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ABSTRACT

Writing parallel programs is known to be notoriously
difficult. Often programmers do not want to reason
about message-passing algorithms and only want to
combine existing high-level patterns to produce their
parallel program. This is the algorithmic skeletons
approach to parallel programming. It improves re-
liability and clarity of source code. But skeletons
can be insufficient when complicated communication
schemes are needed. Expressing skeletons in a more
general and low level language in the form of a library
seems to be a good compromise between simplicity
and expressive power. In this article, we present a
coarsed-grained implementation using a hierarchical
model of a set of data-parallel skeletons. Programming
experiments and benchmarks complete the article.

KEYWORDS: Skeletons, hierarchical BSP (Bulk-
Synchronous Parallelism).

1. INTRODUCTION

In the context of “Think Parallel or Perish”, paral-
lel code should be the norm. But programmers are
not always able to manipulate low-level routines [8]
or threads [13] without introducing many bugs such
as deadlocks, livelocks, non-determinism etc. In fact,
many parallel programs are not as unstructured as
they appear and could be considered as compositions
of parallel patterns/structures. This observation is be-
hind the BSP [2] (Bulk-Synchronous Parallelism) and
algorithmic skeletons [4] paradigms. Skeletal (resp.
BSP) programming proposes that such patterns be ab-
stracted and provided as a programmer’s toolkit with
specifications that transcend architectural variations
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but with implementations that recognize them to en-
hance performance. But sadly these structures are
rarely used and one reason for this situation is their
lack of expressive power. They often lack a sufficiently
wide set of patterns for practical and efficient program-
ming.

That makes the design of new and robust parallel pro-
gramming languages an important area of research.
Creating such a language involves a tradeoff between
predictability and efficiency and the abstraction of par-
allel features to make programming safer and easier.
SGL is the Scatter/Gather (data-parallel) Program-
ming Language that we introduce as basis for program-
ming skeletons and executing them on hierarchical or
heterogeneous architectures with deterministic, non-
blocking semantics and predictable performance.

Skeleton languages are generally defined by introduc-
ing a limited set of parallel patterns to be composed
in order to build easily a full parallel application [4].
Even if the implementation is less efficient compared
to a dedicated skeleton language (or a MPI send/re-
ceive implementation [6]), an implementation using
SGL has two advantages. First, it allows skeleton pro-
gramming when it is possible and normal SGL pro-
gramming when no pattern is possible for the distri-
bution of the data and of the computations. Second,
some typical data-parallel computations can be eas-
illy written using skeletons; it is thus a good example
for benchmarking our methodology and compare the
performances of SGL to other languages.

The next section formally define SGL’s core features
in their syntax, semantics, abstract parallel machine
and performance prediction model with BSP-like pa-
rameters. We then propose a small library of stan-
dard algorithmic skeletons that are both easily and ef-
ficiently programmed in SGL, and directly applicable
to such higher-level algorithms as FFT and triangular



system solving. The next sections detail an experi-
mental implementation of those SGL programs, per-
formance tests, scalability and their comparison with
the performance prediction model. The final section
analyzes our results and compares them with existing
related works. It also summarizes ongoing and future
work in the direction of a complete SGL library based
on the LLVM programming system [12].

2. A HIERARCHICAL LANGUAGE

2.1. Abstract machine

The flat view of a parallel machine as a set of communi-
cating sequential machines remains useful but is more
and more incomplete. For example, GP-GPU proces-
sors have a master-worker architecture. With these
issues in mind, Valiant introduced Multi- BSP [18] a
multi-level variant of the BSP model1 and showed how
to design scalable and predictable algorithms for it.
The main new feature of Multi-BSP is its hierarchical
nature with nested levels that correspond to physical
architectures’ natural layers.
We now summarize our SGL, a programming model for
Multi-BSP adaptable to heterogeneous systems. It as-
sumes a tree-structured machine and uses only the fol-
lowing parallel primitives: scatter (to send data from
master to workers), pardo (to request asynchronous
computations from the workers) and gather (to collect
data back to the master).
The authors have previously studied SGL only from
the point of view of a language for implementing BSP
primitives, with predictable performance and as an im-
perative language. The present paper is the first time
SGL is applied to realistic algorithmic skeletons so the
only content that has been published before is the lan-
guage description without the discussion and formal-
ization of horizontal communication. A detailed de-
scription of SGL can be found in [14] with examples
that are nearly trivial compared to the skeletons ana-
lyzed here: reduction and parallel scan.

