
Bulk Synchronous Parallel ML: Semantics and
Implementation of the Parallel Juxtaposition

F. Loulergue1, R. Benheddi1, F. Gava2, and D. Louis-Régis1

1: Laboratoire d’Informatique 2: Laboratory of Algorithms,
Fondamentale d’Orléans Complexity and Logic
Université d’Orléans, France University Paris XII, France
{floulerg,rbenhedd}@univ-orleans.fr gava@univ-paris12.fr

1 Introduction

The design of parallel programs and parallel programming languages is a trade-
off. On one hand the programs should be efficient. But the efficiency should not
come at the price of non portability and unpredictability of performances. The
portability of code is needed to allow code reuse on a wide variety of architectures
and to allow the existence of legacy code. The predictability of performances is
needed to guarantee that the efficiency will always be achieved, whatever is the
used architecture.

Another very important characteristic of parallel programs is the complexity
of their semantics. Deadlocks and indeterminism often hinder the practical use
of parallelism by a large number of users. To avoid these undesirable properties,
a trade-off has to be made between the expressiveness of the language and its
structure which could decrease the expressiveness.

Bulk Synchronous Parallelism [22, 20] (BSP) is a model of computation which
offers a high degree of abstraction like PRAM models but yet a realistic cost
model based on a structured parallelism: deadlocks are avoided and indeterminism
is limited to very specific cases in the BSPlib library [13]. BSP programs are
portable across many parallel architectures.

Over the past decade, Bulk Synchronous Parallelism (and the Coarse-Grained
Multicomputer or CGM which can be seen as a special case of the BSP model)
have been used for a large variety of applications. It is to notice that “A comparison
of the proceedings of the eminent conference in the field, the ACM Symposium
on Parallel Algorithms and Architectures, between the late eighties and the time
from the mid nineties to today reveals a startling change in research focus. Today,
the majority of research in parallel algorithms is within the coarse-grained, BSP
style, domain” [8].

Our research aims at combining the BSP model with functional programming.
We obtained the Bulk Synchronous Parallel ML language (BSML) based on a
confluent extension of the λ-calculus. Thus BSML is deadlock free and deterministic.
Being a high-level language, programs are easier to write, to reuse and to compose.
It is even possible to certify the correctness of BSML programs [9] with the help
of the Coq proof assistant [2]. The performance prediction of BSML programs is

possible. BSML has been extended in many ways throughout the years and the
papers related to this research are available at http://bsml.free.fr.

One direction for the extension of BSML was to offer new primitives for the
programming of divide-and-conquer Bulk Synchronous Parallel algorithms. Two
new primitives have been designed :

– the parallel superposition [17, 10] which creates two parallel threads whose
communication and synchronization phases are fused ;

– the parallel juxtaposition [16] which divides the parallel machine in two
independent sub-machines while preserving the Bulk Synchronous Parallel
model.

[16] presents the programming model of BSML with juxtaposition. This
model presents a global view to the programmer, easier to understand than
what actually happens when a BSML program is run on a parallel machine.
Nevertheless to implement BSML with juxtaposition we need a distributed semantics
(section 3) which specifies the execution model i.e. what actually happens on
a parallel machine. Using this specification we implemented (section 4) the
juxtaposition using the parallel superposition and imperative features.

We begin the paper with an overview of BSML with juxtaposition (section 2).
Related work and conclusions end the paper (sections 5 and 6).

2 Bulk Synchronous Parallel ML with Juxtaposition: an
Overview

There is currently no implementation of a full BSML language but rather a
partial implementation as a library for Objective Caml language [14, 6]. BSML
follows the Bulk Synchronous Parallel (BSP) model which offers a model of
architecture, a model of execution and a cost model.

A BSP computer contains a set of uniform processor-memory pairs, a communication
network allowing inter-processor delivery of messages and a global synchronization
unit which executes collective requests for a synchronization barrier (for the
sake of conciseness, we refer to [3] for more details). In this model, a parallel
computation is divided in super-steps, at the end of which a the routing of the
messages and barrier synchronization are performed. Hereafter all requests for
data which have been posted during a preceding super-step are fulfilled.

