F(C;) C F(7) (Lemma 9) that F(A Cy(q,)) € U F(¥(s)). But we have
also these constraints on C'.

So, with those facts, and modulo elimination of the duplicates and of the True constraints, we have

N Coi) = A Cysy for all the o
Bi€ Dom()N(F(70/Co)UF ((i))) Bi€ Dom(p)NF(7/C)
By hypothesis, we have Solve(p(C) A Cy(s,)) # False. Thus o([7/C]) is an instance of
Bi€Dom(p)NF(1/C)

¢(E(x)) and by application of the (Var) rule E + z : p([7/C]).
Case e = op (primitive). Like (Var).

Case e = ¢ (constant). We have:
[7/C1 < TC(c)
Etrc:[r/C]
TC(c) = [k/True] (tr = k and C = True) so we have ¢([7/C]) = [7/C] because p(1) = 7, (C) = C
and F([t/C]) = 0. So ¢([r/C]) is also an instance of T'C(c). By application of the (Const) rule, we have
p(E) Fc:o([r/C)).

Case e = fun z — e;. We have the following derivation:

E+{z:[mn/Cy]} Fey:[r/C,
EF(funz —e): [— 170/Cr_ry A Co

By hypothesis, we have Solve(p(Cr 7, A C2) A Cy(s;)) # False. and Cy, ., =
Bi€Dom(p)NF(11—72/Cry -7y ANC2)

Cr N Cry A (L(12) = L(711)). We have F(C,) C F(71), so there is no free variable on the constraints

that are not in the simple type. We can apply the Lemma 1 for the difference between Dom(p) N F(11 —

T2/ Cr o7y A C2) and Dom(p) N F([11/Cr,]) and we get:

Solve(p(Cy,) A\ Cy(s;)) # False
Bi€(F(11/Cry)NDom(4))

so Solve(Cy(r,)) # False. So we do not introduce an incorrect constraint on the environment.
By inductive hypothesis, we obtain:

O(E4+{z:[r/C]}) Fe1:p([r2/C2]) a subtitution on environment is point to point
= @(E)+o({{z:[m/Cy]}) Fe1: p([r2/C2]) by a definition of substitution

= @(E) +{z: [p(r1)/¢(Cr) A Coal} Fe1: [p(12)/0(C2) A Co(8)]
Bi€F(11/Cry)NDom () Bi€Dom(p)NF(72/C2)

By application of the hypothesis and the Lemma 1, we have that no constraint is Solve to False, so we can
apply the (F'un) rule:
o(B) Ffun z — e : [p(11) = ©(12)/Coptry) s p(rs) N (C2) N Coy)]
Bi€Dom(p)NF(72/C2)

by application of the Lemma 11 to Cy(r, s7,)

p(E) Ffun o — e : [p(r1 = 72)/(Cry572) A Co(a:) N p(C2) A Co8:)]
Bi€EDom(p)NF(T1—72) Bi€Dom(p)NF(72/C2)

= @E)Ffunz = e :[p(n = 72)/@(Crimsry A C2) A Cos:)]
Bi€Dom(p)N(F(T1—=72)UF(12/C2)))

We know that F(Cr, r,) C F(11 — 72) (Lemma 9), so we have by definition:
Q(E) Ffun z — e : [p(r1 — 72)/@(Crir, A C2) A Co(s:)]

Bi€Dom(p)N(F(T1—=T2/Cri 1y)UF(12/C2)))
= @(E)Ffunz — e : (11 = 7/Cr—r, A C3))

26

Case e=(e; ez). We have the following derivation:

Etre: [—1/C] Etey:[1]CY]
Et (e1 e9) : [1/C1 N CY]

(App)

By induction hypothesis applied to the first premise, we obtain ¢(E) - e1 : o([7" — 7)/C1]), and with the
definition of a substitution, we get:

Q(E) ke :[p(t') = o(1)/9(Ch) N Co)]
Bi€Dom(p)NF(7'—=71/C1)

By induction hypothesis applied to the second premise and by definition, we obtain:

o(E) b ey : [o(")/o(Ca) A Cosy)]
B € Dom(Q)NF(r' /C2)

By hypothesis, we have Solve(C1 ACy A Cy(p;)) # False. By the Lemma 12, we have Cy =
Bi€Dom(p)NF(1/C1AC2)
Cry 7 NCY so we have F(Cr, ACry AL(7') = L(7)) € F(C1). By the Lemma 8, we have F(L(7")) = F(7'),
so F(r') C F(C}) (idem for 7). So by the Lemma 1, we have Solve(C} A Cy(s;)) # False
Bi€Dom(p)NF(1'—1/C1)
(idem for [7'/C3]) and no constraint is Solve to False So we can apply the (App) rule and we get, with the
definition of the A and N operators:

(E) Fe1ez: [o(1)/0(C1) A p(Cy) A Cy(s)] by definition
Bi€Dom(p)N\(F(r! /C3)UF(r'—7/C1))
= @(BE) ke er:[p(r)/o(Cr) A p(Cy) A Cos:)]

Bi€ Dom(@)N(F (1)UF(C2)UF(C1)UF (1))
We have F(7') C F(C1) and so by elimination of the duplicates we have:
O(E) F ey ex:p(r)/e(Cr) Ap(Ca) A Cy(s;)] by definition
Bi€Dom(p)N(F(T)UF(C2)UF(C1))
= @(E)Fe; ex:o([t/C1 ACs))

hence the result.
Case e = (e1,e2). By induction hypothesis like App.

Case e = (let z = e; in ez). We have the following derivation:

EtFe:[rn/C] E+{z:[Gen([ri/Ci],E)]} F e : [r2/C5]
EF (let z =e€; in ey) : [12/C2 A C1 A (L(12) = L(71))]

By definition:
Gen([n/Cﬂ,E) = Vozl, . ,an.[Tl/Cl]

with {a1,... ,ap} = F(r1) \ F(E). Given a set of binding variables f1,... ,, in E and out of reach of ¢

and we define the substitution ¥ = ¢ o [; + (;]. By inductive hypothesis applied to the first premise with
the substitution ¢, we have:

(E) ke o([m/Ch)

The «; are not free in E (and Cp, = True so we can forget them), so we have E[a; < ;] = E and also
P(E) = ¢(E). Because the f; are out of reach of ¢ and so of 9, we can apply the inductive hypothesis and
we obtain:

Y(E) &= e1 2 ([/Ch)
So
@(E) Fer:9(m/C1])

27

[r1/C4]) and for all the constraints, so we do no introduce incorrect constraints).
We apply the inductive hypothesis to the second premise with the substitution ¢ and we obtain a derivation:

P(E) +{z : [p(Gen([n /C1], E))I} F e1 : ¢([12/C2])

To conclude by application of the inductive rule (Let), we must prove that

¢(Gen([r1/C1], E)) = Gen(([11/C1]), p(E)). We have:
Gen(y([r1/C]), o(E)) = Gen(p([r1/Ci][a; < Bi]), ¢(E))
So, because the g; are out of reach of ¢ , with the Proposition 1, we get:

Gen(y([11/C1l), p(E)) = o(Gen([r1/Ci][ci = i), E)

Yet the variables {f1,...,8,} are not free in E and out of reach of ¢ (and Cp, = True so we can forget

these constraints), so we have ¢(Gen([11/C1], E)) = Gen(([m1/C1]), ¢(E)) apart from rename variables.
Now, we can apply the rule (Let) (like before), and we have:

(E) F (let = ey in e2) : [p(72)/0(C2) A p(C1) A (L(p(72)) = L(p(11))) A Co(8:)]
Bi€Dom(p)N(F(71/C1)UF (12/C2))
= @(E)F (let z =e1 in e2) : [p(12)/0(C2) A p(Cr) A (p(L(72)) = ¢(L(11))) A Co8:)]

Bi€Dom(p)N(F (r1/C1)UF (r2/C2))
By application of the Lemma 8, it is easy to see that we have
F(r2/C2 NCLA (L(12) = L(71))) = F([r1/C1]) U F([2/Ch)))
so with the definition of a substitution, we have:

p(E) - (let z = e1 in e2) : [p(72)/p(C2) A p(C1) A (p(L(12)) = p(L(71))) A Cos)]
Bi€Dom(p)NF(r2/CaAC1A(L(T2)=L(T1)))
= @(E)F(let z =e1 in e2) : @([12/C2 A C1 A (L(12) = L(71))])

hence the result.

28

Chapter 4

Typing safety

4.1 Tools

4.1.1 Lemma of indifference

Lemma 14 (Indifference of the type derivation beside useless hypothesis) Given two environments
Ey and E3 such as for all free variables x in the expression e, Ei(x) = Es(z). If Ey F e : [1/C] then
Eyte:[r/C].

Proof: by induction on the type derivation of e.

Case (Const), (Op). There is no free variable in e and in the inductive rule, the type scheme do not
depend on the environment, hence the result.

Case (Var). The only free variable is . The inductive rule (Var) needs E;(z) = E2(z) (and nothing
else) hence the result.

Case (App), (Couple), (Fun), (Let). By the inductive hypothesis applied to the premises.
O

Definition 7 (More general type scheme) We say that a type scheme o' is more general than a type
scheme o, noted o' > o if all the instances of o are also instances of o’

By the Lemma 12, the type scheme that could be instanciated are like Vo ...a,.[r/C]. It is easy to see
that o/ > Vay ...ap.[r/C] if and only if [1/C] < ¢’ (where the «; are not free in ¢').

Lemma 15 (Stability of the type derivation with more general type scheme) Given two environ-
ments, E1 and Ey with the same domain such as Ei(z) > Ea(z) for all x € Dom(Ey). If Es F e : [1/C]
then Ey e :[1/C].

Proof: by induction on the type derivation of e.
Case (Var): trivial by hypothesis on E; and Ejs.
Case (Const), (Op): the inductive rules do not depend on the environment, hence the result.
Case (Fun), (App), (Couple): by inductive hypothesis on the premises.

Case (Let): We have the following derivation:

Eitler :[n/Ci] Ei+{z:Gen([r/Ci],E1)}F ea:[12/Cy]
EiFlet z =e; in ey : [1a/C1 A Co A (L(12) = L(71))]

It is easy to see that F(E1) C F(E2) (because E; is more general). So we have Gen([r1/Ci],E1) >
Gen([11/C1], E2). We can apply the inductive hypothesis and we have the result.

a

29

To prove some property of the typing, we introduce a new typing rule for the parallel vectors, because
they are values and we never type them. Thus, if an expression is evaluated to a parallel vector value, we
want to prove that they have the same type.

Vi Ete;:[r/Ci]

o1 (Vect)
Et(eo,.-. ep—1) : [T par/L(T) N\ Ci]
i=0

Lemma 16 (Form of the values) Give) v :[r/C],
1. if T =11 — T then v is an abstract function or an operator.

if T =T %1 then v is a couple (121,’02)-

if T = (11 par) then v is a parallel vector (v, ... ,vp_1).

e e

if T is a type base then v is a constant c.

Proof: by a trivial induction on the inductive type rules. O

Remark: It is easy to see that if v is a parallel vector, the last used rule is (Vect).

4.1.3 Lemma of substitution

In this section, we prove the most important lemma for substitution on type derivation. This lemma will
be used to prove the safety of the type system.

Lemma 17 (Lemma of substitution) Given

E F €:[n/CiAC]] (a)
E+{z:Vai,...,an[r1/C1]} F e:[r/C] (b)

with
1. ay,...,qa, not free variables in E
2. Solve(Cy1 A C{ AC) # False

3. no variable © bound in e is free in €' (to not have capture)

We note Cp, = C1 NC] AC.
There exists C' such that Vo € ¢¢, then ¢ = C' and E & e[z < €] : [12/C']

Remark: why C' and not C ? The constraints of a type scheme, depending of the sub-expressions (typed
in the type derivation). So when you substitute a variable by an expression, you need to add its constraints
if these variables are not binding variables. Vo € ¢¢, then ¢ = C’ says that C’ is less constrainted as C.

Proof: by structural induction on e. We wrote E, for the environment E + {z : Vai, ... ,a,.[11/C1]}.

Case e = ¢ (constant). c[z < €'] = ¢. z is not free in e. By application of the Lemma 14 we deduce the
result.

Case e = op (operator). Idem.
Case e = y (y#x). y[z «+ €] = y. Idem.
Case e = fun z — a1. We have e[z + €] = e. Idem.

Case ¢ = z. e[z < €] = €. By hypothesis, we have, E, F z : [12/C], so [ro/C] < E(x), i.e,
for a substitution % on the a;, 2 = 9(m1) and, C = ¥%(C1) A Cy(a,)- Because the a; are not free

aq (67

30

- \NL A/ — L+ T 14/ AN 2o T T T T R

PR
By application of the Lemma 13 apply to (a), we have:

Y(E) F e [p(r)/y(Cr) Ap(CY) /\ﬂie}'([n/cl/\cg])mDom(w) Cyp;) by commutativity and by the remark
E F €&:[n/v(C1) N Cyuay A(C)] by definition
Q1. 50
E F € :[rn/CAp(C))]
E +F €:[n/C

It is easy to see that we have ¥ € ¢¢,, so by the Lemma 3 we have Solve(C’) # False and the result.

Case e = fun y — e; with y # z. Take ¢ € ¢¢,. If the a; appear in [12/C], we can rename then to
some fresh variables (3; not free in E and distincts of the a; with the substitution 6 = [o; + §;]. If the «; do
not appear in [ro/C], we take the identity for 6.

Now we can apply the Lemma 13 for € (it is only a simple renaming on binding variables or the identity) to
(b). We have naturelly Solve(0(C)) # False and 6(E;) = E,. Now, we have, E; I e : [0(12)/0(C)] with
0(12) = 74 — Ty
By +{y: [1a/Crli Fe1 : [1/C]
EyxFfuny — e : (1, = 7/Cryr, A Co

and 0(C) = Cr,—+, A Co. Tt is easy to see that the a; not free in E; + {y : [1,/C7,]}, Solve(C3) # False so
by application of the inductive hypothesis to the premise, we obtain:

By +{y: [ra/Cr]} Ferf €] : [1a/C3)]

with Solve(C}) # False and ¢ = C4. By application of the (Fun) rule, we get E F fun y — e[z « €] :
[Ta = T5/Cry—r, NC3), 16, EF e [0(1)/6(C")]. We conclude E | e : [7/C'] by application of the Lemma 13
for 6=, ¢ = C' by the Lemma 4 and the result.

Case e = (e e3). Take ¢ € ¢¢,. By hypothesis E; - e : [12/C], we have:

E,bFe1:[1a > 1/Ch] Egbe:[r,/Ch)
Ez F (61 62) : [7'2/0(1 A Cb]

with Solve(C, A Cp) # False, so with the Lemma 1, we get Solve(C,) # False (idem for Cp). We apply the
inductive hypothesis to the two premises and we obtain the following derivations:

E, F ez €]:[r, = 12/C]]
E, b ez <+ €] :[1/C}]

With Solve(C}) # False, Solve(C}) # False and ¢ |= C,, and ¢ = C}. By application of the (App) rule, we
get:
E, b e[z« €]:[r/C"

with C' = C;, A C}. By the Lemma 4, we have ¢ |= C}, A C} and by the Lemma 3, Solve(C’) # False and
the result.

Case e = (e1, e2). Idem by induction on the two premises.
Case e = (e, ... ,€p—1). Idem by induction on the p — 1 premises.