The SGL model assumed a set of sequential processors
composed of a computation element (“core”) and
memory unit. The processors are arranged in a tree
structure with the root being called a “master” and
its children that are either masters themselves or
leaf-“workers”. The number of worker-children is

1Valiant’s BSP — Bulk-Synchronous Parallel programming
— model is a bridging model between abstract execution
and concrete parallel systems; It allows portable and scalable
performance prediction for parallel programs. Its initial
assumtions on the architecture were a homogeneous set of asyn-
chronous processors with local memory, a completely connected
communication network and a device for global synchronization.

not limited so that the BSP/PRAM concept of a
flat p-vector of processors is easily recovered in SGL.
Different forms are possible: one worker without
master (a sequential machine), one master with p
workers as children (e.g. a BSP computer where the
non-localized parts of the SPMD code realize the
master) or a general hierarchical machine. An SGL
system has one and only one root-master. A master
coordinates its children. A worker is controlled by
one and only one master and all communication is
between a master and its children.

An SGL program is composed of a sequence of super-
steps, each one having 4 phases: (1) a scatter (comm.)
phase initiated by the master; (2) an asynchronous
computation phase performed by the children (this can
also be a super-step, recursively); (3) a gather (comm.)
phase centered on the master; (4) a local computation
phase on the master. An SGL program is usually re-
cursive: if node is a master and parallelism is needed
then split input data into blocks; scatter them to chil-
dren; process data blocks in children (recursively in
parallel); gather children’s results; else compute on lo-
cal data directly. The cost of a program execution
estimates its computational resources (usually time).
The cost of a sequence of super-steps is a sum and so is
the sum of each one’s 4 phases. An SGL cost is almost
exact a BSP cost with the following generalizations:
(a) phases (1) and (3) have different gap (communi-
cation time per word) factors, one downward g↓ for
scattering and one upward g↑ for gathering with pro-
portionality factors k↓, k↑ that are machine dependent;
(b) both communication phases also incur a fixed cost
l called the latency parameter; (c) the system is in gen-
eral heterogeneous so each computing element has its
own computation speed parameter, but for simplicity
we avoid a detailed description of this factor here; (d)
the cost of a recursive super-step follows recursively
the same formula with a worker being the master of
its sub-system.

In general the cost formulae are CostMaster =
maxpi=1(Costchildi) + w0 × c0 + k↓ × g↓ + k↑ × g↑ + 2l
and CostWorker = wi × ci, which clearly covers the
possibility of a heterogeneous architecture. The cost
formula for CostMaster uses Costchildi which refers
either to the i-th sub-system with the same equa-
tion, or to CostWorker if the i-th subsystem is a
worker (leaf). More often, but not necessarily, we
have symmetric communication: Costsupstep = w ×
c+ [maxi=1..p(Costchdi) + (k↓ + k↑)× g + 2l].

In summary we have a BSP-like cost model which
treats additively the three components of execution



time namely local computation, communication delay
and synchronization. The first one is a maximum over
sibblings executing concurrently. Communication is
linearly proportionnal to the volume being sent either
up or down in the SGL machine. Synchronization is
a fixed overhead for the barrier-synchronization effect
of a gather or scatter operation. Local computation
has a local speed parameter ci measured in Flops/sec-
onds, to be multiplied by wi the number of local Flops
executed. Communication has a coefficient which also
varies with the position in the SGL machine but also
with the direction of communication, up (gather) or
down (scatter). The parameter is measured in second-
s/word or seconds/Byte. Sychronization time is also
“local” to a node when communicating with its chil-
dren. It is measured in pure seconds. Like program
execution, the cost model is recursive to adapt to the
SGL machine shape. Hence the value of Costchildi
is itself an application of the same equation. When
the machine has more than two levels, indices become
sequences of positive integers denoting paths in the
machine tree from the global root to any node.