The performance of the machine is characterized by 3 parameters expressed
as multiples of the local processing speed r: p is the number of processor-memory
pairs, l is the time required for a global synchronization and g is the time for
collectively delivering a 1-relation (communication phase where every processor
receives/sends at most one word). The network can deliver an h-relation in
time g × h for any arity h. The execution time of a super-step is thus the
sum of the maximal local processing time, of the data delivery time and of
the global synchronization time. The execution time of a program is the sum of
the execution time of its super-steps.

BSML does not rely on SPMD programming. Programs are usual “sequential”
Objective Caml programs but work on a parallel data structure. Some of the
advantages is a simpler semantics and a better readability: the execution order
follows (or at least the results is such as the execution order seems to follow) the
reading order.

The core of the BSMLlib library is based on the following elements:

bsp p: unit→int
mkpar: (int →α) →α par
apply: (α →β) par →α par →β par
type α option = None | Some of α
put: (int→α option) par →(int→α option) par
proj: α option par →int →α option

It gives access to the BSP parameters of the underling architecture. In
particular, bsp p() is p, the static number of processes. There is an abstract
polymorphic type α par which represents the type of p-wide parallel vectors of
objects of type α one per process. The nesting of par types is prohibited. Our
type system enforces this restriction [11].

The BSML parallel constructs operate on parallel vectors. Those parallel
vectors are created by mkpar so that (mkpar f) stores (f i) on process i for
i between 0 and (p − 1). We usually write f as fun pid→e to show that the
expression e may be different on each processor. This expression e is said to be
local. The expression (mkpar f) is a parallel object and it is said to be global.

A BSP algorithm is expressed as a combination of asynchronous local computations
and phases of global communication with global synchronization.

Asynchronous phases are programmed with mkpar and apply. The expression
(apply (mkpar f) (mkpar e)) stores ((f i)(e i)) on process i.

Let consider the following expression:

let vf = mkpar(fun i→(+) i) and vv = mkpar(fun i→2∗i+1) in
apply vf vv

The two parallel vectors are respectively equivalent to:

fun x→x+0 fun x→x+1 · · · fun x→x+(p−1) and 0 3 · · · 2× (p− 1) + 1

The expression apply vf vv is then evaluated to:

0 4 · · · 2× (p− 1) + 2

Readers familiar with BSPlib [13] will observe that we ignore the distinction
between a communication request and its realization at the barrier. The communication
and synchronization phases are expressed by put. Consider the expression:

put(mkpar(fun i→fsi)) (1)

To send a value v from process j to process i, the function fsj at process j must be
such that (fsj i) evaluates to Some v. To send no value from process j to process

i, (fsj i) must evaluate to None. Expression (1) evaluates to a parallel vector
containing a function fdi of delivered messages on every process. At process i,
(fdi j) evaluates to None if process j sent no message to process i or evaluates
to Some v if process j sent the value v to the process i.

BSML also contains a synchronous projection operation proj whose detailed
presentation is omitted here. It is necessary of express algorithms like:

Repeat Parallel Iteration Until Max of local errors < ε

The projection should not be evaluated inside the scope of a mkpar. This is
enforced by our type system [11].

To evaluate two parallel programs on the same machine, one can partition
it into two sub-machines and evaluate each program independently on each
partition. Nevertheless in this case the BSP cost model is lost since for example
a global synchronization of each sub-machine would no more cost L. To preserve
the BSP model, which is the best solution [12], synchronization barriers need to
remain global for the whole machine. In a first definition of parallel composition [15],
it was possible to compose two programs whose evaluations need the same
number of super-steps. It is of course restrictive and the programmer was responsible
to write programs which fulfill this constraint. A new version called parallel
juxtaposition removes this constraint [16]. It is the version that we present in
this paper.

Consider the expression (juxta m E1 E2). It means that the m first processors
will evaluate E1 and the others will evaluate E2. From the point of view of E1 the
network will have m processors named 0, . . . ,m−1. From the point of view of E2

the network will have p−m processors (where p is the number of processors of
the current network) named 0, . . . , (p−m− 1) (processor m is renamed 0, etc.).
The value of bsp p() is also changed. Otherwise the evaluation of the expressions
is the same, on each sub-machine, than without parallel juxtaposition, but the
evaluation of put and at need the whole machine for the global synchronization.
A problem occurs when the evaluation of E1 and the evaluation of E2 need
a different number of super-steps. That is why a new primitive is necessary.
The sync primitive is a loop of synchronization barrier calls. It loops until a
synchronization barrier call is made by sync on the whole machine.

