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Abstract

This paper presents a new functional parallel language:
Minimally Synchronous Parallel ML (MSPML). The execu-
tion time can be estimated, dead-locks and indeterminism
are avoided. Programs are written as usual ML programs but
using a small set of additional functions. Provided functions
are used to access the parameters of the parallel machine
and to create and operate on a parallel data structure. It
follows the execution and cost model of the Message Passing
Machine model (MPM). It shares with Bulk Synchronous
Parallel ML its syntax and high-level semantics but it has a
minimally synchronous distributed semantics. Experiments
have been run on a cluster of PC using an implementation of
the Diffusion algorithmic skeleton.

Keywords: Asynchronous Parallelism, Functional Program-
ming, Deterministic Semantics, Cost Model.

1. Introduction

Bulk Synchronous Parallel (BSP) computing is a parallel
programming model introduced by Valiant [61, 57] to offer
a high degree of abstraction in the same way as PRAM [23]
models and yet allow portable and predictable performance
on a wide variety of architectures. Bulk synchronous paral-
lelism (and the Coarse-Grained Multicomputer model, CGM,
which can be seen as a special case of the BSP model) has
been used for a large variety of applications [59]: scientific
computing [9, 32], genetic algorithms [12] and genetic pro-
gramming [19], neural networks [54], parallel databases [4],
constraint solvers [28], etc.. It is to notice that “A comparison
of the proceedings of the eminent conference in the field, the
ACM Symposium on Parallel Algorithms and Architectures,
between the late eighties and the time from the mid nineties
to today reveals a startling change in research focus. Today,
the majority of research in parallel algorithms is within the
coarse-grained, BSP style, domain” [17].

The main advantages of the BSP model are:

• deadlocks are avoided, indeterminism can be either
avoided or restricted to very specific cases. For exam-
ple in the BSPlib [31], indeterminism can only occur
when using the direct remote memory access operation
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put: two processes can write different values in the same
memory address of a third process

• portability and performance predictability [36].

Nevertheless the majority of parallel programs written are
not BSP programs. There are two main arguments against
BSP. First the global synchronization barrier is claimed to be
expensive. Second the BSP model is claimed to be too re-
strictive. All parallel algorithms are not fitted to its structured
parallelism.

Divide-and-conquer parallel algorithms are a class of al-
gorithms which seem to be difficult to write using the BSP
model and several models derived from the BSP model which
allow subset synchronization have been proposed [16, 56].
Another approach is to offer a two tiered architecture [45].
We showed that divide-and-conquer algorithms can be writ-
ten using extensions [41, 40] of our Bulk Synchronous Par-
allel ML language (BSML) [44, 39]. The execution of such
programs even follow the pure BSP model. Anyway the BSP
model and these extensions are efficient enough only under
some conditions dependent on the BSP parameters and the
problem.

Thus we decided to investigate semantics of a new func-
tional parallel language, without synchronization barriers,
called Minimally Synchronous Parallel ML (MSPML). As
a first phase we aimed at having (almost) the same source
language and high level semantics (programming view) than
BSML (in particular to be able to use with MSPML work
done on type system [25] and proof of parallel BSML pro-
grams [24]), but with a different (and more efficient for un-
balanced programs) low-level semantics and implementation.

With this new language we would like to:

• have a functional semantics and a deadlock free lan-
guage but a simple cost model is no more mandatory ;

• compare the efficiencies of BSML and MSPML as the
comparisons of BSP and other parallel paradigms were
done with classical imperative languages (C, Fortran) ;

• investigate the expressiveness of MSPML for non BSP-
like algorithms.

MSPML will also be our framework to investigate exten-
sions which are not suitable for BSML, such as the nesting
of parallel values or which are not intuitive enough in BSML,
such as spatial parallel composition.
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MSPML and BSML have been mixed to obtain a func-
tional language [26] for departmental meta-computing. Sev-
eral BSML programs are run on several parallel machines and
are coordinated by a MSPML-like program.

This paper is organized as follows. We first present the
cost and execution model used for flat (without parallel com-
position) MSPML. Then we describe informally the main
constructs of MSPML, first from the application program-
mer’s point of view (section 3) and then from the implemen-
tor’s point of view (section 4). Formal semantics of MSPML
are given in section 5. Section 6 presents some experiments
done on a cluster of PC with a small application which uses
the Diffusion algorithmic skeleton. Section 7 is devoted to
related work. We end with conclusions and future work (sec-
tion 8).

2. Cost and Execution Model

The Bulk Synchronous Parallel model [61, 46, 57, 8] rep-
resents a parallel computation on a parallel machine with p
processors, a communication network and synchronization
unit, as a sequence of super-steps (Figure 1) consisting of
an alternate of computation phases (p asynchronous com-
putations) and communications phases (data exchanges be-
tween processors) with global synchronization. The BSP cost
model estimates execution times by a simple formula. A
computation super-step takes as long as its longest sequen-
tial process, a global synchronization takes a fixed, system-
dependent time L and a communication super-step is com-
pleted in time proportional to the arity h of the data exchange:
the maximal number of words sent or received by a proces-
sor during that super-step. The system-dependent constant g,
measured in time/word, is multiplied by h to obtain the es-
timated communication time. It is useful to measure times
in multiples of a Flop so as to normalize g and L w.r.t. the
sequential speed of processor nodes.

synchronization barrier
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Figure 1. A BSP Super-step

2.1 BSPWB: BSP Without Barrier

BSPWB, for BSP Without Barrier [53], is a model directly
inspired by the BSP model. It proposes to replace the notion
of super-step by the notion of m-step defined as: at each m-
step, each process performs a sequential computation phase
then a communication phase. During this communication
phase the processes exchange the data they need for the next
m-step. The parallel machine in this model is characterized
by three parameters (expressed as multiples of the processors
speed):

• the number of processes p,

• the latency L of the network,

• the time g which is taken to one word to be exchanged
between two processes.

The time needed for a process i to execute a m-step s, is
ts,i bounded by Ts the time needed for the execution of the
m-step s by the parallel machine. Ts is defined inductively
by:

{

T1 = max{w1,i}+ max{g × h1,i + L}

Ts = Ts−1 + max{ws,i}+ max{g × hs,i + L}

where i ∈ {0, . . . , p− 1} and s ∈ {2, . . . , R} where R is the
number of m-steps of the program and ws,i and hs,i respec-
tively denote the local computation time at process i during
m-step s and max{h+

s,i, h
−
s,i} where h+

s,i (resp. h−
s,i) is the

number of words sent (resp. received) by process i during m-
step s. This model could be applied but it will be not accurate
enough because the bounds are too coarse.

2.2 MPM: Message Passing Model

A better bound Φs,i is given by the Message Passing Ma-
chine (MPM) model [52]. The parameters of the Message
Passing Machine are the same than those of the BSPWB
model. The model uses the set Ωs,i for a process i and a
m-step (Figure 2) s defined as:

Ωs,i =

{
j/process j sends a message
to process i at m-step s

}
⋃

{i}

Processes included in Ωs,i are called “incoming partners”
of process i at m-step s. Φs,i is inductively defined as:
{

Φ1,i = max{w1,j/j ∈ Ω1,i}+ (g × h1,i + L)

Φs,i = max{Φs−1,j+ws−1,j |j ∈ Ωs,i}+(g×hs,i+L)

where hs,i = max{h+
s,i, h

−
s,i} for i ∈ {0, . . . , p− 1} and s ∈

{2, . . . , R}. Execution time for a program is thus bounded
by: Ψ = max{ΦR,j/j ∈ {0, 1, . . . , p− 1}}.