Case e = let y = e; in ey. Take ¢ € ¢¢,. By hypothesis E, |- e : [12/C], we have:

Eyt-e1:[1a/Ca]l Eg+{y:[Gen([ra/Cal, Ex)]} I €2 : [12/Ch]
EyFlety=e;iney: [ro/C =Cy ACy A (L(1p) = L(74))]

We apply the inductive hypothesis to the first premise and we get E F ej[z < €'] : [1,/C}] so Solve(Cl) #
False and ¢ |= C.. We have two cases:

31

L A Y O A 2 B B e e e T Y S A N R

[Gen([1a/Cl], E;)] because (E) C (E;). With the Lemma 15 and by inductive hypothesis we get:
E+{z : [Gen([1./CL],E)}] - ea : [T/C}]
By hypothesis, we have Solve(C}) # False. We note C' = C, A Cf A (L(714) = L(73)). Like in (App) we get
Solve(C') # False and ¢ = C'. By application of the (Let) rule, we have the following derivation:
EtF ez« €]:[1,/C)] E+{y:[Gen([r./CL], E)]} e : [12/CY]
EtFlet z =€z < €] in ey : [12/C"]

and the result.

o If y # x, then we have e[z « €'] =let y = e1[z + €] in e3z + €'] and E, + {y : [Gen([7,/CL], Ez)]} =
E+{y: [Gen([Ta /C.], Ex)]}. Apply the inductive hypothesis to second premise, we obtain:
E +{y: [Gen([ra/Cal, Ex)} - eolz < €] : [r2/Cy]
with Solve(C}) # False and ¢ |= Cj. Like previously, we have [Gen([7,/C,), E)] > [Gen([74/C.), Ez)], so
with the Lemma 15, we get:
E+ {y:[Gen([1a/C.), E)]} F ea]z < €] : [12/C})
C'=C, NCy N (L(14) = L(7)). Like before (by inductive hypothesis and Lemma 4), we have Solve(C') #
False and ¢ |= C'. We can apply the (Let) rule and we have:
Eter < €]:[1/C)] E+{y:[Gen([1./C.), E)]} - e2z < €] : [12/C}]
Etlet y=ei[z < €] in ex[z < €'] : [12/C"]

and the result.

4.2 Typing safety

Now, we prove some technical lemmas to express that a well-typed expression is a correct expression for
the BSML language and the BSA,-calculus. We first recall some basic tranformations of the mini-BSML
expressions to BSA, expressions. Next, we present a property of the type system and we finish with a result
of correction.

4.2.1 From mini-BSML to BS),

We present that the mini-BSML language is based on the BSA,-calculus by some basic equivalences with
an extended syntax.

We wrote E or X (do not confuse with environment) for the global expressions and e or x for the local
one. We note 7T, for the transformation of BSML expressions to BSAp-calculus expressions. It is a relation on
such expressions. The couple, projections, fix and the arithmetic operations are encoded with the classical
A-term. The formal definition is:

nprocs 7 p cTc T & fixTY XTzx apply 7 # put 7!
mkpar 7 Af((f0),....(f (p—1)))
(Er E») T (E; E3) if (B, T Ej) and (E; T E)
(Ee) T (E'é€) if (ET E'")and (e T €')
(e1ea) T (e} eh) if (e; T €}) and (ex T)
(fun X —» E) T (\z.E) if BT E
(funz—E) T (A&.E") itETE
(funz—e) T (At.€) ifeT e
letz=e;iney; T (M\&.€)) e} if (e1Te}) and (exTeb)
let x =e;in B2 T (\&.El) e} if (e1Te}) and (ExT EY)
let x =FE,in Es T (\z.E}) Ej 1f (EA\TE)) and (E>TE})
ifethene; elsee; T (e — €, eh) if (e T e')and (e; T e}) and (ex T €})
if e then E; else B T (e = Ef,E}) 1f (e T €)and (Ey T Ej) and (Ex T E})
if £ at e then E; else B T (E' LN E{,E}) if(eTe)and (ET E') and (E; T Ej) and (Ey T E})

32

Remark: this transformation is not deterministic because a totally polymorphic expression, like the
identity, could have different transformations. It is why, we use a relation and not a function.

4.2.2 Validity of the type system

Proposition 2 (BSML type) Given an environment E and an ezpression e such that E e : [1/C] then
TeGUV.

Proof: by the Lemma 12, we have that C = C; A C'. By the Lemma 1, we have Solve(C;) # False, so
by application of the Lemma 7, we deduce the result. O

But this proposition is not sufficient, to transform our well-typed expresssions to BSAp-calculus expres-
sions. Take:

(fun x -> ifat ((mkpar (fun i-> true)), (0, (x,x))));;

The type derivation given, after simplification (see chapter 6), [— «/Loc(a) = False] (i.e., @ could not
be local). Thus, this not a totaly polymorphic expression. So we could not says with only the type if an
expression is local or global (see definition) and transforms it.

Lemma 18 (sub-expressions of local expressions are locals) Given an environment E and an ezpres-
sion such that E e : [7/C] (1) with 7 € L then for all judgement E" - €' : [v'/C"] of the derivation tree (cf
(1)), we have E" = E+ E' and T € V.

Proof: by structural induction on e.
Case e = c¢. The only sub-expression is e hence the result.

Case e = op. Idem.

Case ¢ = z. Idem.

Case e = (...). Impossible by hypothesis hence the result.

Case e = (e; e3), (e1,e2). By trivial application of the inductive hypothesis.

Case e = fun £ — e;. We have the following derivation:

E+{z:[r/Cy]}t e1:[r/CY]
EF(funz —e): [— TQ/C(TI_W) A Co]

By definition of L, we have 71 € L. It is easy to see that C;, = True. We take E' = {z : [1/C;,]} and we
have the result by application of the inductive hypothesis.
Case e = let £ = €1 in es. We have the following derivation:

EtFa: [Tl/Cl] E + {:L' : Gen([ﬁ/Cl],E)} Fey: [TQ/CQ]
Ellet x —=e1 In ey : [TQ/Cl ANCosANCiL A (ﬁ(Tg) = [,(7'1))]

(Let)

By inductive hypothesis, we have 71 € V. By hypothesis, we have Solve(C1 A Cy A Cy A (L(2) = L(11))) #
False. By application of the Lemma 1, we have Solve(L(my) = L(71)) # False. By definition of £, we get
Solve(L(72)) = True. So by definition of the = operator, we obtain Solve(r;) # False and by application
of the Lemma 5, we have 7, € V. By application of the inductive hypothesis with E' = {z : Gen([r1/C1], E)}
we deduce the result. O

Corollary 1 (Instance) Given E + e : [1/C]| where 7 € V' \ L there ezists a substitution ¢ such that
o(E) F o([7/C]) and p(1) € G or (1) € L.

Proof: by application of the Lemma 13 and Lemma 18. O

33

- = A 4

Proof: by structural induction of e and by using the Proposition 2 to distinguish the global and local
expression and the Corollary 1 to transform the totally polymorph expressions to a global or local expression.

a

4.3 The small step semantics

We could prove by induction and by cases, the classical following theorem:

Theorem 3 (Safety of the type system for the natural semantics) If E+ e : [7/C] and e> €' then
¢’ is a value and E + €' : [7/C"].

But, the natural semantics does not give the step of the calculus (only the result). So we do not have
a result for C’. Also, many expressions cannot be evaluated on a value; they have an infinity evaluation
(because we can use the fixpoint operator). Those expressions are very important for programming languages
and to develop big applications. Those expressions do not do incorrect operations and can’t be evaluated on
a value. So, we do not have a result for those expressions. Thus, this semantics and this theorem are not
sufficient for us. In order not to have those problems, we introduce a new semantics, that describes all the
steps of the calculus and we proved the safety and some properties of C’ with a lemma of subject reduction
more easily.

4.3.1 Definition

The small step semantics has the form

e—¢ for one step
eg —~ e ey — ...~ for all the steps of the calculus

* oy *
We note —, for the transitive closure of — and note ey — v for eg — e; — e — ... — v. To define the
. £ .
relation, —, we begin with some axioms for the relation, e — €', of the head reduction:

(funz—e)v > ez <] (Brun)

(let z=vin e) e[z < v] (Blet)

We give some axioms, the §-rules, i.e., for primitive operators:

+(n1,m2) S powithn=n; +ny (64)

fSt(Ul, ’U2) N U1 (5fst)

snd(vl, ’1)2) AN (%) (dsnd)

fix(fun z — e) 5 efz + fix(funz — e)] (0fiz)

fix(op) = op

ifthenelse(true, (vi,v2)) N V1 (&'fthenelse)

ifthenelse(false, (v, v2)) = vy

and for parallel operators:

isnc(v) = false if v # nc() (Gisnc)
isnc(nc()) £ true (disnc)
mkpar(fun z — e) 5 ez« 0),... e[z« (p—1)]) (Omkpar)
apply({fun z ;) €,... . funz — ep_1),(vo,...,vp—1)) =N (eolz <= wol, ... ep_1[T < vp_1]) (Oappiy)
ifat(v, ((... ,{I‘/IE, cea)y (v1,12))) = oy ifo=n (0ifat)
ifat(v, ((... ,false,...), (v1,v2))) = wifv=n
put((fun dst — e, ... ,fun dst — ep_1)) S e, ... s €p_1) (Oput)

34

Ll Yyt v Jgtv o AR A e e § Bt e AV =) YERwEE Up—l A LA

But, it is easy to see that we cannot always make a head reduction. We have to reduce in depth in the
sub-expression. To define this deep reduction, we use the following inference rule:

& !
e—e
(o) = T(e) (context rule)

In this rule, I' is an evaluation contex, i.e., an expression with a hole and has the following abstract
syntax:

L == | head evaluation
| T'e right application evaluation
| v left application evaluation
| letz=Tine let evaluation
| (T,e) left evaluation couple
| (v,T) right evaluation couple
| (T,e,...,e) parallel vector, first component
i
A~
| {e,..., T Je,...,e) parallel vector, i*! component
| (€y...,e, ') parallel vector, last component

Remark: The non-deterministic of the evaluation of the vectors came from the parallel model.
Theorem 4 e v if and only if e — v.

Proof: by induction (proof in ([Leroy, 2002])). The only difference which is not trivial is for the evaluation
of the put. Informally, like in the natural semantics, we first compute the v} by using the (Let) construction
(in a let z = e; in ey we first evaluated in e1). So we have simulated the calculus on the premise and we
have computed the expression as in the natural semantics.
4.3.2 Subject reduction

Next, we want to prove that for each step of the calculus of an expression, the type is kept by a property
called the subject reduction.

To be less typable

Definition 8 (Less typable) e; is less typable than e2, write e; T eq, if for all environment E, type [7/C],
such that E & ey : [1/C] then there exists C' such that Vo € ¢pc then ¢ = C' and E + ey : [7/C"]

Remark: now for the Lemma of substitution, by using this new notation, we have that e C e[z < €/].
Lemma 19 (Less typed for context) For all evaluation context T, if e1 C es then I'(e1) C I'(eg).

Proof: given E F I'(e) : [7/C] and ¢ = C. We prove E F TI'(eq) : [7/C'] and ¢ = C' by structural
induction on I'.

Case I' = [|. Trivial by definition.

Case I' =T e. We have:

EtrT/(e): [= 7/Ci] Etre:[1'/C9
EFT(ey)e: [t/CL A Cy]

35

I A N D | D A N e | —1r 0 T4

and by Lemma 3, we have Solve(C] A Cs) # False, so by application of the (App) rule, we obtain:

EFT'(eg):[r" > 7/C]] EFe:[r'/Cs]
E T/ (eg)e: [7/C] N Cq]

and the result.
CaseI'=vI',T=letz=T"ine I'=(I",e) and ' = (v,I"). Idem.

Case I' = (I''(e1), a1, ... ,ap—1). We have:

ErT/ey):[1/Ce] Vie{l,...,p—1} Eta;:[1/Cy]

E+(I'"(e1),a1,-.. ,ap—1) : [T par/L(T) A Ceg.)/:_\l1 G

by application of the inductive hypothesis on the first premise, we have E - I''(e;) : [7/C.] and by application
p—1

of our lemmas like in (App), we have Solve(L(T) A C., A\ C;]) # False, so by application of the (Vect) rule,
i=1

we obtain:
EFT'(eg):[7/C]] Vie{l,...,p—1} Et a;:[1/C]]

p—1
E+ (I'(e2),a1,-.. ,ap_1) : [T par/L(T) ANCL N\ Ci]
i=1
and the result.

Case (e,I"(e1),€,...,€), ..., {e,... ,e,T'(eq)). Idem.

Preservation of the reduction

First, we prove that the head reduction keeps the typing and with this result, we will have our lemma of
subject reduction.

Lemma 20 (Preservation for the operators) If e = €' by a 6-rule, then e C €.

Proof: by case on the d-rules. For each d-rules, we study the type derivation of e and €'.

Remark: in all cases, we have for the operators, the constraints C,. These constraints came from the
calculus of the instance (substitution on the type schemes could introduce new constraints).

Case +. We have the following derivation:

Ebrny:int EFng:int
EF +: (int x int) — int EF (ny,n9) : int * int
EF + (ni,n2) :int

and F F n :int where n = ny + ng. So it is easy to see that we have the result.

Case fst. We have the following derivation:
EFwv :[m/Ci] EFuvy:[r/Cs

EFfst: [7'1 * Tg — 7'1/[,(71) = [,(7'2) A Ca] E+ (’1)1,’02) : [7'1 * 7'2/01 A 02]
E fst (’Ul,’l)g) : [Tl/Ca ACL N Cy /\[,(7'1) = E(Tg)]

and E vl : [r1/C1]. So it is easy to see that we have the result.

Case snd. Idem.

36

Case fix. We have two cases. First, we have the following derivation:

E+{z:[7/C/]}Fe:[r/Ci]
Erfix:[(t—=71)—>7/Cy ErF(funz—e):[t—7/Crer NCY]
Ffix(fun z — e1) : [1/Cy A Crr A CY]

and E F ej[z < fix(fun z — e;)] : [7/C"]. By application of the Lemma 12, we have:

Co = C(T—)T)—)'r A Cé
= Cr ANCrsr ANL(T) = L(T)) NC
= C,ANCV

So by application of the Lemma 17 to:
1. E-fix:[(t = 71) = 7/C; NCY]
2. E+{z:[t/C;]} Fey:[r/C4]

we deduce the result. For the second case, we have trivially E F fix(op) : [7/C] and E F op : [t/C'] and the
result.

Case mkpar. We have the following derivation:

E+{z:int} e :[7/C]
E - mkpar: [(int — 7) = (7 par)/Cs] EF (fun z — e1) : [int — 7/Cint—r A C1]
E F mkpar (fun z — e1) : [(7 par)/Cy A C1 A Cing—r N C1]

and the following one:

Vi EF ei[m < Z] : [T/CZ]

p—1
Et{eplz < 0],... ,ep_1[z (p—1)]) : [(T par)/L(T) N\ Ci]
=0
We have naturally Vi, E 1 : int. By application, Vi, of the Lemma 17 to:
1. EFid:int
2. E4+{z:int} Fey:[1/C4]
we get that E & e;[x < i] : [7/C;] where e; C e[z < i]. By application of the Lemma 12, we have:

Co = C(int—)‘r)—)(T par) N O(IJ.
= L(r)A\NCV

p—1
By application, Vi, of the Lemma 4, and the Lemma 3, we have that Solve((r par)/L(T) A\ C;) # False
1=0

and the result.