2.2. Programming model

We now present SGL’s syntax and operational seman-
tics. It is a core programming language but which is
easy to compile into real language notably the C one.
Values: SGL’s values are non-negative integers Nat,
booleans and arrays (vectors) Vec built from them.
Vectors of vectors VecVec are used as input (resp. out-
put) to scatter (resp. gather ) operations. The scatter
operation will take a vector of vectors in the master
and distribute it to workers/sons. The gather opera-
tion will invert this process. 〈v1, v2, . . . v`〉 ∈ VecVec
denotes a vector of vectors. X ∈ NatLoc denotes a
scalar variable (”location”), to store numbers. In SGL,
Xi=pid denotes a master/children location; X without

index denotes a master location.
−→
V ∈ VecLoc denotes

a vector location to store arrays. In the same way,−→
V i=pid denotes a master/children location;

−→
V with-

out index denotes a master location. W̃ ∈ VVecLoc
denotes a vectorial location, to store arrays of arrays.
Expressions: they are relatively standard with the
convenience of scalar-to-vector (sequential) opera-
tions. � denotes a binary arithmetic operation. a
denotes a scalar arithmetic expression ::= n | X | a�
a |
−→
V [a]; b denotes a scalar boolean expression; v de-

notes a vectorial expression ::= 〈a1, a2, . . . a`〉 |
−→
V | v�

a | v�v | W̃ [a]; w denotes a vectorial-vectorial expres-

sion ::= 〈v1, v2, ..v`〉 | W̃ .
Commands: The language’s commands include
classical core sequential constructs with SGL’s 3

〈w, σ〉 → 〈v1, v2, . . . v`〉 ∀numChd
i=1 〈

−→
V i := vi, σ〉 → σ′i

〈scatter w to
−→
V , σ〉 → σ′

〈v, σ〉 → 〈n1, n2, . . . n`〉 ∀numChd
i=1 〈Xi := ni, σ〉 → σ′i

〈scatter v to X, σ〉 → σ′

〈W̃ := 〈
−→
V 1,
−→
V 2, . . .

−→
V numChd〉, σ〉 → σ′

〈gather
−→
V to W̃ , σ〉 → σ′

〈
−→
V := 〈X1, X2, . . . XnumChd〉, σ〉 → σ′

〈gather X to
−→
V , σ〉 → σ′

∀numChd
i=1 〈c, σi〉 → σ′i
〈pardo c, σ〉 → σ′

Figure 1. Operational semantics of SGL

primitives scatter, pardo and gather. c denotes a

primitive command. Com ::= X := a |
−→
V := v | W̃ :=

w | c ; c | if b then c else c | for X from a to a do c

| scatter w to
−→
V | scatter v to X | gather

−→
V to W̃

| gather X to
−→
V | pardo c | if master c else c.

Auxiliary functions return structure sizes:

numChd | len
−→
V | len W̃ .

States (or environments) σ are maps from impera-
tive variables (locations) to values of the corresponding

sort. σ(X) ∈ Nat, σ(
−→
V ) ∈ V ec and σ(W̃ ) ∈ V ecV ec.

Here Pos ∈ Nat is what we call the (relative) po-
sition of location: Pos = 0 denotes master posi-
tion (same as above), and Pos = i ∈ {1..p} denotes
position in i-th child. It is the recursive analog of
BSP’s (or MPI’s) pid’s. σ(Xpos) = σpos(X) ∈ Nat,

σ(
−→
V pos) = σpos(

−→
V ) ∈ V ec. The semantics of SGL

primitives is defined by the inference rules in Fig. 1
where a numerator is a hypothesis, a denominator is
a conclusion and the arrow denotes execution from a
program and initial environ to a final environment.
Scattering a vector of vectors (located in the master)

to a vector variable
−→
V amounts to assigning the indi-

vidual vectors to that variable’s value in the son of the
same rank. Scattering a vector to a scalar variable X
amounts to assigning the individual elements to that
variable’s value in the son of the same rank. Gathering
a vector variable into a vector of vectors variable is the
same as assining the vector variable’s value from son i
to the vector of vector’s value, at rank i in the master.
Gathering a scalar variable into a vector variable is the
same as assining the scalar variable’s value from son i
to vector’s value, at rank i in the master. The pardo
of a sub-program c amounts to executing c is each of
the sons.



