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Michaël Guedj
University of Paris-East

LACL
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Abstract—This paper presents a Bulk-Synchronous Parallel
(BSP) algorithm to compute on-the-fly whether a structured
model of a security protocol satisfies a LTL formula. Using
the structured nature of the security protocols allows us to
design a simple and efficient parallelisation of an algorithm
which constructs the state-space under consideration in a
need-driven fashion. A prototype implementation has been
developed, allowing to run benchmarks.
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I. INTRODUCTION

Designing secure protocols is a challenging problem [1].
In spite of their apparent simplicity, they are notoriously
error-prone. Unfortunately, checking if a cryptographic pro-
tocol is secure or not is not decidable in general and NP-
complete for bounded numbers of agents and sessions [2].
Model-checking is however well-adapted to find flaws [3].
In this paper, we consider the problem of checking an LTL
formula over labelled transition systems (LTS) that model
security protocols. Checking a LTL formula over a protocol
is not new [4] and has the advantage over dedicated tools for
protocols to be easily extensible to non standard behaviour
of honest principals (e.g., contract-signing protocols: partic-
ipants required to make progress) or to check some security
goals that cannot be expressed as reachability properties,
e.g., fair exchange.

But checking an LTL formula may be expensive both in
terms of memory and execution time: this is the so-called
state explosion problem. This is especially true when com-
plex data-structures are used in the model as the knowledge
of an intruder in security protocols. Because this checking
can cause memory crashing on single or multiple processor
systems, it has led to consider exploiting the larger memory
space available in distributed systems [5], which also gives
the opportunity to reduce the overall execution time. One of
the main technical issues is to partition the state space, i.e.
each state is assigned to a machine. Each subset of states
is thus “owned” by a single machine. While it has been
shown that a pure static hashing for the partition function
can effectively balance the workload [24] and achieve rea-
sonable execution time as well, this method suffers from an
obvious drawbacks: it causes too much cross transitions, i.e.,

successor states that need to be exchanged over the network
thus impairing computation locality.

Also, it is rarely necessary to compute the entire state
space before finding a path that invalidates the logic formula
(notably a flaw in a protocol): on-the-fly (local) algorithms
are designed to build the state space and check the formula
at the same time. Two approaches are generally used:
Nested Depth First Search (NDFS) and Strongly Connected
Components (SCC) algorithms for detecting on-the-fly a
reachable accepting cycle in the underlying graph — mainly
of a Büchi automaton. The former are known to be memory
efficient and the latter to be time efficient [6] and both are
hard to parallelize [7].

In this paper, we exploit the well-structured nature of
security protocols and match it to a model of parallel
computation called BSP [8]. This allows us to simplify
the writing of an efficient BSP algorithm for checking on-
the-fly an LTL formula for finite protocol sessions. It is
based on the algorithm of [9] which mainly combines the
construction a proof-structure (a graph whose nodes states
of the underlying Kripke structure together with sets of
logical formulas) with a Tarjan’s depth-first-search based
SCC algorithm. The structure of the protocols is exploited
to partition the state space and reduce cross transitions while
increasing computation locality. At the same time, the BSP
model allows to simplify the detection of the algorithm
termination and to load balance the computations.

II. CONTEXT AND DEFINITIONS

A. The BSP model

A BSP computer is a set of uniform processor-memory
pairs connected through a communication network allowing
the inter-processor delivery of messages [8]. A BSP program
is executed as a sequence of super-steps (see Fig. 1), each
one divided into three successive disjoint phases: (1) each
processor only uses its local data to perform sequential
computation and to request data transfers to other nodes;
(2) the network delivers the requested data; (3) a global
synchronisation barrier occurs, making the transferred data
available for the next super-step.
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Figure 1. A BSP super-step.

Syntax of LTL:
φ ::= a | ¬a | φ ∧ φ | φ ∨ φ | Xφ | φUφ | φVφ

Informal semantics of LTL :
Xφ : • → •φ → • → • → • → · · ·

φ1Uφ2 : •φ1 → •φ1 → •φ1 → •φ2 → • → · · ·

φ1Vφ2 : •φ2 → •φ2 → •φ2 → •φ2 → •φ2 → · · ·
or •φ2 → •φ2 → •φ2 → •φ1∧φ2 → • → · · ·

Figure 2. Syntax and informal semantics of LTL.