The MPM model takes into account that a process only
synchronizes with each of its incoming partners and is there-
fore more accurate. The preliminary experiments (section 6)
done with our implementation showed that the model applies
well to MSPML.
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Figure 2. The MPM m-step

3. Minimally Synchronous Parallel ML

There is no implementation of a full Minimally Syn-
chronous Parallel ML (MSPML) language but rather a partial
implementation as a library for the functional programming
language Objective Caml [51, 14, 38].

A MSPML program can be seen as an usual sequential
program which manipulates a parallel data structure (called
parallel vector). This is very different from SPMD program-
ming (Single Program Multiple Data) where the program-
mer must use a sequential language and a communication
library (like MPI [58]). A parallel program is then the multi-
ple copies of a sequential program, which exchange messages
using the communication library. In this case, messages and
processes are explicit, but programs may be non deterministic
or may contain deadlocks.

Another drawback of SPMD programming is the use of
a variable containing the process name (usually called “pid”
for Process Identifier) which is bound outside the source pro-
gram. A SPMD program is written using this variable. When
it is executed, if the parallel machine contains p processes, p
copies of the program are executed on each process with the
pid variable bound to the number of the process on which it
is run. Thus parts of the program that are specific to each
process are those which depend on the pid variable. On the
contrary, parts of the program which make global decision
about the algorithms are those which do not depend on the
pid variable. This dynamic and undecidable property is given
the role of defining the most elementary aspect of a parallel
program, namely, its local vs global parts.

3.1 The Core Library

The so-called MSPML library is based on the elements
given in figure 3.

It gives access to the parameters of the underling archi-
tecture which is considered as a Message Passing Machine
(MPM). In particular, it offers the function p such that the
value of p() is p, the static number of processes of the parallel
machine. The value of this variable does not change during
execution. There is also an abstract polymorphic type α par
which represents the type of p-wide parallel vectors of ob-
jects of type α , one per process. The nesting of par types is
prohibited. This can be ensured by a type system [25].

The parallel constructs of MSPML operate on parallel vec-
tors. Those parallel vectors are created by mkpar, so that
(mkpar f) stores (f i) on process i for i between 0 and (p−1).
We usually write fun pid → e for f to show that the expres-
sion e may be different on each process. This expression
e is said to be local: it is inside a mkpar function and its
value depends on the location (process) it is. The expression
(mkpar f) is a parallel object and it is said to be global. For
example the expression mkpar(fun pid → pid) will be eval-
uated to the parallel vector 〈 0 , . . . , p− 1 〉.

In the MPM model, an algorithm is expressed as a com-
bination of asynchronous local computations and phases
of communication. Asynchronous phases are programmed
with mkpar and with apply. It is such as the expression
apply (mkpar f) (mkpar e) stores (f i) (e i) on process i.

The communication phases are expressed by get and
mget. The semantics of get is given by:

get 〈v0, . . . , vp−1〉 〈i0, . . . , ip−1〉
= 〈 v(i0%p) , . . . , v(i(p−1)%p) 〉

where % is modulo.
The mget function is a generalization which allows to

request data from several processes during the same m-
step and to deliver different messages to different processes.
In the type of mget in Figure 3, α option is defined by
type α option = None | Some of α . Its semantics is:

mget 〈f0, . . . , fp−1〉 〈b0, . . . , bp−1〉 = 〈g0, . . . , gp−1〉
where gi = fun j → if (bi j) then Some (fj i) else None

The full language would also contain a synchronous con-
ditional:

if e at n then e1 else e2

It evaluates to v1 (the value obtained by evaluating e1) or
v2 (the value obtained by evaluating e2) depending on the
value of the parallel vector of booleans e at process given by
the integer n. But Objective Caml is an eager language and
this synchronous conditional operation can not be defined as
a function. That is why the core MSPML library contains the
function at to be used in the constructions:

• if (at e n) then . . . else . . .

• match (at e n) with . . .

at expresses communication phase. Global conditional is
necessary to express algorithms like:

Repeat Parallel Iteration Until Max of local errors < ε

Without it, the global control cannot take into account data
computed locally.

3.2 Examples

We will now present some examples which are part of the
MSPML standard library and which are called in the Diffu-
sion algorithmic skeleton program used for experiments in
section 6.
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p: unit → int apply: ( α → β ) par → α par → β par
g: unit → float get: α par → int par → α par
l: unit → float mget: (int → α ) par → (int → bool) par → (int → α option) par
mkpar: (int → α ) → α par at: α par → int → α

Figure 3. MSPML Core Library

3.2.1 Very Often Used Functions

Some useful functions can be defined using only the prim-
itives. For example the function replicate creates a parallel
vector which contains the same value everywhere. The prim-
itive apply can be used only for a parallel vector of functions
which take only one argument. To deal with functions which
take two arguments we need to define the apply2 function.

let replicate x = mkpar (fun pid→ x)
let apply2 vf v1 v2 = apply (apply vf v1) v2

It is also very common to apply the same sequential func-
tion at each process. It can be done using the parfun func-
tions: they differ only in the number of arguments of the
function to apply:

let parfun f v = apply (replicate f) v
let parfun2 f v1 v2 = apply (parfun f v1) v2
let parfun3 f v1 v2 v3 = apply (parfun2 f v1 v2) v3

(applyat n f1 f2 v) applies function f1 at process n and
function f2 at other processes:

let applyat n f1 f2 v =
apply (mkpar(fun i→ if i=n then f1 else f2)) v

parpair of pairpar transforms a parallel vector of pairs in
a pair of parallel vectors:

let fst (x,y) = x and snd (x,y) = y
let parpair of pairpar vv = (parfun fst vv,parfun snd vv)

3.2.2 Communication Functions

The semantics of the total exchange function is given by:

totex 〈v0, . . . , vp−1〉 = 〈 f , . . . , f , . . . , f 〉

where ∀i.(0 ≤ i < p) ⇒ (f i) = vi. The code is as fol-
lows where noSome just removes the Some constructor and
compose is usual function composition:

(∗ val totex: α par → (int → α ) par ∗)
let totex vv = parfun (compose noSome)

(mget (parfun (fun v i→ v) vv) (replicate(fun i→ true)))

Its parallel cost is (p− 1)× s× g + L, where s denotes the
size of the biggest value v held at some process n in words.

From it we can obtain a version which returns a parallel
vector of lists:

(∗ val totex list: α par → α list par ∗)
let totex list v =

parfun2 List.map (totex v) (replicate(procs()))

where






(∗val List.map: ( α → β )→ α list→ β list ∗)
List.map f [v0; . . . ; vn] = [(f v0); . . . ; (f vn)]
procs() = [0;. . . ; p()-1].