The if master conditional selects an instruction
branch depending on the local node’s number of chil-
dren: 0 or more. Also, SGL’s communications do
not provide direct ”horizontal“ communications be-
cause of their hierarchical logical structure. But if
the hardware supports them, inter-worker communi-
cations can be extracted from SGL semantics either
statically or dynamically. To support this claim we
now present a result which shows how successive super-
steps can be partially compressed into a single hori-
zontal communication-synchronization phase. Simple
examples of SGL programs can be found in technical
report [14].

SGL’s communication primitives are simpler than
those of BSP, MPI or most general parallel mod-
els. This raises the question of whether the language
can really avoid ”horizontal” messages. For example
domain decomposition methods for PDEs and many
data-parallel algorithms are naturally expressed with
general communications that do no origin from- or con-
centrate on a single node. The solution we propose is
to allow SGL to express horizontal communications
indirectly: a compiler can detect gather-scatter se-
quences and analyze their effect into a general data
exchange among sibling nodes. The full development
of this technique is not yet complete but its basis is
the formal property below.

Let G ≡ gather
−→
V to W̃ and S ≡ scatter W̃ to

−→
V

in a system with one master and p workers. Assume

also that values for
−→
V are all vectors of length p. As

a result values for W̃ are equivalent to p× p matrices
of scalars. SGL code for reorganizing such a parallel
matrix of values is a sequence G;P;S where P is a
sequential program in the master that realizes a per-
mutation of the matrix.

Proposition 1. Let G;P;S be as above, P a se-

quential program whose non-local variables are W̃ ,
−→
V ,

and π a permutation of {1, . . . , p}2 such that (π:)

∀i, j. σ′′(W̃ )i,j = σ′(W̃(π(i,j))) whenever 〈P, σ′〉 →
σ′′. Then σ′′′(

−→
V )(i,j) = σ(

−→
V )π(i,j) whenever

〈(G;P;S), σ〉 → σ′′′.

Proof. The subprograms must evaluate through
steps: (g) 〈G, σ〉 → σ′; (p) 〈P, σ′〉 → σ′′ and (s)
〈S, σ′′〉 → σ′′′. Recall that environments σ are maps
from identifiers and machine positions (master, son 1,
son 2, son of son i ...) to values. The former are written
as indices. The semantics translates step (g) into (g’:)

σ′ = σ[W̃/σ(
−→
V )i | i = 1, . . . , p] and step (s) into (s’:)

σ′′′ = σ′′[
−→
V /σ′′(W̃ )i |i = 1, . . . , p]. We thus have:

σ′′′(
−→
V )(i,j) = (σ′′′(

−→
V )i)j = (σ′′(W̃ )i)j (s′)

= σ′′(W̃ )(i,j)
= σ′(W̃ )π(i,j) (π)

= σ(
−→
V )π(i,j) (g′). �

If the proposition’s hypotheses are satisfied then per-
mutation π can be applied locally to the subset of ma-
trix data available on one worker node, and then given
as local argument to a collective communication op-
eration, thus combining two vertical communications
into a single horizontal one. The local interpretation
of subprogram P into π is beyond the scope of this
paper and requires a target language other than SGL.

3. A SKELETON LIBRARY

3.1. Skeleton paradigm

There exist two kinds of algorithmic skeletons [11]:
tasks and data-parallel ones. The former can cap-
ture parallelism that originates from executing several
tasks, i.e. different function calls, in parallel. They
mainly describe various patterns for organizing paral-
lelism, including pipelining, farming, client-server, etc.
The latter parallelize computation on a data structure
by partitioning it among processors and performing
computation simultaneously on different parts of it.

A well-know disadvantage of skeleton languages is that
the only admitted parallelism is usually that of skele-
tons, while many parallel applications are not easily
expressible as instances of known skeletons. Skeleton
languages must be constructed as to allow the integra-
tion of skeletal and ad-hoc parallelism in a well defined
way [4]. In this light, having skeletons in SGL would
combine the expressive power of collective communica-
tion patterns with the clarity of the skeleton approach.