Case apply. We have the following derivation:

EtFv :[(n = 1) par/Ci] EF vy :[(12 par)/Cs]
E + apply : [((11 = 72) par * (11 par)) — (12 par)/C,] EF (v1,2) : [(11 = 72) par x 15 par/Cy A C5)]
EF apply (v1,v2) : [T par/Cy A Cy A Cs)

where
e v; = ((fun z — ep),..., (fun z — ep_1))
® Uy = <’U0,... ,’Up71>

37

Vi EF ez v |m2/C)

E+ (eolz < vo);--- sep—i[z ¢ vp_1]) : [T2 par/L’,(Tg)p/_\1 Ci]

i
By the Lemma 12, we have that C, = L(m2) A Cl,. The type derivation of v; (remark of Lemma 16) is:
E+{z:[rn/Cr}t ei:[r/Ce]
EtF (funz =€) : [(11 = 72)/Ce; A Clrym51)]
EF vy :[(m1 — 1) par/Ci]

Vi

and for vs:
Vi EF Vg [Tl/Cvi]

E vy : [(11 par)/Ca]
Vi, by the Lemma 12, we have that C,, = Cr; A Cz',i. We can apply, Vi, the Lemma 17 to:
1. E+{z:[r/Cr]}F e :[12/Cq]

2. EFw;:[11/Cy]

and we get Vi E F e;[z < v;] : [12/C;] and the result.
Case ifat. For the two cases (True and False), the proof is the same as fst.

Case put. The proof is like for apply, i.e., by application of the Lemma 17 to the vj— = ej[dst < 1]. and
by construction of the f; (the list of if then else).

O
Lemma 21 (Preservation of the head reduction) Ife = ¢ then e C €.
Proof: by case on the rules.
Case of a d-rules. Trivial by application of the Lemma 20.

Case of the (yyy rule. We have e = ((fun z — €;) v) and € = e;[z < v]. Give EF e: [7/C]. We have
the following derivation:

E—I—{.T?:[Tl/C:T;]'}'—el:[T/Ca]
Et(funz —e):[n—>7/Crmsr ANCy] EFwv:[r/Cy
EF(funz —e) v:[1/C]

with C = Cr, 5+ ANCy A Cy and Solve(C') # False. So we can take ¢ = C' . By application of the Lemma 12,
we have Cy = C;, A Cy. We can apply the Lemma 17 to:

1. E4+{z:[n/CH]} Fei:[1/C4]
2. EFv:[n/Cy)
We get E F e[z < v] : [1/C'] with Solve(C’) # False, ¢ |= C' and the result.

Case of the dj; rule. We have e = (let z = v in e1) and €’ = eq[z + v]. Give E F e : [7/C]. We have
the following derivation:

E- ’U.:.[.Tl/cl] E+{z: Gen([n/.C.l.],E)} Fep:[r/Co]
Ete:[r/C]

with C = C1 A Cy A (L(7) = L(71)) and Solve(C) # False. So we can take ¢ = C. By application of the
Lemma 12 on the two premises (take C; ATrue for the lemma), we get E + ¢’ : [7/C'] with Solve(C") # False,
¢ | C" and the result. O

38

Prootf: we have two cases.
o If we have e = €, we deduce the result by application of the Lemma 21.

e Else, it is a context rule, so we have the following reduction:

E !
€1 — 61
Ier) = T(er)

with e = T'(e1) and €’ = I'(e}). Apply the Lemma 21 to the premise, we get e; C €}. So by application of
the Lemma 19, we deduce the result.

O
Corollary 2 (The subject reduction) Ife = ¢’ then e C €.

Proof: by trivial applications of the Proposition 3. O
If an expression is well-typed, the evaluation of this expression keeps the type.

4.3.3 Safety

Now, we have all the elements to prove the safety of our type system versus the evaluation of the
expressions. We will prove that if an expression is well-typed and could not be reduced then it is a value.
Thus, if an expression is evaluated to a value, with the subject reduction, we can prove that it is a well-typed
value.

Normal Form

Definition 9 (Normal form) We say that an expression e is in normal form if and only if e /~, i.e., there
is no rule which could be applicated to e.

We give a technical lemma for the reduction, that says there exists a J-rule for all the operator applied
to a value.

Lemma 22 (4-rule for the value) If E F (op v) : [r/C] then there ezists (op v) = e by a d-rule.
Proof: by trivial case on op and v and by using the Lemma 16. O
Lemma 23 (Progress) If 0+ e: [7/C] then, e is a value or there exists € such that e — €.

Proof: by structural induction on e.
Case e = ¢ (constant) or e = op (operator) or e = (fun z — e1). e is a value, so the result.

Case e = (e; e2). If e; is not a value then by inductive hypothesis we get that e; could be reduced so e
could be reduced by a context rule (idem for eg). If e; and ey are values then, by the Lemma 16, e; is an
operator or a function. In the first case, we apply the Lemma 22 and e could be reduced by a §-rule. In the
second case, e could be reduced by a By, rule.

Case e = let £ = €1 in es. Idem by inductive hypothesis and with the G rule.

Case e = (e1,e2). If 1 is not a value, then by inductive hypothesis, e could be reduced (idem for ez). If
e1 and ey are values then e is a value and we have the result.

Case e = (eg,... ,ep—1). If there exists e; which is not a value then e could be reduced (context rule).
Else, like before, e is a value and we have the result. O

Corollary 3 (The Well-typed normal form are values) If0 e : [7/C] and e is in normal form then
e 1s a value.

Proof: by trivial application of the last lemma and of the Lemma 16. O

39

Theorem 5 (Typing satety) I[f0Fe: |[7/C] and e — € and e is in normal form, then e s a value and
there exists C' such that Vo € ¢¢ then ¢ |=C" and O+ €' : [7/C"].

Remark: why C’ and not C ? Because with the Lemma 12, we have C = C,; A C; where C; are con-
straints on the sub-expression of e. After evaluation, some of this sub-expression could be reduced. Example:
let f = (fun a — fun b — a) in 1 have the type [int/L(a) = L(B)]. This expression reduced to 1 has the
type int. Also, we have C' is less constrainted than C.

Proof: by the Corollary 2, we have e C €’. So €’ is a well-typed normal form, so by the Corollary 3, €’ is
value v and the result. O

40

Chapter 5

An Algorithm for type inference

In the second chapter, we have seen that, if a close expression has the type [7/C], then it also has
the type less general [7'/C"], ie, [7'/C'] = ¢([7/C]) (stability by a substitution). Now, we will introduce
the fact that there exists a type which generalizes all the other types for an expression. This calculus is
known as type inference (or reconstruction of types). The existence of an algorithm for type inference is the
necessary condition for a BSML compiler to guess the type of the expression without the help of the user.
This algorithm is well-known for ML expression, by the name of "Damas-Milner" (note W). We will adapt
this algorithm to our type system.

5.1 Presentation of algorithm W

5.1.1 Tools
Trivial instance

To begin, we define the notion of trivial instance Inst(o, V') of a type scheme with a set of fresh variables
V (an infinite set of variables):

Inst(Vay, ...,an . [T/C], V) = [T]ai < Bi]/Clai < Gi]], V \ {B1,---,0n})

where f41, ..., On are n distinct variables of V.

Type unification

We say that a substitution ¢ is a unifier of two types 71, 72, if we have ¢(71) = ¢(72). Two types could
be unified if there exists an unifier for these two types. We say that an unifier ¢ of 71, 7o is more general, if
any other unifier ¥ of 7y, 7, can be decomposed to 6 o ¢ for a substitution #. The main unifier, if is exists,
represents the minimal modification to unify these two types. Any other unifier must make at least this
modification. Later, the algorithm W needs a first-order unification between types.

Proposition 4 If two types 7 and 1o could be unified, then there exists only one main unifier (apart from
rename variables), noted mgu(ry, 72).

Justification: the set of the type is a free algebra of terms with the signature T'U {x, —, par) where T
is the set of the free variables and the base types. An algorithm which could be used to calculate this main
unifier is the Robinson’s one.

The algorithm must have these three behaviours (this the case for the Robinson’s one):

1. if mgu(F) fails, then there does not exist a solution

2. mgu(F) gives a substitution ¢ which is a solution and any other solution 1 could be written: 1) = oy
for a substitution 6 (¢ is the main)

3. the unifier do not introduce new variables, i.e, all the binding variables in 71, or in 79 are out of reach
of the unifier.

41

Rob(0) = id
Rob({a = a} UR Rob(R)
Rob({a =7YUR) = Rob(RJa « 7]) o [¢ 7]
Rob(

Rob({(11 = 72) é?(T{ >)}UR

Rob({(11 * 19) = (r{ *19)}UR
Rob({(m1 par) = (7{ par)} UR

= Rob({m L 1} U{m L 75} UR)
= Rob({m Z 1} U {72 L 75} UR)

All the other cases, Rob fails and there is no unifier. Now mgu(7i,72) = Rob({11 L T2})

5.1.2 The algorithm W

The W’s algorithm takes a syntaxic valid expression of our language, and gives a type for this expression
with its constraints and a substitution for the environment. This type will be the most general type for the
expression.

e Input: an environment E, an expression e, a set V of fresh variables.

e Output: ([7/C], 9, V') where 7 is the type infered, ¢ is the substitution to do on the free variables of
E, V' is V without the variables that W uses and Solve(C) # False.

Variable: if e is a variable z with z € Dom(E) then [7/C] = Inst(E(z)), V! =V and ¢ = id.

Constant/Operator: if e is a constant ¢ or an operator op then
[r/C] = Inst(TC(e)) , V! =V and ¢ = id.

Function: if e is fun « — e; then given o € V' and
([r1/Ci], 01, Vi) =W(E+ {z : a},e1,V \ {a}) then
C = Cyy(a)»n N Ch, if Solve(C) # False then 7 = p;(a) — 71, and ¢ = ¢; and V! = V1.

Application: if e is an application (e; eg) then given ([11/C1],¢1,V1) = W(E,e1,V) and
([r2/C2], 2, Va) = W(p1(E),e2,V1) and given a € Vo and
given p = mgu{ps(m) = 70 — a} and
[11/C1] = p o @a([11/Ch]) and [r3/Co] = pu([r2/Co]) and
C = C] A C4 and If Solve(C) # False then
7=p(a) and p = pops o and V' = V5 \ {a}.

Couple: if e is a couple (e1, e2) then given ([11/C1], p1,V1) = W(E,e1,V) and
([12/C5], 2, Vo) = W (p1(E), e2, V1) and
[T{/Cﬂ = (pg([Tl/Cl]) and C = Ci A Cy then
If Solve(C) # False then 7 = 7{ * 19, ¢ = pg 0 ; and V = V5.

Let: if e is let z = €1 in eg then given ([71/C1], 1, V1) = W(E,e1,V) and
([r2/Ca], p2, Vo) = W(p1(E) + {z : Gen([r1/C1], p1(E))}, €2, V1) and
C1 = @o([r1/C1]) and C = C] A Cy A (L(72) = L(7])) then
If Solve(C) # False then 7 = 15, and ¢ = 9 0 1 and V' = V5.

Other: All the other cases are errors, in particular when mgu fails or Solve(C) = False.

Remark: at the end, we can apply a function Simple (notably in the implementation) to simplify the
constraints for the users.

42

Accepted

We run the following expression e:
fun x -> mkpar(fun i -> x)

W({z:ai:v} 2,V \ {07}
W({z:a},fun i — z,V\ {«, 8}

; Ea id,V \{e, 8,7})
W({z : a},mkpar,V \{a}) = (
) (
) (

[y = a/L(y) = L()],id, V \{, B,7})
%(mt — f) = (B par)/L(B)),id, V \ {a, 5})
[

W({z : a},mkpar(fun i — z),V \ {a}
W (D, e,V

a/L(@)],[B < a,y « int],V \ {a, 8,7})
a— (a par)/L(a)],[B o,y < int], V\ {e, B,7})

Rejected

We run the following expression e:
replicate(replicate 2)

with replicate, like before.

wW(0,2,V\{e,pB}
W (0, replicate, V \ {a, 8}

; int,id,V \ {a, 8})
W (0, replicate 2,V \ {a,,@’}%
)

[B — (B par)/L(B)],id, V \ {a, 5})
(int par), B + int],V \ {«, 8})
[a = (a par)/L()],id, V \ {e, B})

= error

o~~~ A~

W (0, replicate, V \ {a}
W (b, e, V

There is an error because the mgu calculate that 4 = [a < (int par)] and we have the constraint £(a) Solve
to False.

Other rejected

We run the following expression e:
(fun a -> fun b -> a) 1 (mkpar (fun i -> 5))
There is an error because the mgu calculates that we have the constraints Solve to False. For all those
examples, see the complete derivation in chapter 6 (implementation).

5.2 Correction

Theorem 6 (Correction of W) Given an ezpression e, an environment E and a set of type variable V.
If ([7/C),p, V') =W (e, E,V) (so without error) then we have ¢(E) e : [t/C].

Remark: we use the same notation as in the algorithm.
Remark: we will prove that W do not introduce constraints that Solve to False.
Proof: by structural induction on e.

Case Var. We have [1/C] = Inst(E(z)), V' =V and ¢ = id. With the definition of Inst, it is easy to
see that we have [7/C] < E(z) for a substitution 1, with {a1,... ,an} = Dom(), Cy(a,) = Cg; = True,
so we can ignore these constraints with the definition of a substitution on a type scheme (we work modulo
D A True = D). Because in the environment there is no constraint Solve to False and 1 is a renaming
that introduce fresh variables, it is easy to see that we have Solve(C) # False. In the same way, (because
¢ =1id) we have p(E) = E, so we can apply the (Var) rule and we have ¢(E) F z : [1/C]

Case Const. We have [1/C] = Inst(T'C(c)), V! =V and ¢ = id, like in Var, we have [7/C] < TC(c)
for a substitution 1 and C' = True (T'C of the constants have no constraint). We have p(FE) = E, so we

43

Case Op. We have [7/C] = Inst(TC(op)), V! =V and ¢ = id, like in Var, we have [7/C] < TC(op) for
a substitution 9 and Solve(C) # False (see the T'C of the operator). We have ¢(E) = E, so we can apply
the (Op) rule and we have p(FE) F op : [7/C]

Case Fun. We have e = fun £ — e;. By inductive hypothesis apply to ey, we have:

o1(BE+{z:a}) e :[n/Ci]

with Solve(C;) # False. The algorithm calculates that

Solve(Cy A Cy,(a)—r,) # False by the Lemma 1 we have
Solve((a)»r) # False by definition of the rule of construct we have
Solve(Cy, (o) N Cry A (L(p1(a)) :> £(T1))) # False by the Lemma 1 we have
Solve(Cy, (o)) # False

So we do not introduce incorrect constraints on the environment. A substitution on an environment is point
to point so we have:

01(E) +p1({z:a}) ke :[r1/Ci] by definition
= o1(E) +{z: [p1(a)/C, o1 a)]} Fep:[r/Ci] apply the (Fun) rule
= @i(E)Fa:[pi(a) = 11/Ch(a)sn A CIl

and the result.

Case App. We have e = (e e3). By inductive hypothesis on e; and ey, we have:
1. (pl(E) H [[Tl/Cl]
2. poo@i(E)Fey:[m/CY)

With Solve(Cy) # False and Solve(Cy) # False. The algorithm calculates p is a main unifier of
{p2(m1) =12 = o}, ¢ = popyogp and [r{/C1] = po ps([r1/C1]) and [1r3/C5] = p([r2/Cs]) and C =
C] A C), with Solve(C) # False. By the Lemma 1 we have Solve(C]) # False (idem for C) and for all the
constraints).

By application of the substitution u o @9 to 1) and the Lemma 13, we have:

©(E) Fe1: poga([r1/C1]) by definition
= @(E) ke :[pop(r)/C1]

and by application of the substitution g to 2) and the Lemma 13, we have:

o(E) Feg: p([r2/Cs]) Dy definition
= p(E)Fea:[u(r)/Cy

Because p is a main unifier, we have p o o(71) = p(m) = p(a)
So we can apply the App type inductive rule and we obtain:

©(E) F (e1 e2) : [u(a)/C]

and the result.