In case of the evaluation of E1 needs one more super-step than the evaluation
of E2, the evaluation of (sync (juxta m E1 E2)) can be described as follows:

– at the beginning, each synchronization barrier request for the evaluation of
E1 matches a synchronization barrier request for the evaluation of E2;

– then the evaluation of E2 ends. E2 requests one more synchronization barrier
for its last super-step. The second sub-machine has finished the evaluation
of E2 so it evaluates sync: the synchronization barrier request of sync will
match the request of the first sub-machine;

– each sub-machine has finished the evaluation of its expressions and they both
request a synchronization barrier from a sync. As this request concerns the
whole machine the evaluation of sync ends.

Evaluation result of a parallel juxtaposition is a parallel vector:

(juxta m 〈 v0 , . . . , vm−1 〉 〈 v′0 , . . . , v′p−1−m 〉) = 〈v0, . . . , vm−1, v
′
0, . . . , v

′
p−1−m〉

From the functional point of view, the sync function is identity.
In the BSML library, the fact that Objective Caml is a language with a

weak call-by-value evaluation strategy must be taken into account. To avoid the
evaluation of the two last arguments of the function juxta and the argument of
the function sync, these arguments should be functions:

juxta: int →(unit →α par) →(unit →α par) →α par
sync: (unit→α par) →α par

The following example is a divide-and-conquer version of the scan program
which is defined by scan ⊕ 〈 v0 , . . . , vp−1 〉 = 〈 v0 , . . . , v0 ⊕ v1 ⊕ . . . ⊕ vp−1 〉
where ⊕ is an associative binary operation.

let rec scan op vec =
if bsp p()=1 then vec
else
let mid=bsp p()/2 in
let vec’=juxta mid (fun ()→scan op vec) (fun ()→scan op vec) in
let msg vec=apply (mkpar(fun i v→
if i=mid−1
then fun dst→ if dst>=mid then Some v else None
else fun dst→ None)) vec

and parop=parfun2(fun x y→match x with None→y|Some v→op v y)in
parop (apply(put(msg vec’))(mkpar(fun i→mid−1))) vec’

The juxtaposition divides the network into two parts the scan is recursively
applied to each part. The value held by the last processor of the first part is
broadcast to all the processors of the second part, then this value and the value
held locally are combined by the operator op on each processor of the second
part.

To use this function at top-level, it must be put into a sync primitive:
(sync (fun () →scan (+) this))

3 Distributed Semantics

High level semantics corresponds to the programming model. Distributed semantics
corresponds to the execution model. In the former, all the parallel operations
seem synchronous, even those which do not need communication. In the latter,
the operations without communication are asynchronous and the operations with
communications are synchronous.

The distributed evaluation can be defined in two steps:

1. local reduction (performed by one process) ;
2. global reduction of distributed terms which allows the evaluation of communications.

3.1 Syntax

We consider here only a small subset of the Ocaml language with our parallel
primitives. We first consider the flat part of the language, i.e. without parallel
juxtaposition :

e ::= x (variable)
| c (constant)
| bsp p BSP parameter p
| (fun x→ e) (abstraction)
| op (operator)
| (e e) (application)
| (let x = e in e) (binding)
| (if e then e else e) (conditional)
| (mkpar e) (parallel vector)
| (apply e e) (parallel application)
| (get e e) (communication primitive)
| (if e at e then e else e) (global conditional)
| 〈e〉 (enumerated parallel vector)
| (sync e′) (sync primitive)

The use of the juxtaposition is only allowed in the scope of a sync primitive :

e′ ::= x | c | bsp p | (fun x→ e′) | op | (e′ e′) | (let x = e′ in e′)
| (if e′ then e′ else e′) | (mkpar e′) | (apply e′ e′) | (get e′ e′)
| (if e′ at e′ then e′ else e′) | 〈e′〉 | (juxta m e′ e′) | ‖e′‖

For the sake of conciseness, we use the get and if at constructs instead of
the more general put and proj functions. There is no fundamental differences,
but the semantics is simpler. We also omit in the remaining of the paper to
distinguish expressions e and e′. Most of the rules are valid for both. We also
omit a simple type system (with explicit typing of variables with two possible
annotations: local or global) which allows to avoid the nesting of parallel values.