The semantics of the broadcast is:

bcast 〈v0, . . . , vp−1〉 r = 〈 vr%p , . . . , vr%p 〉

The direct broadcast function which realizes the broadcast
can be written as:

(∗ bcast direct: int → α par → α par ∗)
let bcast direct root vv =

get vv (replicate root)

Its parallel cost is (p− 1)× s× g + L, where s denotes the
size of the value vn held at process n in words.

The standard library of MSPML contains a collection of
such functions which ease the writing of programs. In this
respect, it is quite similar to write MSPML programs and
to write programs using data-parallel skeletons. But with
MSPML it is possible to write one’s own skeletons as higher
order functions if the standard library does not provide the
ones needed.

Some of the standard library functions are recursive func-
tions. For example, there exists a broadcast function which is
evaluated in log p m-steps instead of 1 mstep:

let bcast logp root vv =
let from n =

mkpar(fun i→ let j=natmod (i+(p())−root) (p()) in
if (n/2<=j)&&(j<n) then i−(n/2) else i) in

let rec aux n vv =
if n<1 then vv else get (aux (n/2) vv) (from n)

in aux (p()) vv

3.3 Comparison with BSML

Bulk Synchronous Parallel ML has the same operations
than MSPML, but with one difference. The communications
(followed immediately by a synchronization barrier) are done
using the put primitive. It has the following type:

put:(int→ α option) par → (int→ α option) par

Consider the expression:

put (mkpar (fun i→ fsi)) (1)

To send a value v from process j to process i, the function
fsj at process j must be such as (fsj i) evaluates to (Some v).
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To send no value from process j to process i, (fsj i) must
evaluate to None.

Expression (1) evaluates to a parallel vector containing a
function fdi of delivered messages on every process. At pro-
cess i, (fdi j) evaluates to None if process j sent no message
to process i or evaluates to (Some v) if process j sent the
value v to the process i.

This primitive can be used to program get and mget func-
tions. Nevertheless these functions would be far less efficient
than the primitives of MSPML: they need two BSP super-
steps and thus two synchronization barriers.

Thus for the moment the main difference between BSML
programming and MSPML programming is that get-style
communications are used in MSPML whether put-style ones
are used in BSML. Specific MSPML programming style
needs further investigation.

For example the broadcast of the previous section could be
written in BSML:

let bcast direct root vv =
let mkmsg = mkpar(fun i v dst→ if i=root
then Some v else None) in parfun noSome

(apply (put (apply mkmsg vv)) (replicate root))

A BSML and MSPML programs which use only the
bcast direct function for communication would be identical,
but their costs will be different. It is thus rather easy to rewrite
BSML programs to obtain MSPML programs. The only dif-
ficulty is when the BSML program use directly the put prim-
itive, instead of functions from the standard library: some
more complicated rewriting is needed.

It is not yet possible to compare directly execution times
since BSML relies on MPI and MSPML on TCP/IP commu-
nications. But both implementations are currently ported us-
ing both MPI and TCP/IP to allow thus comparisons. We will
send rewrite in MSPML some of the small applications writ-
ten in BSML: a prototype implementation of the BSP Cat-
egorical Abstract Machine [27], a set of functions for tree
manipulation [30], as well as the BSML standard library.

4. Overview of the MSPML Implementation

MSPML is implemented as a library for Objective Caml.
It is divided in two main parts: the core library which con-
tains the primitives only, and the standard library imple-
mented using the core library. The current core uses only
Objective Caml libraries. The communications are done us-
ing the TCP/IP protocol available through the Unix module
of Objective Caml and the values are serialized using the
Marshal module. The current MSPML (0.2) implementa-
tion is distributed under a LGPL license and is available at
http://mspml.free.fr.

The primitives described in section 3.1 are contained in
the Mspml module. They are of course not directly imple-
mented using the Unix and Marshal modules. The Mspml
module uses our Tcpip module which offers a very small set
of functions similar to MPI’s ones (Figure 4) implemented

using the Unix module of Objective Caml. The Mspml mod-
ule is thus written in SPMD style. The Tcpip module is not
available for the application programmer who can only use
the Mspml module which offer only the functions presented
in section 3.1. Using the Mspml module, the programmer
cannot write SPMD-like programs and hence avoids the prob-
lems which can occur with this programming paradigm.

4.1 The Tcpip Module

p and pid respectively gives the total number of processes
and the process identifier. initialize and finalize are similar
to MPI Init and MPI Finalize. At the beginning of a MSPML
execution there are two threads per process: one which cor-
responds to the local reduction of the distributed semantics
(Section 5), used for the “main” program, and one which is
created by initialize and which is in charge of the communi-
cations. This second one answered to requests made by the
other processes.

MSPML follows the MPM model (section 2). Thus the
execution is a sequence of computation phases and communi-
cations phases. Each couple of computation-communication
phase constitutes a m-step. During the execution of a
MSPML program, at each process i the system has a variable
mstepi containing the number of the current m-step.

At each m-step each process stores a value in what is called
its communication environment. A communication environ-
ment can be seen as an association list which relates m-step
numbers with values. The storage is done using the store
function. Another process can obtain this value using the
request function. The argument of the request function is
the process identifier of the destination of the request.

The size of the communication environments is of course
bounded. This size is a parameter given by the user (using
the mspmlrun script). The current implementation enforces a
global synchronization in order to allow to empty the commu-
nication environments when they are full. The reset mstep
function increments the mstepi variable and checks if the
maximal value is reached. If it is the case a global synchro-
nization occurs, the communication environments are emp-
tied and mstepi is reset to its initial value. Of course un-
less a very large amount of data is exchanged at each m-step
the maximal value could be rather large which make the syn-
chronization barriers rare. The next version of the library will
implement a new management of the communication envi-
ronments which avoids synchronization barriers [42].

4.2 The Mspml Module

The implementation of the core MSPML library follows
the SPMD programming style. Thus for one process the type
of parallel vectors is defined by: type α par = α . Using
such an abstract type allows to avoid the problem of data-
parallel SPMD programming which does not discriminate be-
tween variables which are dependent on the process identifier
and those which are not.
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p : unit → int
pid : unit → int
finalize : unit → unit
initialize : unit → unit
store mode = Get |Mget
store : α → store mode → unit
request : int → α
reset mstep : unit → unit

Figure 4. The Tcpip Module

Then it is easy to implement the primitives which does not
need communications:

let mkpar f = f (pid())
let apply f v = f v

The implementation of the get primitive could be roughly
described as follows. Each time the expression get vv vi is
evaluated, at a given process i:

1. mstepi is increased by one;

2. the value this process holds in parallel vector vv is stored
together with the value of mstepi in the communication
environment;

3. the value j this process holds in parallel vector vi is the
process number from which the process i wants to re-
ceive a value. Thus process i sends a request to process
j: it asks for the value at m-step mstepi. When process
j receives the request (threads are dedicated to handle
requests, so the work of process j is not interrupted by
the request), there are two cases:

• mstepj ≥ mstepi: it means that process j has
already reached the same m-step than process i.
Thus process j looks in its communication en-
vironment for the value associated with m-step
mstepi and sends it to process i;

• mstepj < mstepi: nothing can be done until
process j reaches the same m-step than process i.