B. State space of security Protocols [10]

In this paper, we consider models of security protocols,
involving a set of agents, given as a labelled transition
system (LTS). We also consider a Dolev-Yao attacker that
resides on the network [11]. An execution of such a model
is thus a series of message exchanges as follows. (1) An
agent sends a message on the network. (2) This message
is captured by the attacker that tries to learn from it by
recursively decomposing the message or decrypting it when
the key to do so is known. Then, the attacker forges all
possible messages from newly as well as previously learnt
informations (i.e., attacker’s knowledge). Finally, these
messages (including the original one) are made available
on the network. (3) The agents waiting for a message
reception accept some of the messages forged by the
attacker, according to the protocol rules.

As a concrete formalism to model protocols, we have used
an algebra of coloured Petri nets called ABCD [12, Sec. 3.3]
allowing for easy and structured modelling. However, our
approach is largely independent of the chosen formalism
and it is enough to assume that the following properties
hold: (P1) LTS function succ can be partitioned into two
successor functions succR and succL that correspond re-
spectively to transitions upon which an agent (except the
intruder) receives information (and stores it), and to all
the other transitions; (P2) there is an initial state s0 and
there exists a function slice from states to natural numbers
(a measure) such that if s′ ∈ succR(s) then there is no

def bsp state space() is
todo,known←∅,∅
total←1
if cpu(s0) =mypid

todo←todo∪{s0}
while total>0

tosend←Successor(known,todo)
todo,total←Exchange(known,tosend)

return known

def Successor(known,todo) is
tosend←∅
while todo 6= ∅

pick s from todo
known←known∪{s}
todo←(todo ∪ succL(s)) \ known
for s′ ∈ succR(s)

tosend←tosend ∪{ (cpu(s′),s′)}
return tosend

def Exchange(known,tosend) is
dump(known)
return BSP EXCHANGE(Balance(tosend))

def Balance(tosend) is
histoL←{(i, ]{(i, s) ∈ tosend})}
compute histoG from BSP EXCHANGE(histoL)
return BinPack(tosend,histoG)

Figure 3. BSP computing the state space of protocols

path from s′ to any state s′′ such that slice(s) = slice(s′′)
and slice(s′) = slice(s) + 1 (it is often call a sweep-line
progression [13]); (P3) there exists a function cpu from
states to natural numbers (a hashing) such that for all state
s if s′ ∈ succL(s) then cpu(s) = cpu(s′); mainly, the
knowledge of the intruder is not taken into account to
compute the hash of a state; (P4) if s1, s2 ∈ succR(s) and
cpu(s1) 6= cpu(s2) then there is no possible path from s1

to s2 and vice versa.
On concrete models, it is generally easy to distinguish

syntactically the transitions that correspond to a message
reception in the protocol with information storage. Thus, is
it easy to partition succ as above and, for most protocol
models, it is also easy to check that the above properties
are satisfied. This is the case in particular for us using the
ABCD formalism.

C. BSP Computing of the state space [10]

Based on the following properties, we have designed in
[10] a BSP algorithm (in a SPMD fashion) for computing
the state space of security protocols as shown in Fig. 3.
In this algorithm, “BSP EXCHANGE” is a primitive that
allows processors to globally exchange data: a set of pairs
(pid,value) is used to define values to be sends. Mainly:
(1) states are distributed across the processors using the
cpu function; (2) the algorithm finishes when no states are
exchanged; (3) function Successor is called to compute the
successors of the states, then all new states from succL
are added in todo (states to be proceeded) and states from



succR are sent to be treated at the next super-step, enforcing
an order of exploration of the state space that match the
progression of the protocol. (4) It thus becomes possible
at the beginning of each super-step, to dump from the main
memory all the known states because they cannot be reached
anymore due to the sweep-line progression. (5) States to
be sent are first balanced across the processors using an
histogram histoG (which is first totally exchanged to be the
same on each processor and enforce consistent decisions
on all the processors: each processor send its own local
histogram histoL) and according to a simple heuristic for
the bin packing problem, classes of states (consistent with
hash) are grouped on processors so there is no possibility of
duplicated computation.