The user is not supposed to write enumerated parallel vectors 〈e〉. These
expressions are created during the evaluation of a mkpar expressions. ‖e′‖
indicates that the expression e is a branch of a juxtaposition.

Values are given by the following grammar :
v ::= (fun x → e) | c | op | 〈v〉

3.2 Local reduction

The distributed evaluation is an SPMD semantics. Each processor will evaluate
one copy of the BSML program. As long as the expression is not an expression
which requires communications, the evaluation can proceed asynchronously on
each processor.

When the juxtaposition primitive is used two sub-machines are considered.
For a given process it means that the process identifier and the number of
processes can change. Nevertheless these values are constant for the actual
parallel machine. Thus we choose to put these parameters on the arrow. −→i

p is

the local reduction at processor whose absolute process identifier is i on a parallel
machine of p processors. The absolute process identifier of the first process and
number of processes of the sub-machine a process belong to are stored in two
stacks : E f and Ep.

The location reduction is a relation on tuples of one expression, and two
stacks. It is defined by the rules of figure 1 (the set of rules for predefined
sequential operators is omitted1) plus the following contexts and context rule :

Γ := [] | (Γ e) | (v Γ) | (let x = Γ in e) | (if Γ then e else e)
| (mkpar Γ) | (apply Γ e) | (apply v Γ) | (get Γ e) | (get v Γ)
| (if e at Γ then e else e) | (if Γ at v then e else e)
| (juxta Γ e e) | 〈Γ 〉 | ‖Γ‖ | (sync Γ)

(
e1 E f

1, E
p
1

)
−→i

p

(
e2, E f

2, E
p
2

)(
Γ (e1), E f

1, E
p
1

)
−→i

p

(
Γ (e2), E f

2, E
p
2

) (2)

The four first rules of figure 1 are usual rules of a functional language. Rule (7)
returns the head of the stack of number of processors. For the stacks we use “::”
for adding a value to the stack. The function h is defined by h(v :: E) = v. If the
stack is empty, then if it is the E f then the hd function returns 0, if it is the Ep

stack the hd function return the value if p given by the −→i
p arrow.

The two next rules formalize the informal semantics of the BSML primitives
mkpar and apply, but as opposed as section 2, we consider here only what
happens at process i. For example for rule (8), the processor i has (in the current
sub-machine) the process identifier i− h(E f). Thus for it evaluating mkpar f is
evaluating (f (i− h(E f))).

The three last rules are devoted to the juxtaposition :

– the two first are used to choose which branch is evaluated by the given
processor, depending on its identifier. New values of the process identifier of
the first processor and the number of processor of the sub-machine are push
on top of the respective stacks.

– the last one is used to restore the values of the process identifier of the first
processor and the number of processor of the larger machine at the end of
the evaluation of the branch.

3.3 Global reduction

The global reduction → concerns the whole parallel machine. A distributed
expression is thus p tuples manipulated by the local reduction. We use the
following syntax for distributed expressions :

〈
(e0, E f

0, E
p
0) , . . . , (ep−1, E f

p−1, E
p
p−1)

〉
1 this set includes rules for the fix operator used for recursion

`
((fun x→ e) v), E f, Ep ´

−→i
p (e[x← v], E f, Ep) (3)`

(let x = v in e), E f, Ep ´
−→i

p (e[x← v], E f, Ep) (4)`
(if true then e1 else e2), E f, Ep ´

−→i
p (e1, E f, Ep) (5)`

(if false then e1 else e2), E f, Ep ´
−→i

p (e1, E f, Ep) (6)`
bsp p, E f, Ep ´

−→i
p (h(Ep), E f, Ep) (7)`

(mkpar v), E f, Ep ´
−→i

p ((v (i− h(E f))), E f, Ep) (8)`
(apply 〈v1〉 〈v2〉), E f, Ep ´

−→i
p (〈(v1 v2)〉, E f, Ep) (9)