If i = j the step 2 is of course not performed.
The implementation of mget follows the same principles

but it uses threads. At a given process i the function of val-
ues (first argument of mget) is stored in the communication
environment. Then the function from integers to booleans
(second argument) is applied to integers between 0 and p−1.
Each time the result is true, a new thread is created to re-
quest a value from the given process. When all requests are
answered, the result function is created. When a process i re-
ceives a request from a process j for a value stored by a mget,
if the m-step of i is equal or greater than the one of j then the
value stored in the communication environment of i is dese-
rialized and applied to j to yield to a value v. This value is
then serialized and sent to j.

4.3 Nested Parallelism Issues

All this can work only if all processes call the same num-
ber of times and in the same order get. Incorrect programs
could be written when nested parallelism is used:

let this = mkpar(fun i→ i) in
mkpar(fun i→ if i<(p()/2) then this else get this this)

It breaks the model because one part of the parallel machine
will evaluate an expression with communications and another
half will evaluate an expression without communication: the
numbering of steps will be no more consistent between pro-
cesses. This is why it is currently forbidden. A type system
can enforce this restriction [25] but currently the programmer
is responsible to avoid such nesting. They are easy to detect
since the type of the previous expression is int par par.

It is also possible to use the at functions in other situations
than the ones given in section 3.1. But one should avoid the
(hidden) nesting of parallel vectors. For example the follow-
ing expression:

let this = mkpar(fun i→ i)
and com () = get this this in
mkpar(fun i→ if i<(p()/2) then at (com()) 0 else 1)

is not a correct program (you can write it and compile it with
the MSPML library but the execution will fail and the type-
checking by our type system [25] fails) because the parallel
expression com() would be evaluated inside a mkpar. As
previously it breaks the model, for the same reason: the num-
bering of steps will not be consistent between processes. For
a detailed discussion about these problems (for BSML but it
applies also to MSPML), see [25].

It is usually not difficult to obtain a correct program. For
example the following program can be safely executed be-
cause e is already evaluated when it is used inside the mkpar:

let this = mkpar(fun i→ i)
and com () = get this this in
let e = at (com()) 0 in
mkpar(fun i→ if i<(p()/2) then e else 1)

5. Formal Semantics

This section is devoted to the formal semantics of
MSPML. We first give a high level semantics for MSPML.
It is similar to the high level semantics of BSML (but the
get operator is here a primitive whereas it can be defined in
BSML using the put primitive). Then we give the distributed
minimally synchronous semantics (which is close to the im-
plementation) of MSPML. To simplify the presentation we
will only consider get and ifat communications.

5.1 High Level Semantics

5.1.1 Syntax

Reasoning on the complete definition of a functional and
parallel language such as MSPML, would have been complex
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and tedious. In order to simplify the presentation and to ease
the formal reasoning, this section introduces a core language.
It is an attempt to trade between integrating the principal fea-
tures of a functional MPM language and being simple. The
syntax of the core MSPML is given by the grammar given in
figure 5.

In this grammar, x ranges over a countable set of identi-
fiers. The form (e′1 e′2) stands for the application of a func-
tion or an operator e′1 to an argument e′2. In the following, we
wrote x:τ to say that this identifier could be global (x:G, i.e.,
outside a parallel vector) or local (x:L, i.e., inside a parallel
vector), i.e, τ = L | G. Term fun x :τ → e′ is the func-
tional abstraction, the function whose parameter is x (local or
global) and result is given by the value of e′. Constants c are
integers, the booleans and the MPM parameters, i.e., p, g, l.
The set of operators op contains arithmetic operators and fix-
point fix, used to defined natural iteration functions and have
more expressiveness. mkpar, apply, get and ifat are the
parallel operators presented in the previous section. fst and
snd are pair operators.

There is one semantics per value of p, the number of pro-
cessors of the parallel machine (constant during execution).
In the following ∀i means ∀i ∈ {0, 1, . . . , p−1}. The previ-
ous grammar is extended by enumerated parallel vectors:

e ::= . . . | 〈e, e, . . . , e〉 (parallel vector)

The programmer does not use this new syntax, but the syntax
of figure 5, because enumerated parallel vectors are created
during evaluation.

Before presenting the dynamic semantics of the language,
i.e., how the expressions of MSPML are computed to values,
we present the values themselves. Those values are defined
by the following grammar:

v ::= c (constants)
| op (operators)
| fun x:L → e (local functional value)
| fun x:G → e (global functional value)
| (v, v) (pairs of values)
| 〈v, v, . . . , v〉 (enumerated parallel vector)

5.1.2 Static analysis

In these syntaxes we do separate local and global identi-
fiers with the L and G annotations, contrasting with the BSλ-
calculus where the syntax separates local, global identifiers
and expressions. To obtain the same distinction for MSPML
expressions we introduce in figure 6 and figure 7 a type sys-
tem which types only well-formed expressions, i.e., a global
expressions will never be inside a parallel vector after evalu-
ation.

This is needed to avoid the nesting of parallel vectors
which could break the m-step mechanism as explained in sec-
tion 4.3. The system used here would not be very convenient
in practice since the programmer should define several times

almost the same function. For example there are several iden-
tity functions depending on the sort of the input:

{

let idL = fun x:L → x

let idG = fun x:G → x

But in practice we rely on the polymorphic type system
described in [25] to avoid nesting of parallel values without
annotated identifiers, which allow for example to write only
one identity function usable on local and global expressions.
Nevertheless this polymorphic type system is rather complex
and is outside the scope of the present article.

The rules of figures 6 and 7 contains judgments of the form
E ` e : τ which means “in the typing environment E, the
expression e has type τ”. The environment E simply gives
the types of the free variables in e. {x : τ} means that the
variable x has type τ in this environment. In the following
we write e : τ for ∅ ` e : τ .

To avoid hidden nesting, it is not possible to obtain a local
value starting from a global value. In the rules we use the
following order on the two kind of types:

L < L L < G G < G

So for example, rule (Fun) enforces the type of the result
of the function τ2 to be greater than the type τ1 of the input:
thus it is impossible to have a global argument (type G) with
a local result (type L).

In the following, we note e1[x ← e2] the substitution of
the free occurrences of x in e1 by e2.

5.1.3 Evaluation rules

First come the rules for the constants, operators and func-
tions:

c . c op . op (fun x:τ → e) . (fun x:τ → e)

where τ is L or G. Then rules for application, binding and
pairs:

e1 . (fun x:τ → e) e2 . v2 e[x← v2] . v e2 : τ

(e1 e2) . v

e1 . v1 e2[x← v1] . v

let x:τ = e1 in e2 . v

e1 . v1 e2 . v2

(e1, e2) . (v1, v2)

Rules for conditional, projection, arithmetic operators and
fix-point are also rules which can be found in the semantics
of sequential functional programming languages:

e1 . + e2 . (n1, n2) n = n1 + n2

(e1 e2) . n

e1 . fix e2 . (fun x:τ → e3) e3[x← fix(e2)] . v e2 : τ

(e1 e2) . v
e1 . fix e2 . op

(e1 e2) . op
e1 . true e2 . v

if e1 then e2 else e3 . v

e1 . false e3 . v

if e1 then e2 else e3 . v

e . (v1, v2)

fst e . v1

e . (v1, v2)

snd e . v2
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e′ ::= x (variables) | c (constants)
| fun x:L → e′ (local abstraction) | fun x:G → e′ (global abstraction)
| let x:L = e′ in e′ (local binding) | let x:G = e′ in e′ (global binding)
| op (operators) | (e′ e′) (application)
| (e′, e′) (pairs) | if e′ then e′ else e′ (conditional)
| fst e′ (first of a pair) | snd e′ (second of a pair)
| mkpar e′ (parallel vector) | apply e′ e′ (parallel application)
| get e′ e′ (communication) | if e′ at e′ then e′ else e′ (global conditional)