In this work we consider the implementation of well-
known data-parallel skeletons because they are sim-
pler to use than task-parallel ones for coarse-grained
models2 and also because they encode many scientific
computation problems and scale naturally. Even if the
SGL’s implementation is certainly less efficient com-
pared to a dedicated skeleton language (using MPI
send/receive [6]), the programmer can compose skele-
tons when it is natural for him and use a SGL pro-
gramming style when new patterns are needed.

3.2. Our set of data-parallel skeletons

Fig. 2 defines the functional semantics of a set of data-
parallel skeletons [4, 1]. It can also be seen as a naive

2An efficient BSP implementation for those has nevertheless
been shown in [7]



replxn = [x, . . . , x]
map f [x1, . . . , xn] = [(f x1), . . . , (f xn)]

mapidx g [x1, . . . , xn] = [(g 1x1), . . . , (g n xn)]
zip ⊕ [x1, . . . , xn] [y1, . . . , yn] = [x1 ⊕ y1, . . . , xn ⊕ yn]

reduce ⊕ [x1, . . . , xn] = x1 ⊕ · · · ⊕ xn
scan ⊕ [x1, . . . , xn] = [x1, (x1 ⊕ x2), · · · ,

((x1 ⊕ x2) · · · ⊕ xn)]

Figure 2. Simple data-parallel skeletons

sequential implementation using lists. The skeletons
work as follow. Skeleton repl creates a new list con-
taining n times element x. Here we speak of lists for
the specification but parallel implementations would
use more efficient data-structures as arrays (in this ar-
ticle) or a stream (in a client/server or grid environ-
ment) since the size of the lists remain constant.

The map, mapidx and zip skeletons are equivalent
to the classical Single-Program-Multiple-Data (SPMD)
style of parallel programming, where a single program
f is applied to different data in parallel. Parallel ex-
ecution is obtained by assigning a share of the input
list to each available processor.

reduce is an elementary data-parallel skeleton: the
function reduce ⊕ e l computes the ”sum” of all ele-
ments in a list l, using the associative binary operator
⊕ and a neutral element e. Reduction has tradition-
ally been very popular in parallel programming and is
provided as the collective operation MPI Reduce in the
MPI standard. Note that the binary operator ⊕ may
itself be time-consuming. To parallelize the reduce
skeleton, the input list is divided into sub-lists that are
assigned to each processor. The processors compute
the ⊕-reductions of their elements locally in parallel,
and the local results are then combined either on a
single processor or using a tree-like pattern of compu-
tation and communication, making use of associativity
in the binary operator.

The scan skeleton is similar to reduce (and is pro-
vided as the collective operation MPI Scan), but rather
than the single “sum” produced by reduce, scan com-
putes the partial (prefix) sums for all list elements.
Parallel implementation is done as for reduce.

reduce and scan are basic skeletons that are like the
MPI’s collective operations. A more complex data-
parallel skeleton, the Distributable Homomorphism
dh presented in [1], is used to express a special class of
divide-and-conquer algorithms. dh ⊕ ⊗ l transforms
a list l = [x1, · · · , xn] of size n = 2m into a result list
r = [y1, · · · , yn] of the same size, whose elements are

recursively computed as follows:

yi =

{
ui ⊕ vi if i ≤ n

2
ui−n

2
⊗ vi−n

2
otherwise

where u = dh ⊕ × [x1, . . . , xn
2

], i.e. dh ap-
plied to the left half of the input list l and
v = dh ⊕ × [xn

2 +1, . . . , xn], i.e. dh applied to
the right half of l. The dh skeleton provides the
well-known butterfly pattern of computation which
can be used to implement many computations.

4. PROGRAM EXAMPLES

In this section, we give some example of classical par-
allel numerical computations that can be performed
using the skeletons presented above.