This algorithm gives better performances (less cross tran-
sitions) than a naive distributed one [10] and is able to dump
all the known states at the beginning of each super-step
allows to use less memory. Partial-order reductions [14] can
also be introduced without really changing the algorithm.

D. Proof-structure and LTL checking [9]

Considerable attention has been devoted to the develop-
ment of automatic techniques, or model-checking proce-
dures, for verifying finite-state systems against specifications
expressed using various temporal logics and notably the
linear (LTL) subset. This logic permits users to characterize
many properties, including safety and liveness. One may
identify two basic approaches to model checking. The first
uses global analysis to determine if a system satisfies a for-
mula; the entire state space (mainly a Kripke structure) of the
system is constructed and subjected to analysis. However,
these algorithms may be seen to perform unnecessary work:
in many cases (especially when a system does not satisfy a
specification) only a subset of the states needs to be analyzed
in order to determine whether or not the system satisfies a
formula. On-the-fly, or local, approaches to model checking
attempt to take advantage of this observation by constructing
the state space in a demand-driven fashion. Due to lack of
space, we do not present a formal definition of what is a
Kripke structure and an LTL formula (an informal semantics
is giving on Fig 2) and concentrate on the notion of proof-
structure [9] for LTL checking: a collection of top-down
proof rules for inferring when a state in a Kripke structure
satisfies an LTL formula.

We define M = (S,R,L) to be a Kripke structure where
S is the set of states, R ⊂ S × S the relation which is
assumed to be total (thus all paths in M are infinite) and
L ∈ S → 2A the labelling. The proof-rules appear in Fig 4
[9] and they operate on assertions of the form s ` AΦ where
s ∈ S and Φ is a set of path formulas. Semantically, s ` AΦ
holds if s � A(

∨
φ∈Φ φ). We write A(Φ, φ1, · · · , φn) to

represent a formula of the form A(Φ ∪ {φ1, · · · , φn}). If
σ is an assertion of the form s ` AΦ, then we use φ ∈ σ

s ` A(Φ, φ)

true
(R1)

s ` A(Φ, φ)

s ` A(Φ)
(R2)

s ` A(Φ, φ1 ∨ φ2)

s ` A(Φ, φ1, φ2)
(R3)

if s � φ if s 2 φ

s ` A(Φ, φ1 ∧ φ2)

s ` A(Φ, φ1) s ` A(Φ, φ2)
(R4)

s ` A(Φ, φ1Uφ2)

s ` A(Φ, φ1, φ2) s ` A(Φ, φ2,X(φ1Uφ2))
(R5)

s ` A(Φ, φ1Vφ2)

s ` A(Φ, φ2) s ` A(Φ, φ1,X(φ1Vφ2))
(R6)

s ` A(Xφ1, ...,Xφn)

s1 ` A(φ1, ..., φn) sm ` A(φ1, ..., φn)
(R7)

if succ(s) = {s1, ..., sm}

Figure 4. Proof rules for LTL checking [9]

to denote that φ ∈ Φ. Proof-rules are used to build proof-
structures that are defined as follows:

Definition 1. Let Σ be a set of nodes, Σ′ = Σ∪ true, V ⊆
Σ′, E ⊆ V ×V and σ ∈ V . Then 〈V,E〉 is a proof structure
for σ if it is a maximal directed graph such that for every
σ′ ∈ V , σ′ is reachable from σ, and the set {σ′′|(σ′, σ′′) ∈
E} results from applying some rule to σ′.

Intuitively, a proof structure for σ is a directed graph that
is intended to represent an (attempted) “proof” of σ. In what
follows, we speak of a directed graph and use traditional
graph notations when speaking of proof structures. Note
that in contrast with traditional definitions of proofs, proof
structures may contain cycles. In order to define when a
proof structure represents a valid proof of σ, we use:

Definition 2. Let 〈V,E〉 be a proof structure. Then: (1) σ ∈
V is a leaf iff there is no σ′ such that (σ, σ′) ∈ E. A leaf σ is
successful iff σ ≡ true; (2) an infinite path π = σ0, σ1, · · ·
in 〈V,E〉 is successful iff for some assertion σi infinitely
repeated on π there exists φ1Vφ2 ∈ σi such that for all
j ≥ i, φ2 /∈ σj; (3) 〈V,E〉 is successful iff all its leaves and
infinite paths are successful.