Figure 5. Syntax of the core language

E ` x : E(x)
(V ar)

E ` c : L
(Const)

E ` op : L
(Op)

E ` e : τ

E ` (fix e) : τ
(Fix)

E + {x : τ1} ` e : τ2 if τ1 < τ2

E ` (fun x:τ1 → e) : τ2
(Fun)

E ` e1 : τ1 E ` e2 : τ2 if τ2 < τ1

E ` (e1 e2) : τ1
(App)

E ` e1 : τ2 E + {x : τ1} ` e2 : τ3 if τ1 = τ2 and τ2 < τ3

E ` let x:τ1 = e1 in e2 : τ3
(Let)

E ` e1 : τ1 E ` e2 : τ2 with τ3 = τ2 if τ1 < τ2 else τ3 = τ2

E ` (e1, e2) : τ3
(Pair)

E ` e1 : τ1 E ` e2 : τ2 if τ2 < τ1

E ` fst (e1, e2) : τ1
(Fst)

E ` e1 : τ1 E ` e2 : τ2 if τ1 < τ2

E ` snd (e1, e2) : τ2
(Snd)

E ` e1 : L E ` e2 : τ2 E ` e3 : τ3 if τ2 = τ3

E ` if e1 then e2 else e3 : τ2
(If)

Figure 6. Type system for the functional part

E ` e : L

E `mkpar e : G
(V ector)

E ` e1 : G E ` e2 : G where Par op = apply or get

E ` Par op e1 e2 : G
(Par)

E ` e1 : G E ` e2 : L E ` e3 : G E ` e4 : G

E ` if e1 at e2 then e3 else e4 : G
(IfAt)

∀i(E ` ei : L)

E ` 〈e0, . . . , ep−1〉 : G
(EV ector)

Figure 7. Type system for the parallel operators
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The unusual rules are for the parallel operators (Fig. 8).
They are simply the formalization of the informal description
given in section 3.

We have the following results for this semantics.

Proposition 1 (Safety of the type system) Let e be a
MSPML expression and E a typing environment. If E ` e : τ
and e . v then E ` v : τ

Proposition 2 (Confluence of the semantics) Let e be a
closed well-formed MSPML expression. If e . v1 and e . v2

then v1 = v2.

The proofs are done by induction on terms. The full text
is given in [43].

5.2 Distributed semantics

The high-level semantics does not give the steps of the
computation but only the result. Thus all parallel operators
seem to be synchronous in this semantics. To show how
desynchronizing is handled in MSPML, a distributed seman-
tics, which gives the steps of a reduction towards a value, is
needed.

Distributed evaluation→ can be defined in two steps:

1. local reduction (performed by one process i) ⇀i

2. global reduction ⇀ of distributed terms which allows the
evaluation of communication requests (for get and ifat).

5.2.1 Syntax

For the programmer, the syntax is almost the same as the
syntax of the previous section, but it is to notice that each pro-
cess will hold the same program (or that the program for the
parallel machine is built with p copies of the same program)
whereas in the previous section it was a program for the whole
parallel machine. This syntax and semantics is thus closer to
the implementor’s view. As in the previous section we need
to define new terms which may be created during evaluation:

ed ::= x | c | op | (ed ed) | (ed, ed)
| fun x:L → ed | fun x:G → ed

| let x:L = ed in ed | let x:G = ed in ed

| fst ed | snd ed | if ed then ed else ed

| mkpar ed | apply ed ed | get ed ed

| if ed at ed then ed else ed

| request ed ed |
−→ed

The syntax is almost the same with two differences: a new
request operation is used and the enumerated parallel vec-
tor is replaced by −→ed which is simply the projection on one
process of an enumerated parallel vector, ie the value held by
this process in this parallel vector.

The type system could be slightly modified to be applica-
ble to the ed terms: request is typed like get and −→ed like
mkpar. We omit this type system.

5.2.2 Rules

The distributed semantics follows the SPMD paradigm.
For example at process i the expression mkpar f will be re-
duced to f i. request is used to allow the evaluation of the get
operation without having a global synchronization. At each
step of communication (a call to get or ifat), called a m-step,
each process stores the number of the m-step (each process
performs the same number of m-steps thus this numbering
can be done locally) and the value it holds: for get this value
is the first argument of get and also for ifat. Those pairs are
stored into a communication environment (one per process)
EC . Those environments can be thought as associative lists.
Those environments evolved asynchronously during execu-
tion and to know at which m-step is a process, we will use the
mstep function defined by:

{
mstep([]) = 0
mstep((n, vd) :: EC) = n.

Now when a process i evaluates get v j, it adds the
pair (mstep(EC) + 1 , v) to the communication envi-
ronment EC and then it asks the value held by the com-
munication environment of process j at the current m-step
(n = mstep(EC) + 1). This asking is formally written:
request n j. The local reduction can create request expres-
sions but it cannot make them disappear: this can be done
only at the global level. The values for local reduction are:

vd ::= c | op | (vd, vd) |
−→vd

| fun x:L → ed | fun x:G → ed

request expressions are not values.
Local reduction is a relation between pairs of expressions

ed and communication environments. First we begin with
axioms for head reduction (ed, EC)

ε
⇀i (e′d, E

′
C). It can be

read as “Expression ed in communication environment EC is
reduced to expression e′d in environment E ′C , at process i”.
Figure 9 presents the head reduction for the functional part of
the language and Figure 10 for the parallel one.

Those rules cannot be applied in any context. To have a
weak (which means that no evaluation is allowed under an
abstraction) call-by-value strategy, the following contexts are
needed:

Γ ::= • | Γ ed | vd Γ | (Γ, ed) | (vd, Γ) |
−→
Γ

| fst Γ | snd Γ | let x:τ = Γ in ed

| if Γ then ed else ed | mkpar Γ
| apply Γ ed | apply vd Γ
| get Γ ed | get vd Γ
| if Γ at ed then ed else ed

| if vd at Γ then ed else ed

• is a “hole” which may be filled by any distributed expres-
sion. These contexts are used together with the context rule:

(ed, EC)
ε

⇀i (e′d, E
′
C)

(Γ[ed], EC) ⇀i (Γ[e′d], E
′
C)
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e1 . 〈v′1, v
′
2, . . . , v