`
(juxta m e1 e2), E f, Ep ´

−→i
p

`
‖e1‖, h(E f) :: E f, m :: Ep

´
if 0 ≤ m < h(Ep)

and (i− h(E f)) < m
(10)

`
(juxta m e1 e2), E f, Ep ´

−→i
p

`
‖e2‖, (h(E f)+m) :: E f, (h(Ep)−m) :: Ep

´
if 0 ≤ m < h(Ep)

and (i− h(E f)) ≥ m
(11)

`
‖v‖, f :: E f, p′ :: Ep ´

−→i
p

`
v, E f, Ep ´

(12)

Fig. 1. Local reduction

The first rule takes into account the local reduction :

(ei, E f, Ep) −→i
p (e′i, E ′

f
i , E ′pi)D

. . . , (ei, E f
i , E

p
i) , . . .

E
→

D
. . . , (e′i, E ′

f
i , E ′pi) , . . .

E (13)

The second one is used for communications and synchronisation. The p processors
are partitioned into 1 ≤ k ≤ p parts, each part containing one of more successive
processor. Two processors belongs to the same part n (1 ≤ n ≤ k) if the values
at the top of their E f stacks are equal. In this case they also have the same value
on top of Ep which we note pn.

We note (en,i, E f
n,i, E

p
n,i) the process i in the nth part. This processor has

process identifier i+h(E f) in the whole parallel machine. We want the reduction :〈
(e1,0, E f

1,0, E
p
1,0), . . . , (e1,p1−1, E f

1,p1−1, E
p
1,p1−1),

(e2,0, E f
2,0, E

p
2,0), . . . , (ek,pk−1, E f

k,pk−1, E
p
k,pk−1)

〉
→〈

(e′1,0, E ′
f
1,0, E ′

p
1,0), . . . , (e

′
1,p0−1, E ′

f
1,p0−1, E ′

p
1,p0−1),

(e′2,0, E ′
f
2,0, E ′

p
2,0), . . . , (e

′
k,pk−1, E ′

f
k,pk−1, E ′

p
k,pk−1)

〉
We have either :

– all processors are evaluating a sync, i.e. ∀n.∀i.(1 ≤ n ≤ k)&(0 ≤ i < pn) ⇒
en,i = Γ (sync vn,i) then ∀n.∀i.(1 ≤ n ≤ k)&(0 ≤ i < pn) ⇒ e′n,i = Γ (vn,i)

– at least one part is evaluating a primitive of communication. For each part we
have to evaluate the corresponding primitive. For all n such that 1 ≤ n ≤ k,
we have either :

get:

{
we have ∀i.0 ≤ i < pn ⇒ en,i = Γ (get 〈vi〉 〈ni〉)
then ∀i.0 ≤ i < pn ⇒ e′n,i = Γ (〈vni〉)

if at: we have ∀i.0 ≤ i < pn ⇒ en,i = Γ (if 〈vi〉 at 〈m〉 then e1
i else e2

i)
then:
• if 0 ≤ m < pn and vm = true then ∀i.0 ≤ i < pn ⇒ e′n,i = Γ (e1

i).
• if 0 ≤ m < pn and vm = false then ∀i.0 ≤ i < pn ⇒ e′n,i = Γ (e2

i).

sync:

{
we have ∀i.0 ≤ i < pn ⇒ en,i = Γ (sync vi)
then ∀i.0 ≤ i < pn ⇒ e′n,i = Γ (sync vi)

Theorem 1. → is confluent.

4 Implementation

The semantics given in the previous section is a specification for a distributed
SPMD implementation. The current implementation of BSML is modular [18].
The module of primitives is a function which takes as argument a module of
lower-level communications. Several such modules are provided and built on top
of MPI, PVM, PUB, and also directly TCP/IP.

There are two implementations of the parallel juxtaposition. One which
needs to extend the lower-level module interface. This solution adds very little
sequential computation overhead. The drawback is that each lower-level module
should be modified.