Roughly speaking, an infinite path is successful if at
some point a formula of the form φ1Vφ2 is repeatedly
“regenerated” by application of rule R6; that is, the right
subgoal (and not the left one) of this rule application appears
each time on the path. Note that after φ1Vφ2 occurs on the
path φ2 should not, since, intuitively, if φ2 would be true
then the success of the path would not depend on φ1Vφ2,
while if it would be false then φ1Vφ2 would not hold. Note
also that if no rule can be applied (i.e., Φ = ∅) then the
proof-structure and thus the formula is unsuccessful.

Theorem 1. Let M be a Kripke structure with s ∈ S and
Aφ an LTL formula, and let 〈V,E〉 be a proof structure for
s ` A{φ}. Then s � Aφ iff 〈V,E〉 is successful.



One consequence of this theorem is that if σ has a
successful proof structure, then all proof structures for σ
are successful. Thus, in searching for a successfull proof
structure for an assertion no backtracking is necessary. It also
turns out that the success of a finite proof structure may be
determined by looking at its strongly connected components
for any accepting cycle. An obvious solution to this problem
would be to construct the proof structure for the assertion
and then check if the proof structure is successful. Of course,
this algorithm is not on-the-fly as it does not check the
success of a proof structure until after it is built. An efficient
algorithm, on the other hand, combines the construction of
a proof structure with the process of checking whether the
structure is successful. A Tarjan’s like algorithm was used
in [9] but a NDFS one could also be used.

III. BSP ON-THE-FLY LTL CHECKING

As explained in the previous section, we use two LTL
successors functions for constructing the Kripke structure:
succR ensures a measure of progression slice that intuitivelly
decomposes the Kripke structure into a sequence of slices
S0, . . . , Sn where transitions from states of Si to states of
Si+1 come only from succR and there is no possible path
from states of Sj to states Si for all i < j. Also after succR
transitions (with different hashing), there is no possible
common paths which is due to different knowledge of the
agents. In this way, if we assume, as in Fig 3, a distribution
of the Kripke structure across the processors using the cpu
function, then the only possible accepting cycles or SCCs
are locals to each processor. Thus, because proof-structures
follow the Kripke structure (rule R7), accepting cycles
or SCCs are also only locals. This fact ensures that any
sequential algorithm to check cycles or SCCs can be used
for the parallel computation.1 Call this generic algorithm
SeqChkLTL which takes an assertion σ = s ` AΦ, a
set of assertions to be sent (for the next super-step), and
(V,E) the sub-part of the proof-graph (a set of assertions as
vertices and a set of edges) that has been previously proceed
(this sub-part can grow during this computation). Now, in
the manner of [10], we can design our BSP algorithm
which is mainly an iteration over the independant slices,
one slice per super-step and, on each processor, working on
independant sub-parts of the slice by calling SeqChkLTL.
This algorithm is given in Fig 5.

The main function is ParChkLTL, it first calls an
initialisation function in which only the one processor that
owns the initial state saves it in its todo list. The variable
total stores the number of states to be processed at the
beginning of each super step; V and E store the proof
graph; super step stores the current super step number;
dfn is used for the SCC algorithm; finally, flag is used to

1It is mainly admited that SCC computation gives smaller traces than
NDFS. Both methods are equivalent for our purpose.

def Init main() is
super step,dfn,V,E,todo←0,0,∅,∅,∅
if cpu(σinit)=mypid

todo←todo ∪ {σinit}
flag, total←⊥,1

def ParChkLTL((s ` Φ) as σ) is
Init main()
while flag=⊥ ∧ total>0

send←∅
while todo 6= ∅ ∧ flag=⊥

pick σ from todo
if σ /∈ V

flag←SeqChkLTL(σ,send,E,V)
if flag 6= ⊥

send←∅
flag,todo,total←Exchange(send,flag)

case flag
| ⊥ =⇒ print "OK"
| σ =⇒ Build trace(σ)