′
p−1〉 e2 . 〈v′′0 , v′′1 , . . . , v′′p−1〉 ∀i(v

′
i v′′i ) . vi

apply e1 e2 . 〈v0, v1, . . . , vp−1〉

e1 . v ∀i (v i) . vi

mkpar e1 . 〈v0, . . . , vp−1〉

e1 . 〈v0, v1, . . . , vp−1〉 e2 . 〈i0, i1, . . . , ip−1〉

get e1 e2 . 〈vi0%p, . . . , vip−1%p〉

e1 . 〈. . . ,

n
︷ ︸︸ ︷

true, . . .〉 e2 . n e3 . v3

if e1 at e2 then e3 else e4 . v3

e1 . 〈. . . ,

n
︷ ︸︸ ︷

false, . . .〉 e2 . n e4 . v4

if e1 at e2 then e3 else e4 . v4

Figure 8. Rules for parallel operators

((fun x:τ → ed) vd, EC)
ε

⇀i (ed[x← vd], EC) with vd : τ (βfun)

((let x:τ = vd in ed), EC)
ε

⇀i (ed[x← vd], EC) (βlet)

(+ (n1, n2), EC)
ε

⇀i (n, EC) with n = n1 + n2 (δ+)

fst (vd1 , vd2 , EC)
ε

⇀i (vd1 , EC) (δfst)

snd (vd1 , vd2 , EC)
ε

⇀i (vd2 , EC) (δsnd)

(fix (fun x:τ → ed), EC)
ε

⇀i (ed[x← fix(fun x:τ → ed)], EC) with ed : τ (δfix)

(fix (op), EC)
ε

⇀i (op, EC) (δfixop)

(if true then e1 else e2), EC)
ε

⇀i (e1, EC) (δift)

(if false then e1 else e2), EC)
ε

⇀i (e2, EC) (δiff )

Figure 9. Functional local reduction

(mkpar vd, EC)
ε

⇀i (
−−−→
(vd i), EC) (δmkpar)

(apply −→vd1

−→vd2 , EC)
ε

⇀i (
−−−−−→
(vd1 vd2), EC) (δapply)

(get −→vd
−→
j , EC)

ε
⇀i (

−−−−−−−−−−−−−−−−−−−−−→
request (mstep(EC) + 1) j, (δdst

get)
(mstep(EC) + 1, vd) :: EC) if j 6= i

(get −→vd
−→
i , EC)

ε
⇀i (−→vd, (mstep(EC) + 1, vd) :: EC) (δloc

get)

(if
−→
b at n then v1 else v2, EC)

ε
⇀i (if (request (mstep(EC) + 1) n) (δdst

ifat)

then v1 else v2, (mstep(EC) + 1, b) :: EC)
if n 6= i

(if
−→
b at i then v1 else v2, EC)

ε
⇀i (if b then v1 else v2,

(mstep(EC) + 1, b) :: EC) (δloc
ifat)

Figure 10. Parallel local reduction
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Informally the contexts enforces the evaluation of the ar-
guments before allowing the reduction, the branches of con-
ditionals are not evaluated, and nothing is evaluated under an
abstraction.

Distributed expressions are p-wide tuples of pairs
of local expressions and communication environments:
〈〈(ed0 , EC0), (ed1 , EC1), . . . , (edp−1 , ECp−1)〉〉.

Distributed values are:
〈〈(vd0 , EC0), (vd1 , EC1), . . . , (vdp−1 , ECp−1)〉〉.

The distributed semantics consists of a predicate between
p-wide tuples and another p-wide tuples defined by a set of
axioms and rules called steps. This semantics describes all
the steps of the language from the p-wide tuples to distributed
values. We note ⇀ for one of these steps and

∗
⇀, for the

transitive closure of ⇀.
The rules for global reduction are given in figure 11. If

process i requests the value held by process j at m-step n
(request n j) and the communication environment ECj

of
process j contains the value vd at m-step n then the value vd

is sent to process i. Otherwise the rule cannot be applied: this
means that if process j has not yet reached the nth m-step,
then process i must wait.

The high level semantics and the lower level one are equiv-
alent:

Theorem 1 (Equivalence) Let e be a closed well-formed
MSPML expression.

e . v iff C(e)
∗
⇀ P(v)

where C(e) = 〈〈(ed0 , ∅), (ed1 , ∅), . . . , (edp−1 , ∅)〉〉 and ∅
is the empty communication environment and P(e) =
〈〈P0(e),P1(e), . . . ,Pp−1(e)〉〉 and edi

= Pi(e) and where
Pi is an trivial induction projection of our expressions to dis-
tributed expressions where Pi(〈e0, . . . , ei, . . . , ep−1〉) = −→ei .

The full proof is in [43].

Example 1 For the broadcast example, with p = 3, dis-
tributed evaluation of

bcast 2 (mkpar(fun x:L → 2× x))

begins with local reduction at each process. At process i,
local reduction is given in figure 12. Then global reduction is
used:

〈〈
(request 0 2, [(0, 0)]),
(request 0 2, [(0, 2)]),
(request 0 2, [(0, 4)])

〉〉
3
⇀ 〈〈(4, [(0, 0)]), (4, [(0, 2)]), (4, [(0, 4)]), )〉〉

6. Experiments

We first present additional functions from the standard li-
brary: implementations of reduction and parallel prefix algo-
rithms. Then we use them to implement the Diffusion algo-
rithmic skeleton [35]. This skeleton is then used to write a toy

application: the smaller elements program. Execution times
have been measured for this example on a cluster of PC.

6.1 Reduction and Parallel Prefix

There are several versions of parallel reduction. One can
reduce a parallel vector of type α par but also a parallel vec-
tor of type α collection par where collection could for ex-
ample be list or array. In figure 14, fold direct is a paral-
lel reduction on a parallel vector of type α par. It is called
direct because the values are exchanged between process in
a single m-step. The cost of the communication phase is
s × (p − 1) × g + L where s is the size of the biggest
value in the parallel vector. Depending on the parameters s,
p, g and L it could be more efficient to use log2 p phases with
a cost of s×g + L (for the sake of conciseness and simplicity
we will consider only( direct algorithms in this paper).

The parallel reduction of a parallel vector of lists can be
easily defined using fold direct. We could of course have de-
fined a generic parallel reduction of parallel vector of collec-
tions which allows to use a direct fold or not, depending on
the parameters:

let generic wide fold sfold fold op neutral vv =
let local fold = parfun (sfold op neutral) vv in
fold op neutral local fold

where sfold is a sequential reduction over the collection and
fold a parallel fold of α par parallel vectors. Then it could
be instantiated:

let wide fold list direct op e vv=
generic wide fold List.fold left fold direct op e vv

This could also be done for parallel prefix algorithms.
generic scan (Figure 14) is a generic operation which could
compute the sum of prefixes of any parallel vectors of some
collection of indexed elements. The collections could be lists,
arrays or any indexed collection of elements (for example
unary functions from integers to something else). Thus the
inferred type of this function is quite complex because it is
very general. In Figure 14, the type is presented in such a way
that each line is the type of one of the argument, for example
(( α → β )→ γ → α1 → α2 ) is the inferred type of the
argument sscan. The last line gives the type of the arguments
op, neutral, vec and the type of the result.

generic scan operates on a parallel vector of collections of
indexed elements. It depends on:

• the data structure used for the collection of elements;

• the sequential scan on this collection of elements;

• the parallel prescan on vectors of this kind of elements
(not parallel vector of collections). The semantics of
prescan is given by:

prescan ⊕ 〈v0, . . . , vp−1〉 = 〈ı⊕, v0, . . . ,⊕
p−2
k=0vk〉

where ı⊕ is the neutral for the binary operation⊕;
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(edi
, ECi