The second one implements the juxtaposition using the superposition. The
advantage is that the implementation of the superposition is independent from
the lower-level module. Moreover the implementation of the juxtaposition using
the superposition is quite simple. and it is moreover very close to the semantics.
This implementation adds more useless sequential computations, but there is no
need for the sync additional synchronization barrier.

The superposition [16] allows two parallel expressions to be concurrently
evaluated by two parallel threads running on the whole parallel machine. The
results is a pair of parallel vectors of size p. The outline of the implementation
of juxta m e1 e2 is as follows, where two stacks – one for the current number
of processors p of the current machine and one for the number (in the previous
machine) of the first processor f of the current machine – are used. The implementation
o evaluate :

1. check if m is not greater than the number of processors
2. push the current values of f and p on the stacks
3. superpose the following expressions:

(a) set p to m and evaluate e1()
(b) set f to m + f and p to p−m and evaluate e2()
the pair (va,vb) of parallel vectors is obtained

4. restore the values of f and p by popping them from the stacks
5. return a parallel vector in which:

– the m first values come from va (from index f to f + m− 1)
– the p−m next values come from vb (from index f + m to f + p− 1)

We did some experiments with the scan program shown in section 2. We run
it on parallel vectors of polynomial, the operation being the addition. The tests
were done on a 10 nodes Pentium IV cluster with Giga-bit Ethernet network
(figure 2).

We compared the version with juxtaposition which requires log p super-steps
with a direct version without superposition in 1 super-step. In the latter case,
p polynomials are received by the last processor. In the former case, at each
step, a processor receives at most 2 polynomial. As the polynomial are quite big,
the log p version performs better than the direct version. Of course for smaller
polynomials the direct version is better. It also depends on the BSP parameters
of the parallel machine.

0

0.05

0.1

0.15

0.2

0.25

0.3

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Time (s)

Degree of polynomials

Scan

Direct version

333
33

33
33333

333
33333

33
33

3333
33

3333
3333

33
333

3333
333

3333
3333

333
333

333
333

3
3
333

333
33

333
33

3333
333

Juxtaposition version

++++
++

+++
++++++

+++
+++++

+++
++++

+++++
++++

+++++
++

++++
+++

++++
++++++

++++
+++

+++
+++

+++
+++

++++
+++

++
+

Fig. 2. Experiments with the scan programs

5 Related work

[21] presents another way to divide-and-conquer in the framework of an object-
oriented language. There is no formal semantics and no implementation from
now on. The proposed operation is similar to the parallel superposition, several
BSP threads use the whole network. The same author advocates in [19] a new
extension of the BSP model in order to ease the programming of divide-and-
conquer BSP algorithms. It adds another level to the BSP model with new
parameters to describe the parallel machine.

[23] is an algorithmic skeletons language based on the BSP model and offers
divide-and-conquer skeletons. Nevertheless, the cost model is not really the BSP
model but the D-BSP model [7] which allows subset synchronization. We follow
[12] to reject such a possibility.

In the BSPlib library [13] subset synchronization is not allowed as explained
in [20]. The PUB library [4] is another implementation of the BSPlib standard
proposal. It offers additional features with respect to the standard which follows
the BSP* model [1] and the D-BSP model [7]. Minimum spanning trees nested
BSP algorithms [5] have been implemented using these features.

6 Conclusion and Future Work

We have presented a distributed semantics – which formalizes the execution
model – and an implementation of the parallel juxtaposition primitive for Bulk
Synchronous Parallel ML. This primitive allows to write parallel divide-and-
conquer BSP algorithms.

The programming model, and its formalization, of BSML with juxtaposition
has been presented in a previous paper [16]. We need now to prove that the
programming model and the execution model are equivalent i.e. that their formalizations
are equivalent semantics.

The parallel juxtaposition is in fact an imperative extension of BSML. It
has for example a side effect on the number bsp p() of processors of the current
parallel machine. Thus the method presented in [9] used to prove the correctness
of BSML programs with the Coq proof assistant cannot be used. Another direction
of research is thus to provide a transformation from a program with parallel
juxtaposition to an equivalent pure functional program without parallel juxtaposition.
The equivalence is in this case a semantic equivalence, the performance of the
two programs being different. This transformation should also be proved correct.
The correctness of the original program can then be ensured by proving, using
Coq, the correctness of the transformed pure functional program.