Case Couple. We have e = (e1,e2). By induction hypothesis on e; and ey, we have:
1. (,01(E) F (AN [Tl/Cl]
2. poop1(E) e :[ra/Cy)

44

I R R L L I S e 0 N

not Solve to False). By the application of ¢y on 1) and the Lemma 13, we have:

o(E) Fe1: a([r1/C1]) by definition
P(E) ey [r/C]

By application of the type inductive rule (Couple) we have:
¢(E) I (e1,€2) : [1{ * 72/ C]

and the result.

Case Let. We have e =let x = e; in e2. By inductive hypothesis on e; and es, we have:
1. (pl(E) l_ €1 . [7'1/01]

2. pa(p1(E) +{z : Gen([11/C1],p1(E))}) ez : [12/C2]

with Solve(Cy) # False and Solve(Cy) # False. The algorithm calculates that ¢ = @9 0 ¢ and [r]/C1] =
w2([r1/C1]) and 7 = 15 and
C=CyANC]A(L(12) = L(1]))

and Solve(C) # False (and all the constraints are not Solve to False). If necessary, we rename all the
generalised variables. Now they are out of reach of w9 With the Proposition 1 we have:

pa(Gen([r1/Cil,p1(E))) = Gen(pz([r1/C1]), p2(p1(E)))
= Gen([r1/C1], 0(E))

a substitution is point to point so we have:
@(E) +{z : Gen([r1/C1], p(E))} F ez : [12/Ch]
By application of the substitution s to 1) and the Lemma 13, we have:

©(E) Fe1:a([T1/C1]) by definition
= @(E) e :[r/C1]

By application of the type inductive rule Let, we have:
o(E)Flet £ =e; in e : [12/C]

and the result.

5.3 Completeness

Theorem 7 Give an expression e, an environment E and V an infinite set of variables as V N F(E) =
If there exists a type scheme [1,/Cy] and a subsitution ¢' as ¢'(E) b e : [1,/Cy] then ([7/C],, V')
Wi(e, E,V) is define and there exists a substitution v as

[70/Cnl = ¢([7/C]), and ¢ =tpop out of V.

Remark: we said that ¢’ = ogpisout of V,if Va € V ¢'(a) = ¥(¢(e)). The condition ¢’ = 1o ¢ out
of V means that the two substitutions behave in the same manner with the initial typing problem.

0.

Remark: with the hypothesis, if ([7/C],¢, V') = W(e, E,V) then V' C V and the variables of V' are
not free in [7/C] and are out of reach of ¢. So, we get V' N F(p(E)) =0

Remark: it is easy to see that, if F([7/C]) NV =0 and if ¢ = out of V then ([7/C]) = ¥([7/C]).

45

Proof: by a stuctural induction on e.

Case e = z. By hypothesis, we have ¢/(E) b z : [1,/C,], £ € Dom(¢'(E)) and [1,,/Cr] < ¢'(E)(z) with
Solve(Cy,) # False. Trivially, we get, z € Dom(E). Note E(z) = Vau,... ,ap.[75/Cy] with the o; choose in
V' and out of reach of ¢'. We have W(E, z,V) is define like:

[7/C] = [relow = Bi]/Calai < Bi]] p=id V' =V \{b1,... .06}

for B1,...,Bn, € V. The a; are out of reach of ¢’ so we have:

O (E(z)) =Vai, ... ,an.[¢' (1) /¢ (Cy) /\ C(p,(%)]
Y €F (12 /Cz)NDom(y')

Note p, the substitution on the a; as 7, = p(¢'(75)). We take: 1 = po ¢’ o [B; < a;] We have by definition:

Y([7/C)) = p(¢'(12))/4(C) A Cp(ws) by definition
w; €F(1/C)NDom(y)
= 7u/p(¢'(Cy)) A Cy(wi) by definition
w; €EF(7/C)NDom()
= Ta/p(¢'(Cy)) A Croyplo[Biai)(w;) Py the Lemma 11
w; EF(12[Biai]/Co[Bi+ai])NDom(poy’ o[Bi+a])
= Tn/p(¢(Ca)) A P(CrolBiail(ws)) A Com)
wi €F(Te[Bi0i]/Cx[Bi+a;])NDom(poy’ o[B;a]) Y €EF (@' o[Bi<a;](w;))NDom(p)

By definition, we have:

Cn = p((:DI(CsU)) /\ p(CLp’(wi)) /\ Cp(ai)
w; EF (12 /Cz)NDom(¢") Q1 5Qn
It is easy to see that:
/\ p(ccp'(wq;)) = /\ p(cgo’o[ﬁi(—ai](wi))
w; €F (15 /Cz)NDom(p') wi €F (12 [Bi—;]/ Cr[Bi<—asi])NDom(poy’ o[Bi—ay;])

(because, if z; € Dom/(¢') or x; out of reach of ¢', Ciy(5,) = True and we ignore this constraint)

We have Dom(p) = a1,... ,a, and aq, ... ,an, C F(¢' o [F; < a;](w;)) (because the o; are in 7, and are out
of reach of ¢' like for the a;) and with the reason we have:
/\ Cplas) = /\ Co(m)
Q1;.0,0n Vi €F (@' o[Bi¢—ai](wi))NDom(p)

So we have [tau,/Cy] = ¥([7/C]).
All the variables a & V are not a «; or a ;, so ¥(a) = p(¢'(a)) = ¢'(a) so ¥(a) = p(¢'(a)) = ¢'(a). We
have the result because ¢ = id.

Case e = op. Like (Var).
Case e = ¢. Trivial with 9 = id.

Case e = fun z — e;. We have the following derivation:

@' (E) +{z : [Tn2/Cr,p]} F €1t [Tn1/Cni]
(pI(E) F (fun T — 61) : [Tng — Tnl/C(Tnz—Wnl) AN Cnl]

with Solve(C;,,7,,) A Cn1) # False. Take a € V, like in the algorithm. We note:
Ei=E+{z:a} and ¢} =¢' U{a+ 2}

We have:

V1 (E1) = by definition
O(E) +{z:12/C:,,} because a & F(E)
= ¢'(B) +{z: m2/Cr,,}

46

([r1/Cil, 01, V1) = W(er, E1,V\{a}) [m1/Cm] =1 ([11/C1]) @) =101 out of V\ {a}

So it is easy to see that we have W(e, E,V) is well defined. We take 1 = 1. By inductive hypothesis, we
have:

n1 = P1(C1) /\ 011)1(%')
Y €F(m1/C1)NDom(v1)
For ¢([7/Cy, (a)—sm A C1]) we have by definition:
P([7/Cpy (a5 N C1] (1) /$(C1) Ap(Copy (a)—m) A Cy(m)

’7;’6.7:(T/C¢1 (@)= AC1)NDom(v)

We have:
(1) = P(p1(a) = 1) Dby definition of 7 in the algorithm

P1(p1(a) = 1) by definition of

(@) = 1(11) because a € V' \ {a}
Tn2 = P1(T1) by construction of ¢
= Tn2 = Tnl by construction of 1

We have Dom(y) = Dom(t1), 7 = ¢1(a) — 71 and by a the Lemma 9, we have F(Cy, (q)—r) C
F(p1(a) = 71). We work modulo the commutativity of the A operator and D A D = D, so we can have by
distribution of the free variables and by definition on free variables on a type schemes:

= (C1) AY(C, o1(a) —>T1) A Cy(yi)
Yi Ef(T/C‘pl(a)_,Tl AC1)NDom(y)
= (CY) A Cyyi) NP(Coy(a)—sr1) A Cy(y) Dy inductive hypothesis
v €F(11/C1)NDom(v) Y EF(p1(a)—11)NDom(1)
= Cui AY(Cyy(a)m) A Cy(ys) by the Lemma 11
v €F(p1(a)—11)NDom(1))
Crni A C’t/}(cpl(a)—)n) by definition

Cnl A Crnz —Tnl

So we have [Th2 = Th1/Crp—101 A Cn1] = ¥([7/Cr A Ch)).
Furthermore, for all variable v out of V', we have:

¥lp() = t1(e1(y)) by definition of 1 and ¢
= ¢i(v) because v &€ V
)

= pi(y because v € V give v # «

and the result.

Case e = (e; e2). We have the following derivation:

Y (E)Fer:[mhe = Tm1/Cn1]l ¢'(E)F ea: [Th2/Chol
¢'(E) F (e1 e2) : [Tn1/Cn1 A Cpa]

Apply the inductive hypothesis to the first premise, we obtain:

([r/C1), 1, Vi) = W(er, E,V) and [th2 = Tn1/Cni] = ¥1([11/C1]) and ¢’ =11 01 out of V

In particular, ¢/(E) = 11 o p1(E). We apply the inductive hypothesis to ey, ¢1(E), V1, T2 and 1. We have
F(p1(E)) N Vi = 0 with the remark of the beginning. We obtain:

([T2/Cal, 02, V2) = W (e, p1(E), V1) and [732/Ch2] = 12([12/C2]) and 1 =12 0 @ out of V1

We have F([r1/C1]) NVi =0, so 1([11/C1]) = 2 0 o([11/C1]). Write 13 = 1po + {a < Tp1} (e is a variable
of Vo and out of reach of 42) so 93 prolongs 1. We have:

PY3(pa(m)) = tha(p2(m)) = ti(m) = Tpo = Tnl

P3(me w>) = Pa(T2) > Thl = T2 = Tal

47

R L N Y X ~ - — T T e e T

We take 1) = 14. The algorithm calculates:

[r1/C1] = powa([r1/Ci]) by definition

= wlp2(m1)/p2(C1) A Cyy()] by definition
Bi€F(m1/C1)NDom(p2)

= [powa(r1)/popa(Ch) A 1(Cypy(5;)) A Cuiy)]
Bi€F(11/C1)NDom(p2) %€ p2([r/C1])NDom(u)

and
[12/C3] = u([r2/C5))

= [IU(TQ)/,U(CQ) /\ Oﬂ(’h)]
v €F(T2/Ca2)NDom(p)

and [7/C] = [u(a)/C} A Ch]. So for ([7/C]) we have:
P(r) = a(pla)) = yYs(@) = T = m

and for the constraints we have:

= %(C) A Cy(y;) Dby definition
v €F(1/C)NDom(y)
= ¢4(CD A 1114((75) /\ C'tﬁ(’yz‘) by definition
v €F(T/C)NDom(y)
= Puopopy(Cr) Apyopu(Cy) A Cy(m)
v €F(T/C)NDom(y)
A a0 1(Copy(s;)) A P4(Chiy)) A PY4(Cl(y))
Bi€F(11/C1)NDom(yp2) Y€ @2([11/C1])NDom(u) Vi €F(12/C2)NDom(u)

By definition of 14 o pt and the fact that o ¢ F(C2) (because o € V2), we have that 14 o u(C2) = 1p2(Ca).
For the same reasons (« out of reach of 1) we have 1y o p o po(C1) = 91(C1). So we have:

= 11(C1) A p2(Co) A Cpa(m)
v €F(T/C)NDom(y)
A P4 0 1(Coy(sy)) A $a(Cuyy)) A $a(Cuyy))
Bi€F(m1/C1)NDom(pz) Y€ w2([r1/C1])NDom(p) Vi €F(72/C2)NDom(p)

By the Lemma 11, we have:

Cosoutoa(s)) = Y40 1(Coa(p)) A Cosont)
Y% EF(p2(Bi))NDom(haop)
Cpuouy) = %a(Cus,)) A Cpa(wi)
w; €F(u(B:))NDom(ha)

We work modulo D A D = D and D A True = D. For the variables -; that are out of reach of 14 we have
Cyy(v) = True and for all the variables §; € (F([r2/C2]) N Dom(u))U (@2 ([71/C1])NDom(p))U(F([m1/C1])N
Dom(ps)) we have ; € F([r/C]) (and vice-versa modulo f; out of reach of a substitution). We have by
some applications of the Lemma 11 and Lemma 9 (we transform the 14(D,,) to Dy,(,) and also for u):

= 1(C1) A p2(Co) A Copyopops(8;) A Cpson(s:)
Bi€F(11/C1)NDom(paopops) Bi€F(12/C2)NDom(paopu)

by inductive hypothesis , we have:

Cni = 1(C1) A Cuyu ()
Bi €F(11/C1)NDom(v1)

Cn2 = 12(Ch) A Cos(8:)
Bi€F(12/C2)NDom(v2)

B € Vi and fB; & Va so we have, by definition, that 14 o o p2(8;) = ¥1(B;) and s o u(B;) = 12(6;) - So
we get:

= 1(C1) Ap2(Ch) A Cyy(8:) Cy,(s) by inductive hypothesis
Bi€F(r1/C1)NDom(v1) Bi €F(12/C2)NDom(h2)

= Cn1ACn2

= O,

48

P(p(P)) = Yalplp2(p1(0)))) by definition of ¢
= P3(p2(p1(8))) by definition of 14
P2 (p2(p1(6))) because 3 # o and « out of reach of ¢; and (9
P1(p1(8)) because ¢1(8) € V1
= ¢'(B) becase B &€V

and the result.
Case ¢ = (e1,e2). Like (App) without the mgu u.

Case e = let £ = e; in e3. We have the following derivation:

P(E)Fer:mn/Cn] ¢'(E) +{z: Gen([tn1/Cnil, ¢’ (E))} I €2 : [Tna/Chra]
¢ (E)Flet z =e1 in €3 : [Th2/Cni A Cna A L(Tn2) = L(T15)]

By application of the inductive hypothesis on the first premise, we have:
([n/Cil, 1, Vi) = W(er, B, V) and [rn1/Cri] = ¥1([r1/C1]) and ¢' =41 0y out of V

In particular, ¢/'(E) = 91 (p1(F)). We verify that 11 (Gen([r1/C1],1(F))) is more general than
Gen(¢1([11/C1)), Y1(p1(E))), i.e, Gen([Tnh1/Cni], ¢'(E)). By hypothesis, we have:

¢'(E) +{z : Gen([1n1/Cpl, ¢'(E))} F €2 : [Tn2/Cra]
With the Proposition 1, we get:
@' (BE) + {z : 1(Gen([11/C1], p1(E)))} I €2 : [Tn2/Cho]

- (1 () + {o : Gen([r1/C1l, 01 (E)} F ap : [1na/Crs]

By application of the inductive hypothesis to the second premise, for the environment i (E)+{z : Gen([11/C1], ¢1(E))}
with the set of variables V7, the type 7,2 and the substitution 1, we get:

([r2/Ca], 2, V2) = W ez, p1(E) + {z : Gen([r1/C1],p1(E))}, V1)
and [12/Cha] = 2([12/C2]) and 11 = 12 0 @9 out of V4. The algorithm takes [r{/C}] = pa([71/C4]) and
[T/C] = [1r2/Ca ACT A (L(12) = L(71))]

= [12/Ca A p2(Ch) A Copo(pi) N (L(12) = L(p2(11)))]
Bi€ F(r1/C1)NDom(p2)
and ¢ = @g 0 1 and V' = Va. Take ¢ = 1po. We have 9([1/C]) = [1p2/C'] and
C'" = 9a(Ca) N h2(pa2(Ch)) A Y2(Cpy(si)) A Y2((L(12) = L{p2(11)))) A Cya(v)
Bi€F (m1/C1)NDom(p2) Y €F(7/C)NDom(y2)

By the Lemma 10, we get

C' = 1h2(C2) Nha(p2(Ch)) A Y2(Coys:)) N (L(Tn2) = L(7n1)) A Cpo(m)
Bi€F(11/C1)NDom(p2) YE€F(T/C)NDom(v)2)

By inductive hypothesis, we have:

Cra = 12(C2) A Cn(85)
ﬂiE}—(T2/C2)ﬂD0m(’¢2)

Cr1 = 1(C1) A Cy1(8)
ﬂief(Tl/Cl)ﬂDom(’lﬁl)

All the free variables of [r1/C1] are not free in V; and 1 = 12 0 2 out of Vi, we have 12(p2(C1)) = 9¥1(Ch).
Like in (App), by some applications of the Lemma 11 and by ignoring True constraints, we have by hypothesis
and by induction

= o(C2) Ap1(Ch) A Coa(pa(8:)) N (L(Tn2) = L(Tn1)) A Coa ()
Bi€F(11/C1)NDom(v1) Y €F(12/C2)NDom(¢z)

= P2(C2) Np1(C1) A Copy(8:) N (L(Tn2) = L(Tn1)) A Cpa ()
Bi€F(11/C1)NDom(v1) Y €F(12/C2)NDom(2)

= Chi A Cnz A (L(Th2) = L(7n1))

49

P(p(a)) = a(p2(p1(a))) by definition of ¢
= Pi(p1(a)) because ¢1(a) € V because ais out of reach of ¢
= ¢'(a) because a € V

hence ¢’ =1 o out of reach of V and the result.