def Exchange(tosend,flag) is
dump (V,E) at super step
super step←super step+1
tosend←tosend ∪ {(i,flag) | 0 ≤ i < p}
rcv, total←BSP EXCHANGE(Balance(tosend))
flag,rcv←filter flag(rcv)
return flag, rcv, total

def subgoals(σ,send) is
case σ
| s ` A(Φ, p) =⇒ subg←if s � p then {True}

else {s ` A(Φ)} (R1, R2)
| s ` A(Φ, φ1 ∨ φ2) =⇒ subg←{s ` A(Φ, φ1, φ2)} (R3)
| s ` A(Φ, φ1 ∧ φ2) =⇒ subg←{s ` A(Φ, φ1), s ` A(Φ, φ2)} (R4)
| s ` A(Φ, φ1Uφ2) =⇒ subg←{s ` A(Φ, φ1, φ2),

s ` A(Φ, φ2,X(φ1Uφ2))} (R5)
| s ` A(Φ, φ1Vφ2) =⇒ subg←{s ` A(Φ, φ2),

s ` A(Φ, φ1,X(φ1Vφ2))} (R6)
| s ` A(Xφ1, ...,Xφn) =⇒

subg←{s′ ` A(φ1, ...φn) | s′ ∈ succL(s)}
tosend←{s′ ` A(φ1, ...φn) | s′ ∈ succR(s)}
E←E ∪ {σ 7→R σ′ | σ′ ∈ tosend }
if subg=∅ ∧ tosend6=∅

subg←{True}
send←send ∪ tosend (R7)

E←E ∪ {σ 7→L σ′ | σ′ ∈ subg }
return subg

Figure 5. A BSP algorithm for LTL checking

check whether the formula has been proved false (flag set
to the violating state) or not (flag=⊥).

The main loop processes each σ in todo using the se-
quential checker SeqChkLTL, which is possible because the
corresponding parts of the proof structure are independent
(sec. 2.2, P4). SeqChkLTL uses subgoals to traverse the
proof structure. For rules (R1) to (R6), the result remains
local because the Petri net states does not change. However,
for rule (R7), we compute separately the next states for
succL and succR: the former results in local states to be
processed in the current step, while the latter results in
states to be processed in the next step. If no local state is
found but there exists remote states, we set subg←{True}



which indicates that the local exploration succeeded (P2)
and allows to proceed to the next super step in the main
loop. When all the local states have been processed, states
are exchanged, which leads to the next slice (i.e., the next
super step). In order to terminate the algorithm as soon
as one processor discovers a counterexample, each locally
computed flag is sent to all the processors and the received
values are then aggregated using function filter flag that
selects the non-⊥ flag with the lowest dfn value computed
on the processor with the lowest number, which allows
to ensure that every processor chooses the same flag and
then computes the same trace. If no such flag is selectable,
filter flag returns ⊥. To balance the computation, we use
the number of states as well as the size of the formula (on
which the number of subgoals directly depends).

Notice also that at each super step, each processor dumps
V and E to its local disk, recording the super step number,
in order to be able to reconstruct a trace. When a state σ that
invalidates the formula is found, a trace from the initial state
to σ is constructed. The data to do so is distributed among
processors into local files, one per super step. We thus use
exactly as many steps to rebuild the trace as we have used
to reach σ. The algorithm is presented in Fig. 6: a trace
π whose “oldest” state is σ is reconstructed following the
proof graph backward. The processor that owns σ invokes
Local trace to find a path from a state σ′, that was in todo
at the beginning of the super state, to σ. Then it sends σ′

to its owner to let the reconstruction continue. To simplify
things, we print parts of the reconstructed trace as they
are locally computed. Among the predecessors of a state,
we always choose those that are not yet in the trace π
(set of trace(π) returns the set of states in π) and selects
one with the minimal dfn value (using function min dfn),
which allows to select shorter traces.