) ⇀i (e′di
, E ′Ci

)

〈〈(ed0 , EC0), . . . , (edi
, ECi

), . . . , (edp−1 , ECp−1)〉〉 ⇀ 〈〈(ed0 , EC0), . . . , (e
′
di

, E ′Ci
), . . . , (edp−1 , ECp−1)〉〉

(edi
= Γ[request n j]) ∧ ((n, vd) ∈ ECj

)

〈〈(ed0 , EC0), . . . , (edi
, ECi

), . . . , (edp−1 , ECp−1)〉〉 ⇀ 〈〈(ed0 , EC0), . . . , (Γ[vd], ECi
), . . . , (edp−1 , ECp−1)〉〉

Figure 11. Global reduction
(
get (mkpar(fun x:L → 2× x)) (mkpar(fun x:L → 2)) , []

)

⇀i

(
get ((fun x:L → 2× x) i) (mkpar(fun x:L → 2)) , []

)

⇀i

(
get 2i (mkpar(fun x:L → 2)) , []

)

⇀i

(
get 2i ((fun x:L → 2) i) , []

)

⇀i

(
get 2i 2 , []

)

⇀i

(
request 0 2 , [(0, 2i)]

)

Figure 12. Example

• how to map on this kind of collection;

• how to take (last) and remove (cutlast) the last element
of this kind of collection.

Figure 14 shows a parallel prescan but it is more simple to
implement as follows:

let prescan direct op neutral v =
let com = get list v (mkpar(fun i→ from to 0 (i−1))) in
parfun (List.fold left op neutral) com

using the get list communication primitive defined by:

get list 〈v0, . . . , vp−1〉 〈. . . , [ij1; . . . ; i
j
kj

], . . .〉

= 〈 [vi01
; . . . ; vi0

k0
] , . . . , [vip−1

1
; . . . ; vip−1

kp−1

] 〉

and where:

from to n1 n2 = [n1; n1 + 1; . . . ; n2]

Now let explains how generic scan works. To ease the pre-
sentation we consider that the collections are lists. Thus the
sequential functions (sscan, cutlast and last) given in argu-
ment should satisfy the equalities of figure 13 (map has been
defined in the previous section).

If vv is the parallel vector:

〈 [x1; x2; . . . ; xn/p] , . . . , [xn+1−n/p; xn+2−n/p; . . . ; xn] 〉

then local scan is the following vector:

〈 [c; op2 c x1; . . . ; op2 (. . .) xn/p], . . . ,
[c; op2 c xn+1−n/p; . . . ; op2 (. . .) xn/p] 〉

Each process now holds n
p + 1 values. For each process

(except the last one) we need to remove the last value of
the collection. The tmp vector is a parallel vector of pairs.
The first component is (Some vi) where vi was the last ele-
ment of the list and the second component is the list with-
out this last element. At process p − 1 the second com-
ponent is the unchanged list. From this vector we obtain

last elements the parallel vector composed with the last el-
ements and new lists the parallel vector of lists without their
last elements. values to add computes the partial reductions
of the last elements vector. At process i, only the first i − 1
values will be reduced using prescan. To end the values ob-
tained are added to the new lists parallel vector of lists.

scanl (figure 14) is an example of instantiation of the
generic parallel scan function.

6.2 The Diffusion Algorithmic Skeleton

Algorithmic skeleton languages [15, 47, 48], in which only
a finite set of operations (the skeletons) are parallel, consti-
tute from the programmer’s point of view an easy approach
to parallel programming. The set of algorithmic skeletons has
to be as complete as possible but it is often dependent on the
domain of application.

We show here than it is possible to implement algorithmic
skeletons in MSPML. We choose to implement the Diffusion
skeleton [1]. It is derived from the Diffusion Theorem [35]
and is defined in terms of classical primitive skeletons map,
reduce and scan. It provides a good abstraction of a com-
bination of parallel primitives. Using the diffusion theorem,
recursive functions defined in a specific form and under some
conditions, could be expressed as an instantiation of the dif-
fusion skeleton.

Another advantage is that under some conditions, some
deforestation-like techniques could be used to replace a com-
position of several diffusion skeleton instantiations by only
one diffusion skeleton instantiation [33].

The Diffusion Skeleton using the Bird-Meertens Formal-
ism (BMF) [7, 55] is defined by:

diff (⊕) (⊗) k g1 g2 xs c
= reduce (⊕) (map k as) ⊕ g1 b

where
{

bs ++[b] = map (c⊗) (scan ⊗ (map g2 xs))

as = zip xs bs
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sscan (⊕) [x1, x2, . . . , xn] = [ı⊕; x1; x1 ⊕ x2; . . . ; x1 ⊕ x2 ⊕ . . .⊕ xn]
cutlast [x1; . . . ; xn] = (Some xn, [x1; . . . ; xn−1])

cutlast [ ] = (None, [ ])
last [x1; . . . ; xn] = (Some xn, [x1; . . . ; xn])

last [ ] = (None, [ ])

Figure 13. Sequential functions needed for parallel scan

(∗ val fold direct: ( α → β → α ) → α → β par → α par ∗)
let fold direct op neutral vv =

parfun (List.fold left op neutral) (totex list vv)

(∗ val wide fold list direct: ( α → α → α ) → α → α list par → α list par ∗)
let wide fold list direct op neutral vv =

let local fold = parfun (List.fold left op neutral) vv in
fold direct op neutral local fold

(∗ val prescan direct : ( α → β → α ) → α → β par → α par ∗)
let prescan direct op neutral v =

let com = mget (parfun (fun v i→ v) v) (mkpar(fun i j→ j<i))
and sfold = List.fold left op neutral
and lists = mkpar(fun i→ from to 0 (i−1)) in
parfun sfold (parfun2 List.map (parfun (compose noSome) com) lists)

(∗ val generic scan :
(( α → β ) → γ → α1 → α2 ) →
(( α → β ) → γ → β1 par → α par) →
( β → β2 → γ1 ) →
( α2 → β1 option ∗ β2 ) →
( α2 → β1 option ∗ β2 ) →
( α → β ) → γ → α1 par → γ1 par ∗)

let generic scan sscan prescan map last cutlast op neutral vv =
let local scan = parfun (sscan op neutral) vv in
let tmp = applyat (p()−1) last cutlast local scan in
let last elements = parfun (compose noSome fst) tmp
and new lists = parfun snd tmp in
let values to add = prescan op neutral last elements in

parfun2 map (parfun op values to add) new lists

(∗ val scanl: ( α → α → α ) → α → α list par → α list par ∗)
let scanl op e =

generic scan sscan prescan direct List.map last cutlast op e

Figure 14. Parallel reduction, parallel prefix
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and ⊕ and ⊗ are associative operations with units, ++ is the
concatenation of lists and where

reduce (⊕) [x1, x2, . . . , xn]
= x1 ⊕ x2 ⊕ . . .⊕ xn

zip [x1, x2, . . . , xn] [y1, y2, . . . , yn]
= [(x1, y1), (x2, y2, . . . , (xn, yn)]

The implementation of the skeleton in MSPML is given
in figure 15. It uses only functions described in previous
sections. One could notice than we could have provided a
generic diff function. The function used for the tests is in fact
such a function. We present here a function similar to the
instantiation of the generic function used for the experiments.