50

Chapter 6

Implementation

In this chapter, we describe an implementation of our mini-BSML. We use Objective Caml to evaluate
our expressions. So we only present the first implementation of the algorithm W. To attain this goal, we
need to implement substitution and the type scheme. We first describe our abstract structure and the given
definitions, the technical tools like a trivial instance, Solve, and we finish by explaining the implementation
of W algorithm. The implementation has been made in Objective Caml.

6.1 Definition

6.1.1 Description of the data structures

In this section, we describe the abstract structures of our implementation. The expressions of our language
came from a syntactic analysis (camlyacc and camlexx) and like a lot of our structures, they are sum

types:

type expr_type =

Base of string

Type_var of string

Arrow of expr_type * expr_type
Par of expr_type

Product of expr_type * expr_type;;

type expression = :
Var of string |
Const_int of int |
Const_bool of bool
Op of string

I

I

| K . type formula =
| Fun of string * expression

I

I

I

Loc of string
True | False
Or of formula*formula

App of expression * expression |
I
| Not of formula
I
I

Pair of expression * expression
Let of string * expression * expression;;

And of formula*formula
Imp of formulaxformula;;

type type_scheme = { quantif: string list; body: expr_type; constraints: formulal;;

The "simple type" and the constraints of our language are trivial inductive structure. We use "string"
to define the variables of type (idem for the constraints). For mini-BSML, we have two kinds of constants:
the boolean and the integer. So the string base of the "expr type" are equal to "int" or "bool". It is
possible to add new base types, but for our study, it is not. For the constraints, we have introduced the
"Not" and the "Or" operators to simplify our constraints (see the description of the Simple operator) for the
users. Now we write "Imp" for =, "And" for A, "Or" for V and "Not" for — to be close by the implementation.

The type schemes are records of a list of string for the quantification, a simple type and a constraint.

The binding variables are the variables on the quantification list. The environments are implementing by
using a list of type schemes.

6.1.2 Definitions

We give the implementation of the definitions of the chapter 2.

51

1he set o Iree variables can De calCulated Dy 1nauction on the absStract structure and the result 1S a
list of the free variables. We use a union (resp intersection, difference) function that computes the union
without dublicates on the list (resp intersection, difference). We give for example the free variables of the
"expr type" (it is the same manner for the constraints):

let type_free_var
let rec f_rec t
Base b -> []
| Type_var v -> [v]
| Arrow(a, b) | Product(a,b) -> union (f_rec a) (f_rec b)
| Par v -> (f_rec v)
in f_rec;;

match t with

The free variables of a type scheme is computed with the union of the free variables of the constraints, the
type and with the difference of the quantification.

let type_scheme_free_var sigma = difference
(union (type_free_var sigma.body) (constraints_free_var sigma.constraints)) sigma.quantif;;

The free variables of an environment is trivially the application of this function to a list (the environment).
In the same manner, we give the Gen operators:

let generalisation sigma env =
{ quantif = difference (type_free_var sigma.body) (environment_free_var env);
body = sigma.body; constraints = sigma.constraints };;

Substitution

The substitutions are applications from variables of type to simple types. We need, for the type scheme
substitution, to calculate their domains. So we have implemented the substitution by a (string * ex-
pr type) list. To calculate our substitutions, when we have a variable, we have to look if it is in the
domain of our substitution (i.e, looking in the list) and if it is, to replace the variable. For the constraints
we use a function loc to convert a common type to a constraint (see next):

let constraints_substitution alpha_tau_list =
let rec f_rec contr = match contr with
True | False -> contr
Or(a,b) -> Or(f_rec a, f_rec b)
Not(a) -> Not(f_rec a)
And(a,b) -> And(f_rec a, f_rec b)
Imp(a,b) -> Imp(f_rec a, f_rec b)
Loc alpha -> begin
try loc(List.assoc alpha alpha_tau_list) with Not_found -> contr
end in f_rec;;

The substitution on a type scheme is more difficult. First we have to rename the binding variables (i.e,
create fresh variables and apply this trivial substitution). After, we have to add the constraints calculated
from the domain of the substitution (see chapter 2):

let generation_big_and alpha_tau_list sigma =
let var_list = intersection (union (type_free_var sigma.body)
(constraints_free_var sigma.constraints)) (domain alpha_tau_list)
in List.fold_right (fun var -> fun next -> And(construction_of_constraints
(type_substitution alpha_tau_list (Type_var var)), next)) var_list True;;

and finally, apply the substitution:

let type_scheme_substitution alpha_tau_list sigma =
(* we generate fresh variables beta_1...beta_N *)
let quantif’ = List.map (fun alpha -> new_variable()) sigma.quantif in
(* we generate a renamme to have our substitution out of reach *)
let renamme = (List.map2 (fun alpha beta -> (alpha, Type_var beta)) sigma.quantif quantif’)
in
{

quantif=quantif’;

52

sigma.constraints), generation_big_and alpha_tau_list sigma)

}s5s

The substitution on an environment is the application of this function to all the elements of the en-
vironment (the type scheme list). But, it is easy to see that in the W algorithm, we use composition
of substitution that creates a new substitution. To implement this, we use a list of substitutions (i.e.
(string * expr_type) list list). Thus, the composition of substitutions is trivially the list concatena-
tion and to apply a "substitution composition", it is only the application of the substitution contained in
the composition. We illustrate with the substitution on an environment:

let environment_substitution_composition env =
let rec f_rec composition = match composition with
[-> env
| hd::t1l -> environment_substitution hd (f_rec tl) in f_rec;;

Construction of the constraints

In the following, we see that we need to transform an "expr type" and how to construct the constraints
from a common type. The rules are given in the section 2.2.1. It is easy to translate those inductive rules in
a language such as Objective Caml:

let loc = let construction_of_constraints =

let rec f_rec ty = match ty with let rec f_rec ty = match ty with

Base(x) -> True | Par(x) -> And(loc(x),f_rec(x))
| Type_var(x) -> Loc(x) | Arrow(x,y) ->
| Par(x) -> And(False,f_rec(x)) And (And (f_rec(x),f_rec(y)) ,Imp(loc(y) ,loc(x)))
| Arrow(x,y) | Product(x,y) -> | Product(x,y) -> And(f_rec(x),f_rec(y))

And(f _rec(x) ,f_rec(y)) | _ -> True
in f_rec;; in f_rec;;

6.2 Tools on constraints

In this section, we present some important tools for the constraints: Solve and Simple. Solve is a
function that calculates when a constraint is always False. Our constraints are a sub part of the propositional
calculus, so Solve is a decidable function. We can apply classical technic like the quine method. Simple
is the application of technicals to have more readable constraints for the users.

6.2.1 Solve

The "quine method" is the simpliest technic to resolve propositionnal calculus. The method consists in
taking a variable on the constraints and replace all its occurences by the True (respectively False) value
then reduce the constraints with some knowing rules. Example:

let rec reduct £ = match f with
Not(a) -> reduct_not(a)

| Or(a,b) -> (reduct_or a b)

| And(a,b) -> (reduct_and a b)

| Imp(a,b) -> (reduct_imp a b)

| _ > F

and (* reduction of the not *)
reduct_not f = let g = (reduct f) in match g with

True -> False

| False -> True

| _ -> Not(g)

etc...

This is for the rules: Not(True) = False and Not(False) = True. We have a lot of reduction rules. We
give some of them:
DATrue = D DV True = True

D A False = False DVFalse = D etc ...

This operation repeated until there is no free variable. If, in one of these cases, a constraint is Solved to
True, then the constraint is not an incorrect constraint:

53

if x=[] then ((reduct contr)=True) else
(solve(reduct (substi (List.hd x) False contr)))
|| (solve(reduct (substi (List.hd x) True contr)));;

where first _variable is a function that gives the first free variable on the constraints.

6.2.2 Simple
With the Simple function, we want to have the constraints such as:

n p

N\ L) /\ =L(f) N\ (L(wik) Ao A L(wyr)) = L(Bik) A .. A L(Bok))

=1 k=1

Remark: we do not prove that we will have this form. We only want to have more readable constraints.
We take a A (o = (B V 7)) for example.

To attain this goal, we first apply the reducting function (see in section 6.2.1) to remove the constraints
True and False. Then, we pass our constraints to a conjonctive normal form. So we have to take off
the "Imp" operator and replace it by "Or" and "And" operators:

let rec vir_implication f = match f with
Imp(a,b) -> Or((Not (vir_implication a)),(vir_implication b))
| Or(a,b) -> Or((vir_implication a),(vir_implication b))

I
Next, we "push" the "Not" operator on the literals and apply the De Morgan rules:

let rec pousse_negation f = match f with
Not(a) -> begin match a with
And(x,y) -> Or(pousse_negation(Not(x)),pousse_negation(Not(y)))
| 0Or(x,y) -> And(pousse_negation(Not(x)),pousse_negation(Not(y)))
| Not(x) -> x
end
| Or(a,b) -> Or((pousse_negation a),(pousse_negation b))

I
And finally, distribute the "And" on the "Or":

let rec distribution_et_ou f = match f with
And(a,b) -> And((distribution_et_ou a), (distribution_et_ou b))
| Or(a,b) -> begin match (a,b) with
(x,And(u,v)) -> And((distribution_et_ou(0r(x,u))),(distribution_et_ou(0r(x,v))))
| (And(u,v),y) -> And((distribution_et_ou(0r(u,y))),(distribution_et_ou(0r(v,y))))
| _ -> f end
- -> £33

let forme_normale_conjonctive f = distribution_et_ou (pousse_negation (vir_implication £));;

Thus, we have our constraints such as:

for the example, we have a A (ma V (BV 7y)).

Now, we can pass our constraints to a set of clauses, i.e., a constraints list list. With this kind of list,
it will be easier to remove duplicates:

let rec expFCL_vers_liste_de_ou f= match f with
And(a,b) -> (expFCL_vers_liste_de_ou a)@(expFCL_vers_liste_de_ou b)
[_ —> £::[15;

54

| _ > £ [];;7

let forme_clausale f = List.map suite_ou_vers_liste
(expFCL_vers_liste_de_ou(forme_normale_conjonctive £));;

For the example, we have: [[a]; [-a; 8;7]].

Now, we can sort our clauses and our lists of clauses. To do that, we use the List.sort function of
Objective Caml with arbitrary function to compare the clauses and the variables (alphabetic order in the
implementation). After these operations, we can remove dublicates. In the clauses, we can take off the
literals like [... ; P;—P;...] and replace it by [... ; True;...]. We do not give the code source because, it is
long and not interesting.

After simplifying our clauses, we can transform these sets of clauses to result form. We apply the inverse
rules that have taken off the "Imp" operators in the clause and we gather together our clauses in our
constraints. Intuitively, this method works well because in the original constraint have only "Imp", "Not"
and "And" operators.

6.3 The W algorithm

In this section, we give the implementation of the W algorithm that has been made. We first give the
unification of two simple types and the trivial instance. We finish by some cases of the W algorithm.

6.3.1 Unification and trivial instance

Unification

The Robinson’s algorithm works on type equations. We represent our equations by a list of couples of
simple types. This algorithm needs two simple functions: "occurence" that tests if a variable is on the free
variables of a type and a function that made an application to all the elements of our equations. The function
"occurrence" has been written by induction instead of using the function of free variables. We remind that
the substitution are list of "expr type" and the composition is the concatenation of list. We give some cases
of the algorithm:

let mgu taul tau2 =
let rec robinson ¢ = match c with
[-> identity

| (Base bl, Base b2) :: ¢’ when bl = b2 -> robinson c’
| (Type_var alpha, Type_var beta) :: c’ when alpha = beta -> robinson c’
| (Type_var alpha, tau) :: c’ when not(occurrence alpha tau) ->

let new_composante = [(alpha,tau)] in
let new_R = robinson (apply_list_couple (type_substitution new_composante) c’) in
(new_R@[new_composante])

| (Arrow(taul,tau2), Arrow(taul’,tau2’))::c’ -> robinson((taul,taul’):: (tau2,tau2’)::c?)
| (Par(taul), Par(tau2)) :: c’ -> robinson((taul,tau2)::c’)

[.

| _ -> raise Not_unifiable

in robinson [(taul,tau2)];;

Trivial instance

As for the substitution on a type scheme, we rename the variables. To do this, we create a substitution
with a set of fresh variables:

let trivial_instance sigma =
(* we generate fresh variables betal... betaN *)
let new_var = List.map (fun alpha -> new_variable()) sigma.quantif in
(* We construct the renamme alphai <- betai *)

55

{

quantif=[];

body=type_substitution renamme sigma.body;

constraints= constraints_substitution renamme sigma.constraints

};s

6.3.2 The W algorithm

This part uses all the functions that have been described in the last sections, particularly the type scheme
and environment substitutions. We present the implementation of the algorithm cases by cases. The W al-
gorithm, for result, gives a type scheme without quantification and a substitution (a composition).

The cases for the constants are trivial. We do no describe them. Idem for the case operator, by using a
trivial instance of the type scheme of operator (see section 5.1.1). Idem for the case variable by searching
in the environment the type scheme of the variable and take a trivial instance on its. In all these cases, the
substitution is the identity. Now we describe two cases: functional and application. The other cases are
identical.

Functional

We have an expression that has the form: fun x — e;. First, we have to create a new variable « and its
type scheme. Next we apply recursively the W algorithm to e;. Thus we can create the simple type of the
expression by application of the substitution given recursively to the variable « and create the type scheme
of the expression with the function of construction of constraints (see section 6.1.2).

| Fun(x, al) ->
let alpha = Type_var(new_variable()) in
let schema_alpha = {quantif = []; body = alpha; constraints=True} in
let (sigma_1, phil) = www ((x, schema_alpha) :: env) al in
let new_type=Arrow(type_substitution_composition alpha phil, sigma_1.body) in
let sigma={
quantif=[];
body=new_type;
constraints=And(construction_of_constraints(new_type),sigma_1.constraints)

}
in if solve(sigma.constraints) then
begin
if !verbose then print_string(" \" FUN: "~expression_to_string(expr)~" : "

~(type_scheme_to_string(simpl sigma))~" \" ;;\n")
else print_string "";
(sigma,phil)
end else raise Pb_constraints

After creating the type scheme (so the constraints), we can verify if those constraints are correct or not.
If not, we raise an exception to signal that the expression is not valid. For the users (and in all the cases),
we have created a verbose mode that write the type scheme of the expression (here a sub-expression). Thus,
the user can see all the running steps of the algorithm, i.e, the type derivation.