IV. EXPERIMENTAL RESULTS

In order to evaluate our algorithm, we have used two
formulas of the form φ U deadlock, where deadlock is an
atomic proposition that holds iff state has no successor and φ
is a formula that checks for an attack on the considered pro-
tocol: Fml1 is the classical ”secrecy“ and Fml2 is ”aliveness“
[15] – which are the most common formulas for verifying
security protocols. The chosen formulas globally hold so
that the whole proof graph is computed. Indeed, on several
instances with counterexamples, we have observed that the
sequential algorithm can be faster than the parallel version
when a violating state can be found quickly: our parallel
algorithm uses a global breadth-first search while the sequen-
tial exploration is depth-first, which usually succeeds earlier.
But when all the exploration has to be performed, which is
widely acknowledged as the hardest case, our algorithm is
always much faster. Moreover, we sometimes could not com-
pute the state space sequentially while the distributed version

def Build trace(σ) is
end←False
repeat
π←ε
my round←(cpu(σ)=mypid)
end←(σ=σ0)
send←∅
if my round

dump (V,E) at super step
super step←super step−1
undump (V,E) at super step
σ,π←Local trace(σ,π)
F←F ∪ set of trace(π)
print π

σ←Exchange trace(my round,σ)
until ¬end

def Exchange trace(my round,tosend,σ) is
if my round

tosend←tosend ∪ {(i, σ) | 0 ≤ i < p}
{σ}, ←BSP EXCHANGE(tosend)
return σ

def Local trace(σ,π) is
if σ = σ0

return (σ,π)
tmp←prec(σ) \ set of trace(π)
if tmp=∅
σ′←min dfn(prec(σ))

else
σ′←min dfn(tmp)

π←π.σ′

if σ′ 7→R σ
return(σ′,π)

return Error trace(σ′,π)

Figure 6. Building the trace after an error

succeeded, thanks to the distribution of states and sweep-line
strategy — which is also used for sequential computing.

We have implemented a prototype version in Python, us-
ing SNAKES [16] for the Petri net part (which also allowed
for a quick modelling of the protocols, including the Dolev-
Yao attacker) and a Python BSP library [17] for the BSP rou-
tines (which are close to an MPI “alltoall”). We actually used
the MPI version (with MPICH) of the BSP-Python library.
While largely suboptimal (Python programs are interpreted
and there is no optimisation about the representation of the
states in SNAKES and the implementation of the attacker
is not optimal at all), this prototype nevertheless allows
an accurate comparison for acceleration. The benchmarks
presented below have been performed using a cluster with
20 PCs connected through a 1 Gigabyte Ethernet network.
Each PC is equipped with a 2GHz Intel® Pentium® dual
core CPU, with 2GB of physical memory. This allowed to
simulate a BSP computer with 40 processors equipped with
1GB of memory each.

Our case studies involved the following four protocols:
(1) Needham-Schroeder public key protocol for mutual
authentication; (2) Yahalom key distribution and mutual
authentication using a trusted third party; (3) Otway-Rees
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Figure 7. Benchmark results for the four protocols where Fml1 is “secrecy”
and Fml2 ’aliveness“

key sharing using a trusted third party; (4) Kao-Chow key
distribution and authentication. These protocols and their
security issues are documented at the Security Protocols
Open Repository (SPORE) [18]. Fig 7 gives the speed-up for
each the two formulas and two sessions of each protocol. For
the Yahalom protocol, the computation fails due to a lack of
main memory (swapping) if less that 4 nodes are used: we
could thus not give the speedup but only times. We observed
a relative speedup with respect to the number of processors.
Finally, measuring the memory consumption of our algo-
rithm, we could also confirm the benefits of our sweep-line
implementation when large state spaces are computed.

V. RELATED WORKS

A. Verification of security protocols

There are many tools dedicated to the modelling and
verification of security protocols as [3], [19]. Most of them
limit possible kinds of attacks or limit in their model
language how addresses of agents can be manipulated in
ad-hoc protocols (using arithmetic operations). Paper [20]
presents different cases study of verifying security protocols
with various standard tools. To summarise, there is currently
no tool that provides all the expected requirements.