6.3 Smaller Elements

We performed some experiments with the ‘smaller ele-
ments’ program. The aim of this program is to remove from a
list all the elements which are lesser than elements which are
placed before them in the list.

The function which computes this list could be written us-
ing the diffusion skeleton:

let se diff xs =
let k x c = if x<c then [] else [x]
and g1 x = []
and g2 x = x in
diff (@) [] max k g1 g2 xs min int

All the operations used here have a constant complexity:
this is obvious for k, g1, g2 and max. The concatenation of
lists (@) is linear in its first argument. It is used in diff as
an argument for a parallel fold: reducer. Its first argument
in this case is the result of an application of k: an empty list
or a list of size 1. Thus the sequential time required for the
execution of se diff depends linearly on the size of the input
list xs (which is in fact a parallel vector of lists but which
should be seen as the list obtained by concatenation of the
lists held by all the processes).

The communications are produced first by scanl, at pro-
cess i the cost is s × i × g + L (where s is the size of one
element), and by reducer, a direct fold which uses a total
exchange which costs s × (p − 1) × g + L. This total ex-
change induces a global synchronization thus the total cost is
(s× (p−1)+p)×g + 2×L. In our experiments s increases
linearly with the size.

We ran the se diff program on a cluster of 2, 4 and 8 pro-
cesses, with lists of size between 200 and 20000 per process.
Each machine is a Pentium III (1Ghz) with 128 Mo of RAM
running Linux Mandrake Clic (http://clic.mandrakesoft.com).
The network is a fast Ethernet network. Each test was per-
formed 4 times and the average was taken. Each test con-
sisted of the execution of 10 calls to se diff on the same list.
We used the Objective Caml byte-code compiler (in order
to compare with some architectures on which the Objective
Caml native code compiler is unavailable).

Figure 16a shows the time in seconds for the execution on
the input list of total size given in abscissa whereas figure 16b
shows the execution time on input list with the size of the sub-
list held by each process.

These figures show than the obtained curves are linear
ones. We obtain a super-linear speed-up when the number
of processes increase. This is not a surprise since with less
processes, each process holds more data and garbage collec-
tion occurs more often. What is more surprising is shown in
figure 16b: for the same size per process the execution time
is a bit greater when less processes are involved.

This phenomena is due to the buffering strategy of the
Linux TCP/IP layer: the buffers are flushed as soon as they
are full but there is a delay for sending buffers which are not
full. Thus with less processors, fewer messages are sent and
they may not fill the buffers: there is a delay before the mes-
sages are actually sent.

7. Related Work

As shown in the previous section, MSPML can be used
to implement data-parallel skeletons. We chose the Diffusion
algorithmic skeleton, but other could be implemented as for
example [18]. The advantage is to have in the same language
the possibility to use skeletons and to write them. [3] has
demonstrated that NESL [10] is more efficient when the size
of the vectors is constant. Even if it is not the case, most of
the operations of NESL could be implemented in MSPML. In
particular nested lists could be implemented as shown in [34].
From this point of view MSPML could seem lower-level
than NESL. But MSPML offers higher-order functions while
NESL is a first-order language.

There are several works on extension of the BSPlib library
or libraries to avoid synchronization barrier [20, 2, 37] which
rely on different kind of messages counting. To our knowl-
edge the only extension to the BSPlib standard which offers
zero-cost synchronization barriers and which is available for
downloading is the PUB library [11]. The oblivious synchro-
nization function bsp oblsync takes as argument the num-
ber of messages that must be received by the process at the
given super-step: when the process has received this number
of message it begins the next super-step without synchroniz-
ing with other processes.

Caml-flight, a functional parallel language [21, 13], relies
on the wave mechanism. A sync primitive is used to indicated
which processes could exchange messages using a get primi-
tive which is very different from ours: this primitive asks the
remote evaluation of an expression given as argument. This
mechanism is more complex than ours and there is no pure
functional high level semantics for Caml-flight [22]. More-
over Caml-flight programs are SPMD programs which are
more difficult to write and read. The type system to avoid
incorrect nested parallelism is also complex [60].

[49] describes the mechanism of structural clocks to allow
a minimally synchronous execution of data-parallel programs
written in a small imperative language in SPMD style. The
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let diff op1 op1neutral op2 k g1 g2 xs c =
let reducer op neutral e vec =

let local fold = parfun (List.fold left op neutral) vec in
fold direct op e local fold in

let bs’=scanl op2 c (parfun (List.map g2) xs) in
let nocut l = None,l in
let b’,bs=parpair of pairpar(applyat (p()−1) cutlast nocut bs’) in
let (Some b)=at b’ (p()−1) in
reducer op1 op1neutral (g1 b) (parfun2 (List.map2 k) xs bs)

Figure 15. MSPML Implementation of the Diffusion Skeleton
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Figure 16. Smaller elements

difficulty is this framework is that the number of communica-
tion phases may be different at each process, because an oper-
ator of parallel composition is provided. We will also need a
more complex m-step numbering which may be similar to the
numbering used in structural clocks, when we will add paral-
lel composition to MSPML. This operation allows to divide
the parallel machine in two independent sub-machines. The
high level semantics of the parallel composition for MSPML
will be the same as the semantics of parallel juxtaposition for
BSML [40].

8. Conclusions and Future Work

Minimally Synchronous Parallel ML is a functional par-
allel language which shares its syntax and high-level seman-
tics with Bulk Synchronous Parallel ML but which has a new
lower level semantics and implementation. Communications
do not need global synchronization barriers. The Message
Passing Machine cost model can be applied to MSPML. The
first experiments with our prototype implementation show the
applicability of the cost model.

Future work can be divided into four parts:

• for the moment MSPML is a library for the Objective
Caml language and it uses the threads facilities and the
Unix module for TCP/IP communications. We plan to
write also an MPI version to compare MSPML with the
BSMLlib library. The fourth version (0.2) of MSPML

has been released in june 2004;

• management of the communication environments: we
proposed a new mechanism for the management of
communication environments which would avoid global
synchronization to empty the communication environ-
ment [42]. We will prove its correctness using Abstract
State Machines [29] and First Order Timed Logic [5] us-
ing model-checking tools;

• extension of the language with new constructs:

– extension of MSPML with a parallel juxtaposition
which allows to divide the machine in two distinct
parallel machines which evaluate two MSPML ex-
pressions in parallel. With this primitive the num-
ber of communication phases may be different on
each process. Thus a new mechanism of commu-
nication environment must be designed;

– extension of MSPML to allow the nesting of paral-
lel vectors;

• automatic cost estimates. Two research directions will
be followed. Either in relation with our work on the ver-
ification of parallel program using the Coq proof assis-
tant. [6] is such an approach for sequential programs and
the proof assistant Nuprl. Or directly as in [50] for the
sequential case.
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All the work done on MSPML will be also used in Depart-
mental Metacomputing ML (DMML) [26] designed to pro-
gram clusters of parallel machines and which is based on a
two-tiered model: the BSP model for each parallel unit and
the MPM model for coordinating this heterogeneous set of
BSP units. The upper level of DMML is similar to MSPML.
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