Application

We have an expression that has the form: (e; e2). Like in functional case, we apply the algorithm
recursively to the sub-expressions e; and ey. For eg, like the definition of the algorithm, we apply the
substitution, given by the first recursive step, to the environment. Next we create a new variable by using
the function: "new variable" and we use the type unification define before.

| App(al, a2) ->
let (sigma_1, phil) = www env al in
let (sigma_2, phi2) = www (environment_substitution_composition env phil) a2 in
let alpha = Type_var(new_variable()) in
let mu = mgu (type_substitution_composition sigma_1.body phi2)
(Arrow(sigma_2.body, alpha)) in

56

let sigma_1’= type_scheme_substitution_composition sigma_1 first_compo in
let sigma= {
quantif=[];
body = type_substitution_composition alpha mu;
constraints = And(sigma_l’.constraints, sigma_?’.constraints)

}
in if solve(sigma.constraints) then
begin
if !verbose then print_string(" \" APP: "~expression_to_string(expr)~" : "

~(type_scheme_to_string(simpl sigma))~" \" ;;\n")
else print_string "";
(sigma,first_compo@phil)
end else raise Pb_constraints;;

Now, like in the definition of the algorithm, we can create the new type scheme of the sub expression
by using the recursive substitution and the substitution create by the Robinson’s algorithm and then we
construct the type scheme of the expression. Like in functional case, we verify the constraints with the solve
function and we raise an exception if the constraints are not correct. For the substitution, we use, like before,
the concatenation to define the substitution composition.

In this case (as for functionnal), it is easy to implement the W algorithm with the functions that have
been implemented. In the last section, we present how mini-BSML works and give some examples.

6.4 Mini-BSML

The implementation of mini-BSML, could be downloaded in: http://www.bsml.fr.st

6.4.1 Operating

The compilation of the W algorithm in Objective Caml (OCaml) gives an executable byte-code file. This
implementation takes in entry the user’s expression and prints to the standard output, an OCaml’s string
for the errors or the type scheme (and if verbose mode, the step of the type derivation) and the expression
for OCaml. Thus, OCaml could compute the expression and give the result. But to avoid the type given
by OCaml, and have only the mini-BSML’s type schemes, we have implemented a "reader" that screens the
output of Ocaml. So we have a script to run those programs and redirect the ouput and the input with shell

pipes:
cat bsmlib.ml; bsml_typing | ocaml | reader

For this, we need a function to transform mini-BSML’s expression to OCaml ones. We can transform
the fix operator to a let rec expression and the arithmetic’s operations like, +(e1, e2) to their suffixe ver-
sions (1 + 2). We transform the conditional ifthenelse(t1,e;,e2) to have the classical OCaml’s expression:
if ¢; then e; else es.

For the synchronous conditional operation, we apply the transformation of the BSMLLIB (see introduc-
tion) like for the sequential conditional:

let expression_to_string =
let rec f_rec exp = match exp with
Var a -> a
| Const_int a -> string_of_int a
| Const_bool a -> string_of_bool a
| App(Op "ifat",Pair(vect,Pair(pid,Pair(el,e2)))) ->
"if (at "~(f_rec vect)~" "~ (f_rec pid)~") then "~ (f_rec el)"" else "~ (f_rec e2)
| App(Op "ifthenelse",Pair(b,Pair(el,e2))) ->
"if ("~ (f_rec b)"") then "~ (f_rec el)"" else "~ (f_rec e2)
| App(Op "+",Pair(el,e2)) -> "("~(f_rec el)~"+"~(f_rec e2)~")"
| App(Op "?7",Pair(el,e2)) -> "("~(f_rec el)~"=""~(f_rec e2)~")"

57

| th(a,b) -> "(fun "~a"~" -> "~(f_rec b)~")"

| App(a,b) -> "("~(f_rec a)~" "~(f_rec b)~")"
| Pair(a,b) -> "("~(f_rec a)~","~(f_rec b)~")"
| Let(a,b,c) -> "let "~a~" = "~(f_rec b)~" in "~ (f_rec c)

in f_rec;;

A sequential implementation of the parallel operations was made by Frédéric Loulergue for teaching. To
test our type system, it is sufficient:

type ’a par = Par of ’a array;;
let bsp_p OO = 16;;
let mkpar f = Par(Array.init (bsp_p()) £);;

let put (Par (vf:(int->’a option) array)) =
Par(Array.init (bsp_p()) (fun i -> fun j -> (vf.(3)) 1i));;

let apply (Par vf) (Par vv) =
Par (Array.init (bsp_p()) (fun i-> (vf.(1)) (vv.())));;

let at (Par (vb:bool array)) n = vb.(n);;

let isnc v = match v with None -> true | _ -> false;;

A new version of the BSMLLIB, using the MPI library, is described in [Loulergue, 2002] and can be found
at hitp://www.bsml.fr.st

6.4.2 Examples

We give the running of our implementation for valid expressions (or not) and for the incorrect examples
given in this report.

Incorect replicate

Run with verbose mode. We test the examples given in chapter 4:

" mini-BSML version O.1-alpha ";;
let replicate = fun x -> mkpar(fun i -> x) in replicate(replicate 2);;
" OP: mkpar : [((int -> a3) -> (a3 par)) | L(a3)] " ;;
" VAR: x : al " ;;
" FUN: (fun i -> x) : [(a4 -> al) | (L(al) => L(a4))] " ;;
" APP: (mkpar (fun i -> x)) : [(al par) | L(al)] " ;;
" FUN: (fun x -> (mkpar (fun i -> x))) : [(al -> (al par)) | L(al)] " ;;
" VAR: replicate : [(a6 -> (a6 par)) | L(a6)] " ;;
" VAR: replicate : [(a7 -> (a7 par)) | L(a7)] " ;;
" CONST_INT: 2 : int " ;;
" APP: (replicate 2) : (int par) " ;;
" A constraint is solved to false ";;

fun x -> mkpar(fun i -> x);;
" O0P: mkpar : [((int -> al2) -> (al2 par)) | L(al2)] " ;;
" VAR: x : al0 " ;;
" FUN: (fun i -> x) : [(a13 -> al10) | (L(a10) => L(a13))] " ;;
" APP: (mkpar (fun i -> x)) : [(al0 par) | L(al0)] " ;;
" FUN: (fun x -> (mkpar (fun i -> x))) : [(al0 -> (al0 par)) | L(al0)] " ;;
" - : [(a10 -> (al0 par)) | L(a10)] ";;

In the chapter 2, we have given two examples to illustrate the importance to have all the constraints of
the sub-expressions. Now, we give their type inference:

58

" OP: mkpar : [((int -> a3) -> (a3 par)) | L(a3)] " ;;

" VAR: x : a1l " ;;

" FUN: (fun a -> x) : [(a4 -> al) | (L(al) => L(ad))] " ;;
" APP: (mkpar (fun a -> x)) : [(al par) | L(al)] " ;;

" VAR: x : a1l " ;;

" FUN: (fun b -> x) : [(a6 -> al) | (L(al) => L(a6))] " ;;
" OP: mkpar : [((int -> a8) -> (a8 par)) | L(a8)] " ;;

" CONST_INT: 5 : int " ;;

" FUN: (fun a -> 5) : [(a9 -> int) | L(a®d]1 " ;;

" APP: (mkpar (fun a -> 5)) : (int par) " ;;

" APP: ((fun b -> x) (mkpar (fun a -> 5))) : [all | ~(L(a11))] " ;;
" A constraint is solved to false ";;

fun x -> ((fun y -> (mkpar (fun a -> x))) ((fun b -> x) (mkpar (fun a -> 5))));;
" OP: mkpar : [((int -> alb) -> (alb par)) | L(aiB)] " ;;
" VAR: x : al2 " ;;
" FUN: (fun a -> x) : [(al6 -> a12) | (L(a12) => L(al6))] " ;;
" APP: (mkpar (fun a -> x)) : [(al2 par) | L(ai2)] " ;;
" FUN: (fun y -> (mkpar (fun a -> x))) : [(al3 -> (al2 par)) | L(al2)] " ;;
" VAR: x : al2 " ;;
" FUN: (fun b -> x) : [(a18 -> a12) | (L(al2) => L(a18))] " ;;
" OP: mkpar : [((int -> a20) -> (a20 par)) | L(a20)] " ;;
" CONST_INT: 5 : int " ;;
" FUN: (fun a -> 5) : [(a21 -> int) | L(a21)1 " ;;
" APP: (mkpar (fun a -> 5)) : (int par) " ;;
" APP: ((fun b -> x) (mkpar (fun a -> 5))) : [a23 | ~(L(a23))] " ;;
" A constraint is solved to false ";;

Incorrect projection

" mini-BSML version O0.1-alpha ";;
(((fun x -> fun y -> x) 1) (mkpar (fun i->4)));;
" VAR: x : a1l " ;;
" FUN: (fun y -> x) : [(a2 -> al) | (L(al) => L(a2))] " ;;
" FUN: (fun x -> (fun y -> x)) : [(al -> (a2 -> al1)) | (L(al) => L(a2))] " ;;
" CONST_INT: 1 : int " ;;
" APP: ((fun x -> (fun y -> x)) 1) : [(a2 -> int) | L(a2)]1 " ;;
" OP: mkpar : [((int -> a5) -> (ab par)) | L(aB)] " ;;
" CONST_INT: 4 : int " ;;
" FUN: (fun i -> 4) : [(a6 -> int) | L(a6)] " ;;
" APP: (mkpar (fun i -> 4)) : (int par) " ;;
" A constraint is solved to false ";;

A special identity
This expression is a function of identity to parallel vector:

" mini-BSML version O0.1-alpha ";;
(fun x -> ifat ((mkpar (fun i-> true)),(0,(x,x))));;
" 0P: ifat : [(((bool par) * (int * (a3 * a3))) -> a3) | ~(L(a3))] " ;;
" OP: mkpar : [((int -> ab) -> (ab par)) | L(ab)] " ;;
" CONST_BOOL: true : bool " ;;
" FUN: (fun i -> true) : [(a6 -> bool) | L(a6)] " ;;
" APP: (mkpar (fun i -> true)) : (bool par) " ;;
" CONST_INT: O : int " ;;

59

" COUPLE: (x,x) : (al * al) " ;;
" COUPLE:(0,(x,x)) : (int * (al * al)) " ;;
" COUPLE: ((mkpar (fun i -> true)),(0,(x,x))) : ((bool par) * (int * (al * al))) " ;;
" APP: if (at (mkpar (fun i -> true)) 0) then x else x : [a8 | ~(L(a8))] " ;;
" FUN: (fun x -> if (at (mkpar (fun i -> true)) O) then x else x)
[(a8 -> a8) | “(L(a8))] " ;;
" - [(a8 -> a8) | "(L(a8))] ";;

So, if we apply this function to a local expression (1 for example), the constraints are Solved to False.

Examples with evaluation
The number of processes is 16.

" mini-BSML version O.l1-alpha "

let fact = fix(fun fact -> fun n -> if 7(n,0) then 1 else *(n,fact(-(n,1)))) in fact(b);;
" - int "

= 120

((mkpar (fun i->4)), (mkpar (fun i->5)));;
" - : ((int par) * (int par)) "

Par [|4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4],
Par [I5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5l]

(((fun x -> fun y -> x) (mkpar (fun i->4))) 1);;
" - : (int par) "
Par [14; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4]]

H

let apply2 = fun f -> fun x -> fun y -> (apply (apply f x) y) in apply2;;

"~ [(((a24 -> (a25 -> a26)) par) -> ((a24 par) -> ((a25 par) -> (a26 par))))
| (L(a14) & (L(a1b) & (L(a18) & (L(a24) & (L(a25) & (L(a26) &

((L(a26) => L(a25)) & (((L(a25) & L(a26)) => L(a24)) &

((L(a1b) => L(al4)) & (((L(al14) & L(alb)) => L(al8)) &))]1 "

= <fun>

let id=fun x -> x in (id id, id (mkpar (fun i -> 5)));;
" - ((a29 -> a29) #* (int par)) "
= <fun>, Par [|5; 5; 5; 5; 5; 5; 5; 6; 5; 5; 5; 5; 5; 5; 5; 5l]

let f= fun x -> x (mkpar (fun i ->4)) in f (fun x ->x);;
" - : [(int par) | ~(L(ad4))] "
= Par [l4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4]]
#(mkpar (fun j -> (fun i -> 18)));;
" - : [((a4 -> int) par) | L(ad)] "

Par
[|<fun>; <fun>; <fun>; <fun>; <fun>; <fun>; <fun>; <fun>; <fun>; <fun>;
<fun>; <fun>; <fun>; <fun>; <fun>; <fun>|]

In the "apply2" example, we have free variables from the derivation of the sub-expressions. We can
see that in further works, we can reduct these constraints by replace for example "L(a26) & (L(a26) =>
L(a25))" by a more readable form: "Loc(a26) & Loc(a25)".

A last example

This example, came from the BSMLLIB 0.1 to illustrate the problem of nesting in BSML and the difficulty
of detecting them (the objective of our report).

60

let vecl = (mkpar (fun pid -> pid)) in
let vec2 = put (mkpar (fun pid -> fun from -> +(1,from))) in
let couplel=(vecl,3) in
let couple2=(vec2,4) in
mkpar (fun pid -> ifthenelse(((pid,nproc)), ((snd couplel),(snd couple2))));;

" OP: mkpar : [((int -> a2) -> (a2 par)) | L(a2)] " ;;

" VAR: pid : a3 " ;;

" FUN: (fun pid -> pid) : (a3 -> a3) " ;;

" APP: (mkpar (fun pid -> pid)) : (int par) " ;;

" OP: put : [(((int -> a6) par) -> ((int -> a6) par)) | L(a6)] " ;;
" OP: mkpar : [((int -> a8) -> (a8 par)) | L(a8)]1 " ;;

" QP: + : ((int * int) -> int) " ;;

" CONST_INT: 1 : int " ;;

" VAR: from : al0 " ;;

" COUPLE: (1,from) : (int * al0) " ;;

" APP: (1+from) : int " ;;

" FUN: (fun from -> (1+from)) : (int -> int) " ;;

" FUN: (fun pid -> (fun from -> (1+from))) : [(a9 -> (int -> int)) | L(a®]1 " ;;
" APP: (mkpar (fun pid -> (fun from -> (i1+from)))) : ((int -> int) par) " ;;
" APP: (put (mkpar (fun pid -> (fun from -> (1+from))))) : ((int -> int) par) " ;;
" VAR: vecl : (int par) " ;;

" CONST_INT: 3 : int " ;;

" COUPLE: (vecl,3) : ((int par) * int) " ;;

" VAR: vec2 : ((int -> int) par) " ;;

" CONST_INT: 4 : int " ;;

" COUPLE: (vec2,4) : (((int -> int) par) * int) " ;;

" OP: mkpar : [((int -> alb) -> (alb par)) | L(ailB)] " ;;

" OP: ifthenelse : ((bool * (al8 * al8)) -> al8) " ;;

" OP: < : ((int * int) -> bool) " ;;

" VAR: pid : al6é " ;;

" OP: nproc : int " ;;

" COUPLE: (pid,bsp_p()) : (al6 * int) " ;;

" APP: (pid<bsp_p()) : bool " ;;

" OP: snd : [((a22 * a23) -> a23) | (L(a23) => L(a22))] " ;;

" VAR: couplel : ((int par) * int) " ;;

" A constraint is solved to false ";;

Objective Caml (and BSML) being a strict language, the evaluation of the last expression would imply
the evaluation of "vecl" on the first half of the networks and "vect2" on the second half of the networks.
But put implies a synchronization barrier and a mkpar implies no synchronisation barrier. So this will lead
to mismatched barriers and the behaviour of the program will be unpredictable. The programm is rejected
by our type system in "snd couplel" because snd : [a*x 8 — [/L(8) = L(a)] and after an unification,
a = (int par) and B = int and the constraints are Solved to False.