A distributed memory algorithm with its tool for verifica-
tion of security protocols is described in [21]. The authors
use buffering principle and employ a cache of recently sent
states in their implementation to decrease the number of
messages sent. Unfortunately, the verification of temporal
properties is not supported due to the difficulties of combin-
ing the parallel checking with the symmetry reduction. [22]
allows to verify some properties about some classes of pro-
tocols for an infinite number of sessions and with some pos-
sibility of replay using a process algebra. But no logic can
be used here and each time a new property is needed, a new
theorem needs to be proved. That can be complicated for the
maintenance of the method. Also, the method cannot be ap-
plied to, e.g., the Yahalom protocol. On the contrary, our ap-
proach is based on a modelling framework with explicit state
space construction, that is not tied to any particular appli-
cation domain and our implementation using Python allows
us to manipulate any kind of data-structures are used for the
modelling protocols. Using Python has been shown a good
trade-off between quick modelling and performance [12] and
model compilation approaches can be successfully applied
to compete with state-of-the-art tools as shown in [23]. So,
instead of using a dedicated framework, our approach mainly
relies on the particular structure of security protocols.

B. Distributed LTL checking

The main idea of most known approaches to the
distributed memory state space generation is similar to the
naive algorithm [24]. More references can be found in [5]
and in [25] for high-level Petri nets. Close to our hashing
technique, [26] presents a hashing function that ensures



that most of the successors are local. For load balancing,
[27] presents a new dynamic partition function scheme that
builds a dynamic remapping, based on the fact that the
state space is partitioned into more pieces than the number
of involved machines. When load on a machine is too high,
the machine releases one of the partitions it is assigned and
if it is the last machine owning the partition it sends the
partition to a less loaded machine.

Very close to our idea, we can cite [28] which used a
partition function that enables cycles for a parallel NDFS
algorithm to be local only (as for us) using SCC in the
formula Büchi automata. The limits of the method are the
cost of this function and furthermore the number of SCCs
which is not enough to scale. [29] presents a distributed
algorithm for SCC computation. In our work, all SCC are
purely local, which is easier and more efficient to handle.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

There are now many tools that check the security of
cryptographic protocols. But none is sufficient and adaptable
for complicated scenarios. Using LTL for such applications
is not new but we have exploited characteristics of these
models to structure the parallel computations accordingly.
Our solution is to use the well-structured nature of security
protocols to choose which part of the state and formulas
is really needed for the partition function and to empty the
data-structure at each super-step of the parallel computation.
Our solution also entails automated classification of states
and dynamic mapping of classes to processors. We find that
our method ensures good acceleration and allows to find
small counterexamples due to its breadth-first search global
strategy but DFS stategy on each processor. Furthermore, we
find that our method to balance states does indeed achieve
better network use, memory balance and runs faster than
methods based on direct states exchanges.

The common method for LTL checking is using a Büchi
automaton. Using proof-structures instead theoretically
has the same worst-case time but it ensures to distinguish
easily local and global successors for the distribution. We
have demonstrated techniques that prove the feasibility
of this approach and showed its potential. Key elements
to our success were (1) an automated states classification
that reduces cross transitions and memory footprint, while
improving the locality of computation (2) using global
barriers (which is a low-overhead method) to compute a
global remapping of states and thus improve balancing
workload, achieving a good scalability.

B. Future work

For future work we think about extending the logic and
increasing the performances. First, proof-structures were
used to check CTL* formula in [9]. We are currently
working to extend our algorithm for this logic and we may

also consider Past operators (in the manner of [30]) that
proved to be useful for protocols [4]. Second, and more
pratical: we want to have a tool that could translate HSPSL
models [4] into ABCD ones since HSPSL is mainly used by
the community; It will also allow us to test our algorithm
on different attackers than the Dolev-Yao one. To optimize
the performance, using a specific library as Divine [31] and
model-compilation [23] will also be considered.

We are also working on the formal proof of our algorithm.
Proving a verification algorithm is highly desirable in order
to certify the truth of the delivered diagnostics. Such a
proof is possible because, thanks to the BSP model, our
algorithm remains simple in its structure which allows us
to use a specific tool for checking BSP algorithms using
Hoare logic [32]. Finally, we would like to generalise our
present results by extending the application domain. In the
security domain, we will consider more complex protocols
with branching and looping structures, as well as complex
data types manipulations. In particular, we will consider
protocols for secure storage distributed through peer-to-peer
communication [33], [34] because it is currently modeled
using ABCD and generates large state spaces.
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