4.1. Tridiagonal System Solver (TDS)

As first application example, we consider the solution
of the TDS of equations [1]: A.x = b where A is a n×n
sparse matrix representing coefficients, x a vector of
unknowns and b a right-hand-side vector. The only
values of matrix A different from 0 are on the main
diagonal, as well as directly above and below it — we
call them the upper- and lower diagonal, respectively.

We represent the TDS as a list of rows, each inner row
consisting of four values (a1, a2, a3, a4): the value a1
that is part of the lower diagonal of matrix A, the value
a2 at the main diagonal, the value a3 at the upper
diagonal, and the value a4 that is part of the right-
hand-side vector b. The first and last row of A only
contain two values, but in order to obtain a consistent
representation we set a1 = 0 for the first and a3 = 0
for the last row. This corresponds to adding a column
of zeroes at the left and right of matrix A.

We now use the dh skeleton to parallelize the problem
as a divide-and-conquer parallel algorithm. Since in
the conquer phase, two subsystems can be combined
using the first and last row of the systems, our imple-
mentation works on triples (a, f, l) of rows, containing
for each initial input row the actual row value a, and
the first f and the last l row of the subsystem the row
is part of. Using this list representation, the algorithm
can be expressed as follows:
(tdsm) = mapπ1 (dh ⊕ ⊗ (map triplem)) where: a1

f1
l1

⊕


a2
f2
l2
t2

 =

 a1 � (l1 ? f2)
f1 � (l1 ? f2)
(l1 ◦ f2) • l2


 a1

f1
l1

⊗


a2
f2
l2
t2

 =

 (l1 ◦ f2) • a2
(f1 � (l1 ? f2)
(l1 ◦ f2) • l2





and where (if a = (a1, a2, a3, a4) and b =
(b1, b2, b3, b4)):
a ? b = (a1, a3 − (a2

b1
)× b2, b3 × (−a2

b1
), a4 − (a2

b1
)× b4)

a � b = (a1 − (a3
b2

)× b1, a2, (−a3
b2

)× b3, a4 − (a3
b2

)× b4)

a ◦ b = (a1, a2 − (b1 × a3
b2

), (−b3 × a3/b2), a4 − (a3
b2

)× b4)

a • b = (a1,−(a2
b1

)× b2, a3 − (b3 × a2
b1

), a4 − b4×a2
b1

)

which are row operations in a Gaussian elimination.

The dh method works as follow. In the divide phase,
the matrix is subdivided into single rows. The conquer
phase starts by combining neighbouring rows, apply-
ing first ? (resp. ◦) and then � (resp. •), which re-
sults in systems of two equations each, with non-zero
elements in the first column, the main diagonal and
the last column. The sub-matrices are then combined
into matrices of four rows with the same structure, i.e.,
where all non-zero elements are either on the diagonal,
or in the first or last column. This process continues
until, finally, the entire system of equations has this
form. Note that the first and last column of the ma-
trix remain zero throughout the process, thus the the
solution for the initial system of equations.

Combining two subsystems is achieved using a special
row, obtained from the last row l of the first system
and the first row f of the second one, using operator ?
(resp. ◦). This row is applied using operator � (resp.
•) to each row of the first system. Similarly, the rows
of the second subsystem are adjusted using another
special row obtained from the first and last rows.

4.2. Fast Fourier Transform (FFT)

The FFT of a list x = [x0, . . . , xn−1] of length n = 2m

yields a list whose ith element is defined as:

(FFT x)i =
n−1∑
k=0

xkω
ki
n

where ωn denotes the nth complex root of unity
e2π
√
−1/n.

The FFT can be expressed in a divide-and-conquer
form:

(FFT x)i =

{
(FFT u)i ⊕i,n (FFT v)i if i < n

2
(FFT u)j ⊗j,n (FFT v)j otherwise

where u = [x0, x2, . . . , xn−2], v = [x1, x3, . . . , xn−1],
j = i− n

2 , and a⊕i,n b = a+ωinb and a⊗j,n b = a−ωjnb.
This formulation is close to the dh skeleton except⊕i,n
and ⊗j,n being parametrized with i and n.