61

Chapter 7

Further extensions

In this chapter, we introduce three extensions of the mini-BSML language. The first, the nuples, are a
trivial extension of the couple. Next, we introduce a very important extension for a functionnal language: the
sum types. We want to construct "infinite" expressions, like the list or the tree. We finish by the description
of a new dynamic semantics for imperative treats.

7.1 A Trivial extension: the Nuples

The nuple, is the natural extension of the couple. With a serie of couples, we can simulate the nuples,
but it is not natural and it is interesting to add this extension to our language to be more expressive.

7.1.1 Definition
Expression, value and evaluation

We add this new kind of expressions and values:

en= ... like before
| (e1,e2,...,e,) Nuple with n > 2

vu= .. like before
| (v1,v9,...,v,) Nuple value with n > 2

Remark: the fact that in the following, we need n > 2, comes that a "1-uple" is a variable or a constant.
With this problem, we could apply differents inductive rules for this expression and it is not deterministic.
We can solve this problem by a syntactic analysis. From now, we supose that for the nuples, n > 2.

n
To calculate the free variables of our expressions, we need this new rule: F((e1,e2,...,e,)) = J F(ei).
=1

For the evaluation, like the couple, we need to calculate all the sub-expressions before has the result. We

give the natural semantics rule:
ai>vy abvey ... apbu,

(a1,a2,-.. yan) > (V1,V2,... ,Up)

Remark: for the small step semantics, the context grammar is extended as the couple.

Type and inference rule

We have to modify our type algebra and add a new inference rule:

Tu= ... like before
| (11 %7 %...%7,) nuples

Etay:[n/C] Etbay:[r/Cs ... Etay:[1,/Chl
Et (ay,a9,...,a,) : [r1*x 1o % ... %7/ N\ Ci)
=1

(Nuple)

62

Fl(ri*xmo*...x1)) = G F ()

=1

p((r1#72% ... %)) = (@(11) * @(72) * ... % 9(Tn))

For the constraints, we add a new rule for the construction of the constraints and also for the transfor-
mation from the locality to constraints:

L(T1 % To % ... % Tp)

A L(r:)
=1

(Nuple)

7

T1I~C 1o~ Cy ..y~ Oy

- (CNuple)
(ruxmox...x7) ~ A C;
i=1

7.1.2 Operators

To do that, we give to our language, a family of new operators of projections (like fst and snd for the
couple), proj; , with (n >4 > 1), to have the ith component of a nuple. So we have the following evalution

rules and type scheme:

[projis (a. . a)b (... 1un)
flat,...,a,) = v;

proji,n(vla ce a'Un) & (%

TO(projin) = Vau,... ,an[(@r * ... % an) = ai/Lla) = (_/"\lﬁ(aj))]
A

Remark: with all these definitions and these new operators, we can remove the couple of our definitions
(because the 2-uples are like a couple). The two operators, fst and snd, are now a synonym for respectively
proji2 and projso.

7.1.3 Examples

Our first example in the following expression:
(fun £ -> £ (1,replicate 0));;

with replicate is the function defined in the chapter 2. We can give the following derivation for this
expression:

wnt < int
v < F1:int F replicate 0 : (int par)
F f : [int * (int par) - w/(L(w) = False)] F (1, replicate 0) : int * (int par)
f : [int x (int par) = w/(L(w) = False)] - f (1, replicate 0) : [w/(L(w) = False)]
F (fun f — f (1,7eplicate 0)) : [(int * (int par) = w) - w/(L(w) = False)]

To continue, here an incorrect example:
(fun f -> £ (1,replicate 0)) fst;;

because fst : [(ax3) — a/L(a) = L(B)] and after the subsitution a = int, 8 = (int par) and w = int = «.
The constraints are Solved to False. But not for this expression:

(fun £ -> £ (1, replicate 0)) snd;;

because snd : [(a*x 8) — B/L(B) = L(a)] and after the subsitution o = int,3 = (int par) et w =
(int par) = a. The constraints are Solved to True.

63

The Nuples work as the couples but with n > 2. So for the proof, we work with the same manner (not
two premises but n premises).

For the algorithm, the case couple is replaced by a case nuple. This case works in the same way but we
have not to apply W to two premises but to n premises and the constraints are constructed in the same
maner but generalised to n.

7.2 Sum types

7.2.1 Declaration

The sum types, or concret types, are very importants for functional languages. They allow to construct
inductive structures (like tree, list). The concrets types, are represented by special operators, name contruc-
tors. The sum types, for our study, must be declared at the beginning of the programs and not be mutually
recursive. Examples:

type ’a list = Nil of unit | Cons of ’a * ’a list
type expr= Const of int | Var of string | Add of expr*expr | Mul of exprxepxr

The general form of a declaration of a sum type is:

type (a1,...,a,)t=Crof 11 |...| C, of 7,
where
® ay,...,q, are the parameters of the sum type ¢.
e (q,...,C, are the constructors
e Ty,...,T, are the constructors’s arguments.

e We need that, Solve(r;) # False.

Remark: to represents the constructors that have no arguments, we add a type "unit" with a only value:
"()". Example: "Nil" of the list is "Nil of unit".

Remark: we impose, for trivial reasons, that F(r;) C {a1,... ,a;}.

7.2.2 Definition
Expression, value, evaluation

For each sum types ¢, we add to the constructors C1,... ,C, and the matching operator F;. The matching
operator discriminate a value of type t according to the head constructor of the value. In Objective Caml,
the matching operator is:

match e with
C_1(x1) -> el
| C_2(x2) -> e2
| ...
| C_p(xp) -> ep ;;

For our language and for our study, we could note this like the following application of the F} operator:
Fi(e,(fun z; — e1), (fun z; — eg),... , (fun z, — ¢,))

We impose that in the expressions, each constructors C; and F; are applied to their arguments.

64

op == ... | Ci | ...| Cp | Fy operators

T ou= | (1., Te) t type algebra
v u= ... | Ci(v) | ... | Cp(v) values
I' == ... | Ci(T') | ... | Cp(T") contexts

and for the natural semantics, the dynamic rule for the constructors is:

epw
—_—— if C, is a constructor of ¢
Ci(€) > C(v) '
The reduction rule of the F; operator is (for our two kinds of semantics):

Fi(Cr(v),v1,... ,05) = (vg v) if Cy is a constructor of ¢

Ck(e)DCk(’U) e b v ... epbu,
Ft(Ck(e)aela s ae’ﬂ) > (Iuk U)

We naturally extend our definition of free variables by

if Cy is a constructor of ¢

Cs
B
3

F((r1y-.eyma)) =
F(Cle)) =

N
—~
>

7.2.3 Type system
Definitions

We give the natural type scheme for our new operators and constructors:

TC(Cy) = Vai,...,on. 16 = (01,...,00) t [Cre AL((01,. .. o) t) = L(73)]
TC(F) Vag,... ,an, B.[((c1,...,an) t (11 = B) ... x(11 = B)) = B
[Coy Ao o NCry NL(B) = (L((a1y- - yan) B) AL(TI) A oo AN L(T0))]

We extend our constraints algebra with:

C == ... like before
| L(((1,...,7n)t)T) sum types constraints

And we have to define new inductive rules for the definition of £ and for the construction of the constraints:

L((T1y.--yTn) 1)
LTy 3 m)) ANL((T1,--- yT0) £)1)
The 1 makes the infinite recursivity calcul impossible. Thus we said that a sum type is local if all its

parameters (if they exist) are locals and the sum type itself is local. We have introduce a new kind of
constraints: sum type constraints. and extend naturally our constraints substitution and free variables:

(T1y--- ,Tn) ~ Chy
((Tla"' aTn) t)’\” Cn

(Sum)

(CSum)

FE((r1,-- ., m)t)) =
p(L(((11;--. ,m))T) =

F(7i)

(@(71);--+ 5 0(Ta)) 1)

et

~.

5

Examples

For examples, we take an important sum type, the list (used in the BSMLLIB) and a polymorphic sum
type that intuivelly could be either local or global.

type ’a strange = Zero of int
| One of ’a
| Two of ’a par;;

65

e e

e For the list we have:

TC(Nil) = Va.unit — («a list)
TC(Cons) = Va.(ax*alist) — «alist.
TC(Fust) = Va,pB.[(a list* (unit — B) * ((a* a list) = B)) = B/ L(B) = (L(a) A L((a list)L))]

Fist(Nil(v),v1,v9) = (v1 v)
Fist(Cons(v),v1,v3) —

For the following expression

let tl1 lis = match lis with
Nil(x) -> 1lis
| Cons(x,x1) -> xl;;

We traduce this expression to our language:
e=1let tl = fun | = Fj5 (I, (fun z — 1), (fun z. — snd(z.))) in t
We do no give the type induction (too long) but some results:

fun z — snd(z) : [(a*alist) = a list/L((a list)t) = L(a)]
funz —1 : wunit - o list
Fist : (alist* (unit — a list) * ((a * « list) — « list)) — « list
e : [alist — alist/L((a list)t) = L(a)]

e For our "strange" sum type, we have:

TC(Zero) = Va.int — «a strange

TC(One) = VYa.a — a strange

TC(Two) = Va.[(a par) = «a strange/L(a) A (L(a) A L((« strange)®)) = False]

TC(Fstrange) = Ya,p.[(a strange * (int — B) * (a — B) * (o par — B)) — B/L(c) A (L(B) = False)]
Fstrange(Zero('U)a U1, U2, U3) = (’U1 ’l))
Fstrange(one(v)avla vg,v3) = (ve v)
Fst'range (Two('u), V1,02, U3) = (U3 ’U)

For the following expression

(Zero(1), Two(mkpar (fun i -> i)))

We give the type induction (with using the — operator defined before):

k Zero:int — 3 strange +1:int + Two: [int par — int strange/—(L((int strange)'))] + mkpar (fun ¢ — 3) : int par
F Zero(1) : B strange F Two(mkpar (fun i — 7)) : [int strange/—(L((int strange)’))]

F (Zero(1), Two(mkpar (fun ¢ — 7))) : [(8 strange * int strange)/=(L((int strange)1))]

and for the following one (that hide a whole parallel object):

Two (mkpar (fun i -> One(i)));;

.. F mkpar : [(int = int strange) — (int strange) par/L((int strange)+)] F fun i — One(3) : int — int strange
FTwo:... F mkpar(fun ¢ — One(?)) : [(int strange) par/L((int strange)L)]

F Two(mkpar(fun i — One(i))) : (int strange strange)/L((int strange)*) A (L((int strange strange)*) = False)

Thus, for example, the expression: mkpar(fun pid — Two(mkpar(fun i — One(i)))) is rejected
because mkpar needs a local argument and it is not (so the constraints are Solved to False)and we do not
have nesting.

66

With this new definitions, we have to re-prove all our lemmas, propositions and the important theorem
of safety. Thus, for all our proofs, we add a new case. For the algorithm, we have to add a case for the sum
types and have another algorithm to constructs the sum types given by the users. The implementation of this
new type system and algorithms will be necessary to test programs (a lots of expressions of the BSMLLIB
are programs on lists) and to have a more expressive language.

Furthermore, our type system for the sum types is very strict. We have seen that the constraints for a
couple is a A of the components. In the isomorphism of Curry-Howard, the couples are also transforming to
a A of the types of the components. On the other hand, the sum types are represented by V of the types
of the composantes that is not do in our type system. A better type system could used this remark to type
more expressions (like in the example).

7.3 Imperative treats

In this section, we add to mini-BSML, a characteristic of imperative languages: modification in the mem-
ory of variables or data structures. Indeed, a BSP computer contains a set of processor-memory pairs and a
network so it is realistic that each processors could reached to its memory.

We add this modification to our language by the possibility of affectation and allocation of a variable
or a data structure. The idea is adding reference. A reference is a cell of the memory which could be
modified by the program. We create a reference with the allocation’s ref(e) construction which gives a new
reference initialised to e. To used the value kept on the reference, we need a operation to extract this value
written !. We can modify our reference e; by replacing the kept value by another. This operation is called
affectation and written: e; := e3. We use the same notations than Objective Caml. Example:

let r=ref(fun a -> a*a) in let tmp= !r in r:=(fun b -> tmp (tmp b)); !r 2;;

Naturally, this expression is evaluated to 16. The construction a;b evaluates a, next b and returns the
value of b. It is an abbreviation for let z = a in b where z & F(b). A binding reference is the same thing as
a variable in an imperative language. We give for example the variables generator of the implementation of
the W algorithm:

let compteur = ref O;;
let new_variable() = compteur:=!compteur+l; "a" ~ string_of_int !compteur;;

We assume having a unique value: () that have the type unit. This is the result type of the affectation
(like in Objective Caml).

Each processor has a name or pid (see chapter 1). To extend our dynamic semantics to the reference, we
formalize the memory’s locations and the memory’s store for each processors. For each processor, we give a
infinite set of memory’s address written £. A store, written s, is a partial function from location to values.
A reference is evaluated to a location. We had this new kind of expressions and values:

e = ... like before
| £ location
v = ... like before
| £ location
and we had !, := and ref to our operators.

Remark: at the beginning, the expression do not contain locations and the stores are empty.

Remark: there are no free variable of a location, F(£) = .

67

Small steps

We assume a finite set N' = {0,... ,p — 1} which represents the set of processors names and we write 4
for these names and X for all the network. We write s; for the store of processor ¢ with 4 € /. We assume
that each processor has a store. The small step semantics has the form:

e/s—¢e'/s for one step

€0/sq — €e1/sp — ea/sc — ... =~ v/s for all the steps of the calculus

for all the processors (i.e. Vi € N). We write S = [so, ... ,sp—1] for all the stores of our network. With
this notation, we could, for the sake of simplicity give the rules of reduction for all the network. Now, the
small step semantics has the form:

e/S —¢€'/S for one step
eo/So — e1/S1 — e3/Sy — ... = v/S for all the steps of the calculus

Remark: with this new notation and imperative treats, we have to take care that the global expressions
could be differents on each processors (side effects, see above).

We note —, for the transitive closure of — and note eo/So N v/S for eg/Syp — e1/S1 — e2/Sy — ... =
v/S. We begin the reduction with a set of empty stores {(o, ... ,0p—1} noted Ox.

Now we have two kinds of reductions:
1. e/s; — €'/s; which could be read has "in the initial store s;, at processor 7, the expression e is reduce

m

to €’ in the store si".

2. ¢/S AP /S" which could be read has "in the initial network store S, the expression e is reduce to €’
in the network store S'".