Acknowledgments The authors wish to thank the anonymous referee for their
comments. This work is supported by the “ACI Jeunes chercheurs” program
from the French ministry of research under the project “Programmation parallèle
certifiée” Propac (http://wwwpropac.free.fr).

References

1. W. Bäumker, A. adn Dittrich and F. Meyer auf der Heide. Truly efficient parallel
algorithms: c-optimal multisearch for an extension of the BSP model. In 3rd

European Symposium on Algorithms (ESA), pages 17–30, 1995.
2. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program

Development. Springer, 2004.
3. R. Bisseling. Parallel Scientific Computation. A structured approach using BSP

and MPI. Oxford University Press, 2004.

4. O. Bonorden, B. Juurlink, I. von Otte, and O. Rieping. The Paderborn University
BSP (PUB) library. Parallel Computing, 29(2):187–207, 2003.

5. O. Bonorden, F. Meyer auf der Heide, and R. Wanka. Composition of Efficient
Nested BSP Algorithms: Minimum Spanning Tree Computation as an Instructive
Example. In Proceedings of PDPTA, 2002.

6. E. Chailloux, P. Manoury, and B. Pagano. Développement d’applications avec
Objective Caml. O’Reilly France, 2000.

7. P. de la Torre and C. P. Kruskal. Submachine locality in the bulk synchronous
setting. In L. Bougé et al., eds., Euro-Par’96, LNCS 1123–1124, Springer, 1996.

8. F. Dehne. Special issue on coarse-grained parallel algorithms. Algorithmica,
14:173–421, 1999.

9. F. Gava. Formal Proofs of Functional BSP Programs. Parallel Processing Letters,
13(3):365–376, 2003.

10. F. Gava. Approches fonctionnelles de la programmation parallèle et des méta-
ordinateurs. Sémantiques, implantations et certification. PhD thesis, University
Paris Val-de-Marne, LACL, 2005.

11. F. Gava and F. Loulergue. A Static Analysis for Bulk Synchronous Parallel ML
to Avoid Parallel Nesting. Future Generation Computer Systems, 21(5):665–671,
2005.

12. G. Hains. Subset synchronization in BSP computing. In H.R.Arabnia, ed.,
Proceedings of PDPTA, vol. I, pages 242–246, CSREA Press, 1998.

13. J.M.D. Hill, W.F. McColl, and al. BSPlib: The BSP Programming Library. Parallel
Computing, 24:1947–1980, 1998.

14. X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml
System release 3.09, 2005. web pages at www.ocaml.org.

15. F. Loulergue. Parallel Composition and Bulk Synchronous Parallel Functional
Programming. In S. Gilmore, ed., Trends in Functional Programming, Volume 2,
pages 77–88. Intellect Books, 2001.

16. F. Loulergue. Parallel Juxtaposition for Bulk Synchronous Parallel ML. In
H. Kosch et al., eds., Euro-Par 2003, LNCS 2790, pages 781–788, Springer, 2003.

17. F. Loulergue. Parallel Superposition for Bulk Synchronous Parallel ML. In Peter
M. A. Sloot et al., eds., Proceedings of ICCS 2003, Part I, LNCS 2659, pages
223–232, Springer, 2003.

18. F. Loulergue, F. Gava, and D. Billiet. BSML: Modular Implementation and
Performance Prediction. In Vaidy S. Sunderam et al., eds., Proceedings of ICCS
2005, Part II, LNCS 3515, pages 1046–1054, Springer, 2005.

19. J. M. R. Martin and A. Tiskin. BSP modelling a two-tiered parallel architectures.
In B. M. Cook, ed., WoTUG’99, pages 47–55, 1999.

20. D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about
BSP. Scientific Programming, 6(3):249–274, 1997.

21. A. Tiskin. A New Way to Divide and Conquer. Parallel Processing Letters, (4),
2001.

22. Leslie G Valiant. A bridging model for parallel computation. Communications of
the ACM, 33(8):103–111, August 1990.

23. A. Zavanella. Skeletons and BSP : Performance Portability for Parallel
Programming. PhD thesis, Universita degli studi di Pisa, 1999.