These operators repeatedly compute the roots
of unity. Instead of computing them for ev-
ery call, they can be computed once a priori

and stored in a list Ω = [ω1
n, . . . , ω

n
2
n ] accessi-

ble by both operators. For this, we first use
a scan. FFT can thus be expressed as follow:

(FFT l) = letΩ = scan + 1 (repl (ω n) n2 )
in mapπ1 (dh⊕⊗ (mapidx triple l))

where:  x1

i1
n1

⊕


x2

i2
n2

t2

 =

 x1 ⊕i1
n1 x2

i1
2n1


(⊗ is defined similarly). The first element of each triple
contains the input value, the second one its position
and the last one the current list length. In each dh
step, these operators are applied element-wise to two
lists of length n1 = n2, resulting in a list of length 2n1.
x1⊕i1n1

x2 (resp. for ⊗) is defined as x1 +x2× (th (n×
i1
n2

) Ω) where th n [x1, . . . , xn, . . .] = xn.

5. IMPLEMENTATION

We have implemented the dh skeleton using SGL
which map its model of execution since they are both
recursive ones. We have then apply it to TDS and
FFT. For each algorithm we compare the model’s pre-
dicted vs observed run time for increasing data size
and variating the number of processors and cores. Fi-
nally we computed speed-up values.

5.1. Implementation of dh using SGL

All data is distributed in p workers and the algorithm
performs recursively as follow: first of all, each
worker performs a sequential dh with its own local
data; then, the master gathers the computed data,
permutes them according the position, and scatters
the permuted data to the workers; after that, each
worker performs either ⊕ operation or ⊗ operation
according its position. After log(p) times above
achievements, we obtain the final result.

In the pseudo code, line 3 is a recursive call to the
algorithms, lines 14 - 18 are executed in parallel, and
lines 22 - 31, the no-children case, represent a local
sequential loop. The cost of the super-step is below:

CostMaster = maxi=1..p(DHChildi)+
log(p)× (2n × (g↑ + g↓) + 2l
+2n ×max(c⊕, c⊗))

CostWorker = 2n × n× c⊕+c⊗
2

dh imposes many “horizontal” communications that
would be programmed in SGL as sequences of the
form G;P;S as in the proposition. A SGL compiler
or even interpreter will be able to optimize them
into a flat horizontal communication-synchronization
phase, and this is how we have implemented it in
our experiments. Also, it is easy to see, using our



Algorithm 1 Distributable Homomorphism (dh)

DH(IN⊕, IN⊗, INOUT data)

1: if master then
2: par do
3: DH(⊕, ⊗, data);
4: end par
5: for n from 1 to log2(numChd) do
6: gather data to tmp;
7: for i from 1 to (len(numChd)) do
8: if ((i-1) % exp2(n))/2 = 0 then
9: Swap(tmp[i], tmp[i+exp2(n)])

10: end if
11: end for
12: scatter tmp to list;
13: par do
14: if ((PID-1) % exp2(n))/2 = 0 then
15: data := data ⊕ list;
16: else
17: date := data ⊗ list;
18: end if
19: end par
20: end for
21: else
22: for n from 1 to log2(len(data)) do
23: for i from 1 to (len(data)) do
24: if ((i-1) % exp2(n))/2 = 0 then
25: tmp := data[i] ⊕ data[i+exp2(n)];
26: else
27: tmp := data[i-exp2(n)] ⊗ data[i];
28: end if
29: end for
30: data := tmp;
31: end for
32: end if

semantics, that the SGL’s implementation of dh is a
correct one thanks to the simple programming model.

5.2. Performance Measurement

The local processing speed c and network parameters
l, g can be measured on a chosen machine once the hier-
archy of processors and benchmarking setup has been
defined. For a given algorithm we can also analyze the-
oretically, estimate or count the w quantities. We have
performed experiments to observe how the measured
computation time of an SGL algorithm compares with
the cost model’s prediction. The overall system has
the following description: The machine is a SGI Altix
ICE 8200EX with 32 computing nodes, each node has
2 Intel Xeon E5440 (Quad-core, 2.83 GHz, 1333 FSB)
CPUs; 1 TB in total (4 GB per core, DDR2-667 1.5ns)
and the network is 4X DDR InfiniBand switches (16
Gbit/s). We build a 2-level SGL abstract machine to
represent a part of this physical machine:

Unit Children Communication

Root-master 8 nodes InfiniBand
Node-master 4 cores Front-Side Bus

Worker 0 N/A

The CPUs of computing nodes are clocked at 2.83
GHz, for each one c = 0.000353µs/op.