As in the definiton of the environment, we write s+ {£ < v} for the extension of s to the mapping of £ to
v. If, before this operation, we have £ € Dom(s), we can replace the range by the new value for the location £.
To define this two new relations, we begin with some axioms for the relation of head reduction:
elz < v] / si (Brun;) (funz —e)v /S —j\ elx vl /S (Brun)
elz v / si (Biet;) (let z=vine) /S % el vl /S (Bretx)

(funz —e)v /s

(let z=vine) /s

3
—
7
3
—
2

For our operators, each d-rules e = ¢’ of the classical small steps semantics give two new reduction rules:
e/si—e /siande/ S =>e /S Indeed, these reductions do not change the stores and do not depend
7 7

of the stores. We do not have a d-rule on a single processor for the parallel operators d-rules. Examples:
+(n1,mo) [8i — n/siwithn=mn;+ny (0y,)
7

fSt(’l)]_,'UQ) / S; %‘ U1 / Si (5f5ti)

and for the network:
£

+(n1,m2) / S =" / S with n = ny + no (045)
fSt(’Ul,’Ug) / S U1 / S (6f5tl><1)
mkpar(funz — ¢) / S (el < 0],...;eflz < (p—1)]) /S (Omkparx)

£
N
X
£
AN
X

Now we complete our semantics by giving the §-rules of the operators on references. Like before, we need
two kinds of reductions. First for a single processor:

ref(v) / s; —j\ L) si+{l—v} ifl & Dom(s;) (0pes;)
'(‘e) / 8i % 31(4) / s; ifle Dom(si) (5derefi)
=(4,v) / s —j\ () / si+{l <+ v} (Oarys;)

68

For the network, when a global expression creates a new allocation, every processors create a new allo-
cation (an address) on its store. We add the constructor £(;) to design the location £ at processor i. Now, a
first and natural definition of the d-rules are:

ref(v) / S N iy [S" where S' = [so + {lo <~ v},... ,sp-1 + {lp—1 < v}] if &; & Dom(si) (drefn)

X
Waw) / S ~ Visi(ti) [Sif 4 € Dom(s;) (Odereus)
=(ly,v) /S é () /S" where 8" =[so+ {lo v},... ,8p—1 + {€p—1 < v}] (Oaffm)

and we add: £;) / s; S8y /sy
j

Remark: for network rules (head reductions or d-rules), the value (before the calculus) could be different
on each processors because this value could depend of the store which could be different on each processors
(side effects).

Contexts

Like in the classical small steps semantics, it is easy to see that we cannot always make a head reduction.
We define two kinds of contexts that have the following abstract syntaxes:

D o= fi o= Tie

| Twe ooh J s

| v T | let z=1I7ine

J

| let z=Txine | (Fl’(j)

| (Twe) @)

| (0,Tw) ~

| (ey..., T ,e,...,e)

where I' are the contexts defined in the chapter 4.

Now we can reduce in depth in the sub-expression. To define this deep reduction, we use the following
inference rules:

e/sj?e'/sg- e/Si\e'/S'

: . local context rule lobal context rule
M@ [5~ Tie) 1 5 V| Ta@ /5 Tu@) /5 Y)

So we can reduce into the parallel vectors and the context gives the name of the processor where the
expression is reduced.

Thus, we have a rule and its context to reduce global expressions and a rule to reduce local expressions
(in the parallel vectors).

Examples

We run the following expressions:

let a=ref(1l) in mkpar (fun j -> let b=ref(j) in b:=!b+!a;!b);;

let r=ref(3) in r:=!r+1;!r;;

69

)%

{{to 1}, {tr + 1}}

{{to 1}, {tr + 1}}

{{to 1}, {tr + 1}}

{{to + 1,6, < 0}, {t1 «+ 1}}
{{to + 1,6, < 0}, {1 «+ 1}}
{{EO « 1,4) — O},{el « 1}}
{{tp < 1,4, «+ 0},{¢; < 1}}
{{ty + 1,65 < 0},{¢1 + 1}}
{{to + 1,4, + 0}, {1 + 1}}
{{EO « 1,66 — 1},{61 « 1}}
{{EO « 1,4) — 1},{61 « 1}}

let a = ref(1) in mkpar(fun j — let b = ref(j) in b :=!b+!a;!b)
let a = £(;) in mkpar(fun j — let b = ref(j) in b :=!b+!a;!b)
mkpar(fun j — let b = ref(j) in b :=!b+1£(;);!b)

(let b =ref(0) in b :=10+!4;);!b , let b = ref(1) in b :=1b+14(;);!b)
(let b= 2" in b:=!0+;);!b , let b =ref(1) in b :=!b+!1£(;);!b)
(=51 let b= ref(l) in b :=!b+1£(;);b)

(0= 041 10", let b=ref(1) in b :=!b+14(;);!b)

(= 04+14y; 1, let b= ref(1) in b :=1b+1;);!b)

(¢ :=0+41;1", let b=ref(1) in b:=!b41¢;);)
(¢ =11, let b=ref(1) in b :=1b+1;;!b)
(1", let b=ref(1) in b :=10+1;);)
(1, let b=ref(1) in b:=!b+14(;);!b)

I e e

Y’

(1,2) / {{o + 1,8} < 1}, {41 « 1,4] < 2}}
For the second expression we have:

%

let r =ref(3) in r :=lr + 1;!r

/
= let r=/{g inr:=lr + Llr]/ {{fo < 3}{l1 < 3}}
= Ly =) + 151G / {{lo < 3}{t1 « 3}}
= Lu =3+ 11 / {{lo < 3}{t1 « 3}}
= Ly =4 | {{bo < 3H{t1 « 3}}
= [{{fo « 4}{t1 + 4}}
- 4 [{{lo < 4}{t1 < 4}}

Natural semantics

Like in the small steps semantics, we have to distinguished two types of reductions: one for the local
reductions (in each processors) and one for the global reductions (the network). Also, we have our stores
and our set of stores. We do not write these rules because they are to much rules and they are easy to guess.

7.3.2 Type system
A natural extension

To type the reference, we extend our type algebra with:

T u= ... like before
| T ref type reference

The free variables are defined with: F(7 ref) = F(7) and the substitution with (7 ref) = (o(7) ref).
We give the type schemes of our new operators and of the constant ():

TC(ref) = Va.a— aref
TC(Y) = Va.aref -«
TC(:=) = Va.[(aref*a)— unit/L(a)]

Thus the affectation only works for local values. We give the natural extensions for £ and for the
construction of the constraints:

L(T ref)
L(7)

7~ Cy

el Tre~ G

(CRef)

Problems

But this extension of our type system is not sufe. Take for example:

let a=ref(fun x -> x)
in r:=(fun x -> +(x,1)); (!'r) true;;

70

Much type systems give new rules to not have this problem and ensure safety. One of them, give a new rule
for the let binding expression ([Leroy, 2002| and [Leroy, 1992]):

Gen(7',E) if €; is not expansive
Ebe 7 J:{ ,en(T,) if e; is not expansiv

. olse E+{z:0}lFey:T

Erletz=ejiney: 7

where the non-expansive expressions are:

(€nes €ne)
let £ = eye In e,
| op(ene) where op is not ref

éne = T | c| op | funz —e
|
|

With this new inductive rule, our last expression is not well-typed because ref (fun z — z) is expansive
and (Ir)true is now not well-typed. We can adapt this method to our type system.

But, for a BSP parallel functional language (like mini-BSML), it is not sufficient because the side effects
are very dangerous for the safety of the language. Example:

let a=ref(0) in
let truc=mkpar(fun pid -> a:=pid; pid mod 2=0) in
if (at truc !'a) then 1 else 2;;

We run, this expression with our small steps semantics for two processors:

e/ O
— let a = £(;) in let truc = mkpar(fun pid — £ := pid; pid mod 2 = 0)
in if truc at(!{(;)) then E; else Ey / {{lo < 0},{lL < 0}}
= if (true, false) at(!£;)) then E; else E, / {{lo < 0}, {l; « 1}}

Now (!£(;)) do not have the them value on each processors (0 for 4 = 0 and 1 for ¢ = 1). With the first
representation, intuitivelly we have true / {ly < 0} in processor 0 and false / {l; < 1} in processor 1 and
we would have F; in first processor and F5 in the second processor. It is a side effects.

So we have a ifat different in each processors. But the ifat is a synchronous operator and the ifat must
be the same on each processors (see scheme of the operator).

Further work

The problem came from the (0geref,)-rule and of the affectation in the mkpar: a "global" allocation is
affected and is now different in all the store of the processor. So when we apply the (dgeref,)-rule, we have
a different value on each processor for the ifat.

A solution, could be to detect programs, by a syntactic analysis, which affect some values to the global
allocations. Thus, global reference would be the same in each processors. Thus, we always have the same
value on the memory for the global allocation and we do not have to decompose our semantics.

But, a simple syntactic analysis is not sure and sufficient. Take for example:

let a=ref O
in let truc=apply (mkpar (fun i -> fun x -> x:=i)) (mkpar (fun i -> a))
in 1if truc at !'a the El1 else E2;;

That is why, for insure safety, we want to adapt the types and effects discipline [Talpin and Jouvelot, 1994]
to our type system and thus eliminate the side effects.

71

e A N

an allocation (a local allocation) to a processor that do not has the adress for this allocation, there is no
reduce rule to apply and the program stop with an error (the famous segmentation fault) if it makes a ! on
this allocation (if read "out" of the memory). To not have this problem, we could in the type system detected
for the put inference rule, if the type of the send value is not a local allocation. If it is, the expression is not
well-typed. With this new inductive rule, we ensure that the ! always found the adress in the store. Another
solution is to communicate the value contained by the location and to create a new location for this value
(as in the Marshal module of Objective Caml).

I VA

72

Conclusion

In this technical report, we have described the design of a core language for BSML:

1.

4.
0.

The theoretical bases of BSML was the BSA-calculus and the BSA,-calculus. But these calculus were
not typed. They have two kinds of syntactic constructions not to have the nesting of parallel vectors.
For our language, these two kinds of constructions come down to indicate for each variable, if it is
local or not. We have conceived a polymorphic type system, a type inference algorithm (and proved
its correction and completeness) and proved its consistency with the BSA, syntactic constraints.

We have designed a weak call-by-value strategy. Our natural semantics evaluates more mini-BSML
constructions than the older ones: [Loulergue, 2001a] has goal to represent a parallel composition and
has neither couple nor fix point (because it was a no typed calculus); [Merlin et al., 2001] has presented
a monomorphic type system for a explicitly typed language. There was no couple but they designed a
BSP SECD abstract machine for this language.

. Our small steps semantics is new and close to the distributed evaluation ([Loulergue, 2001b]). The

type system has been proved correct for this semantics.
The extensions (nuples and sum types) make this version of mini-BSML the more expressive.

The small steps semantics for imperative treats and the problems of side effects are new in mini-BSML.

The implementation of the algorithm and the interaction with Objective-Caml for the operational se-
mantics has allowed to verify for some none-trivial examples, our type system and the inference algorithms.

After adding imperative features to our language, to insure safety, the types and effects discipline
[Talpin and Jouvelot, 1994] will then be necessary. We must implement those type systems and the al-
gorithms for those extensions. Other extensions will be considered: complete matching (in particular, the
matching of parallel vector expressions) and exception (we will study the adaptation of [Colard 1999] to
BSA,-calculus).

The ultimate goal of the project is the conception of the BSML language and to adapt it to the Grid
programmation (CARAML project). The resulting language will provide static analysis and profiling tools
to relate source programs with performance estimates, tools to help to prove programs correction, tools
to derivate programs, the derivation being driven by costs and provide safety and security for real-time
application. A last step will be a study of the problems of no availability of processors and code mobility.
An interaction with the join-calculus will be used [Gonthier, 2002].

73

Bibliography

[Ballereau et al., 2000] Ballereau, O., Loulergue, F., and Hains, G. (2000). High-level BSP Programming:
BSML and BSA. In Michaelson, G. and Trinder, P., editors, Trends in Functional Programming, pages
29-38. Intellect Books.

[Chailloux1995] E. Chailloux and C. Foisy. Caml-Flight alpha: Implantation et applications. In Queinnec
et al.

[Colard 1999] T Colard. A confluent A — calculus with a catch/throw mechanism. Journal of Functional
Programming 9:6(1999):625-647

[Foisy1995] C. Foisy and E. Chailloux. Caml Flight: a portable SPMD extension of ML for distributed mem-
ory multiprocessors. In A. W. Béhm and J. T. Feo, editors, Workshop on High Performance Functionnal
Computing, Denver, Colorado, April 1995. Lawrence Livermore National Laboratory, USA.

[Foisy1995] C. Foisy, J. Vachon, and G. Hains. DPML: de la sémantique & I'implantation. In P. Cointe,
C. Queinnec, and B. Serpette, editors, DPML: de la Sémantique a I’Implantation, volume 11 of Collection
Didactique, Noirmoutier, Février 1994. INRIA.

[Gerbessiotis and Valiant, 1994] Gerbessiotis, A. V. and Valiant, L. G. (1994). Direct bulk-synchronous
parallel algorithms. Journal of Parallel and Distributed Computing, 22:251-267. Long version of Gerbessi-
0tis1992.

|Gonthier, 2002] G. Gonthier.(2002). Note course.

[Hains and Foisy, 1993] Hains, G. and Foisy, C. (1993). The data-parallel categorical abstract machine. In
Bode, A., Reeve, M., and Wolf, G., editors, PARLE’93, Parallel Architectures and Languages FEurope,
number 694 in Lecture Notes in Computer Science, pages 56—67, Munich. Springer.

[J.M.D.Hill et al., 1997] J.M.D.Hill, W.F.McColl, D.C.Stefanescu, Goudreau, M. W., Lang, K., Rao, S. B,
T.Suel, T.Tsantilas, and Bisseling, R. (1997). BSPlib, the BSP programming library. Technical report,
BSP Worldwide. URL=http://www.bsp-worldwide.org/.

[Leroy, 2001] X. Leroy. (2001). The Objective Caml System 3.04. http://www.caml.org.
[Leroy, 2002] Leroy, X.(2002). Note course.

|[Leroy, 1992| X. Leroy. Typage polymorphe d’un langage Algorithmique Thése de Doctorat d’Université,
Université Paris VII. Juin 1992.

[Loulergue, 2002] F. Loulergue. Implementation of a Functional Bulk Synchronous Parallel Programming
Library.

[Loulergue, 2001a] F. Loulergue,(2001). Parallel Composition and Bulk Synchronous Parallel Functional
Programming.

[Loulergue, 2001b] F. Loulergue,(2001). Distributed Evaluation of Functional BSP Programs. Parallel Pro-
cessing Letters, (4):423-437.

Loulergue, 2000] F. Loulergue. Conception de langages fonctionnels pour la programmation massivement
g g gag g
paralléle. Thése de Doctorat d’Université, Université d’Orléans. janvier 2000

74

T T R > A L e A L e S

Science, page 355-3637 Springer, Octobre 2000.
[Loulergue, 2000] F. Loulergue. G. Hains. O. Ballereau. BSMLIib version 0.1 Reference Manual.

[Loulergue et al., 2000] Loulergue, F., Hains, G., and Foisy, C. (2000). A Calculus of Functional BSP Pro-
grams. Science of Computer Programming, 37(1-3):253-277.

[Loulergue, 1999a] F. Loulergue. Extension du BSA-calcul. In P. Weis, editor, JFLA’99 : Journées Franco-
phones des Langages Applicatifs, pages 93112, Morzine-Avoriaz, February 1999.

[Merlin et al., 2001] Merlin, A., Hains, G., and Loulergue, F. (2001). A SPMD Environment Machine for
Functional BSP Programs. In Proceedings of the Third Scottish Functional Programming Workshop.

[Milner, 1978] Milner, R. (1978). A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17(3):348-375.

[Talpin and Jouvelot, 1994] Talpin, J.-P. and Jouvelot, P. (1994). The type and effect discipline. Information
and Computation, 111(2):245-296.

[Valiant, 1990] Valiant, L. G. (1990). A bridging model for parallel computation. Communications of the
ACM, 33(8):103.

75