For node level, we use the collective functions
MPI Barrier for L, MPI Scatterv for g↓, and
MPI Gatherv for g↑ of SGI’s Message Passing Toolkit
(MPT 2.04). The g values are given in µs/32bits.

Machine NbProc L(µs) g↓ g↑
2nodes x 1core 2 1.48 0.00138 0.00215

4nodes x 1core 4 2.85 0.00169 0.00200

8nodes x 1core 8 4.37 0.00189 0.00205

16nodes x 1core 16 5.96 0.00204 0.00209

At the core (worker) level, we use OpenMP’s Barrier
for L and the C language’s function memcpy for g:

Machine L (µs) g (µs/32bits)

2 cores 12.08 0.00059

4 cores 25.64 0.00059

Figure 3. TDS

Figure 4. FFT

6. RELATED WORKS

[4] described how to add skeletons in MPI (the eSkel
library) as well as some experiments. It also gives
convincing and pragmatic arguments for the use of



mixed message passing and skeleton programming
using C. Implementation of skeletons using a BSP
library was first done in [19] and BSP cost prediction
for skeletons has also been done in [9]. In both works,
a C library was used and the set of skeletons is more
restricted than ours.

Performing hybrid computation with both MPI and
OpenMP is not new and is known to be efficient
[17]. OpenMP is also known to be more efficient on
multi-processor multi-cores architectures than MPI
[15] even if the difference is currently smaller than
what many researcher think it is. Combining both
produces naturally yields efficient parallel programs.
Except in [10, 3], we are not aware of an implemen-
tation of skeletons using both MPI and OpenMP. In
[16], the authors present a GPGPU implementation
of their skeleton library. Our implementation is more
generic since it can run on a hierarchical parallel
model. When having an implementation of our
operators for GPGPU architectures, we will have this
implementation for our set of skeletons.

MapReduce [5] is a well known and simple-to-use
framework to support distributed computing on large
data sets. But it is not as expressive as our set of
skeletons. One reason for this is that our semantics
contains data layout on the hierarchical architecture so
an SGL program can write explicite data movements:
SGL works on a lower level than MapReduce but it
provides a good performance prediction and optimiza-
tion thanks for its cost model and the methods de-
scribed here allow both more detailed (SGL) and more
abstract (skeletons) programming than MapReduce.

7. CONCLUSION

In this paper, we have implemented some data-parallel
skeletons using a model called SGL well-adapted for
hierarchical and hybrid architectures. This work is
inspired by [8]. We have also performed some bench-
marks for the skeletons expressed in SGL. SGL is of
interest for its cost model, allowing an estimation of
the execution time of its programs. We have defined
the SGL cost of each skeleton’s implementation. We
have then compared predicted performances with mea-
sured ones of some numerical applications of our set
of skeletons. We have show good performance (scala-
bility) and good predictions (predictability).

We are currently working to modify our implementa-
tion in a similar manner to the SkeTo library (http:
//www.ipl.t.u-tokyo.ac.jp/sketo/): that library pro-
vides data-parallel skeletons for C++/MPI program-

mers where skeleton’s expressions are template expres-
sions. This provide efficiency and fast development
even for the relatively large applications considered by
the authors of SkeTo. We are also working on the auto-
matic optimization for the horizontal communications
with the proposition/proof in section 2.2 to automate
certain optimizations that were done manually.

Task-parallel skeletons are also useful for many appli-
cations and can be combined with data-parallel skele-
tons. It would be interesting to include them in our set
of skeletons. Furthermore, it is theoretically possible
to have nested skeletons e.g. by replacing the f argu-
ment of the map by any parallel function or skeleton.
Currently, our implementation forbids this. Flattening
such nested parallelism is theoretically possible but no
formal tool exists for this. The definition and develop-
ment of all the above tools is an important challenge.
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