
From BSP Routines to High-performance ones:

Formal Verification of a Transformation Case

Jean Fortin and Frédéric Gava

Laboratory of Algorithms, Complexity and Logic, University of Paris-East
jean.fortin@ens-lyon.org and gava@univ-paris12.fr

Abstract. PUB (Paderborn University BSPLib) is a C library support-
ing the development of Bulk-Synchronous Parallel (BSP) algorithms. We
present a formal semantics that emphasises the high-performance prim-
itives of the PUB. This semantics is here used to formally verify (using
the Coq proof assistant) a simple optimization of the source code that
transforms classical BSP routines to their high-performance versions.
Key words: BSP programming, proofs, Coq, semantics, optimisation.

1 Introduction

General framework . Compilers of parallel languages are generally assumed
to generate semantically equivalent machine’s instructions from the source pro-
gram. Despite intensive testing and assurance that the sequential part of your
program source is well generated [10], bugs like deadlocks can occur, when the
compiler silently generates an incorrect executable for a correct source.

Writing parallel programs is known to be notoriously difficult, as well as
tracking down compiler-introduced bugs. Debugging both is usually a nightmare.

To cope with the first difficulty, structured approaches to parallel program-
ming using high-level tools (models, languages, etc.) are classical solutions. They
are necessary to simplify both the design of parallel algorithms and their pro-
gramming but also to ensure a better safety of the generated applications.

The second difficulty needs formal methods (rigorous testing is in general not
sufficient). The verification of the optimizations of communications introduced
by a compiler guarantees that the safety properties proved on the source code
hold for the executable compiled code as well.

For sequential programming, this kind of work has begun to be well studied
and would clearly become the norm. But for parallel (high-performance) com-
puting, this kind of research is stammering. There are two main reasons. First,
parallel computing is complex. Second, most of researchers on parallel computing
are usually not accustomed to formal methods. Research on tools that optimize
communication routines has been done [4] with intuitive explanations on their
reliability. To our knowledge, no such tools have been formally verified.
BSP Framework . BSP1 is a parallel model which allows an estimation of the
execution time on a wide variety of architectures. The BSP model can also be

1 We refer to [1,12] for a gentle introduction to the BSP model.

jean.fortin@ens-lyon.org
gava@univ-paris12.fr


Fig. 1. Scheme of a safe environment of BSP programming

well adapted to Grid-computing and is generally presented as a bridging and
emerging model for high-performance computations. The PUB [2] is a C library
of BSP communication routines2.

An interesting advantage of BSP libraries is that they use a very small number
of safe primitives compared to the hundreds of the standard MPI. Furthermore,
the model of execution is structured, making the analysis of BSP programs easier,
yet programs are still efficient. BSP libraries are thus good candidates for formal
semantics investigations. A natural semantics of classical BSP routines with ap-
plication to the correctness of a scientific BSP computation could be found in [6]
and the Coq development is available at http://lacl.univ-paris12.fr//gava/bsp-sem.tar.

Moreover, BSP libraries provide high-performance (HP) versions of the BSP
routines for both BSP message passing (BSMP) and remote memory accesses
(DRMA). These routines are proposed to programmers for improved speedup
of their program even if they are unsafe: they are unbuffered and do not really
follow the safe BSP model of execution. Replacing classical BSP routines by
their high-performance pendant is thus of the responsibility of the programmer
or of a non-formally verified compiler analyser as those of [4].

That is disappointing if we look for an environment where programmers can
write and execute their parallel scientific programs in a safe and efficient way.
Figure 1 resumes this wanted environment where first part is the subject of [6].

Outline. The aim of this paper is the Coq development of a formal operational
semantics (Section 3) for both BSMP and DRMA programming styles of a ker-
nel imperative language (Section 2) with classical and high-performance BSP
primitives. As an application of this semantics, we have done a formal verifica-
tion of a simple optimization of the source code that transforms some classical
BSP routines by high-performance ones. That is, the original source code and
the faster generated one are semantically equivalent (Section 4). Related work
is discussed in Section 5, followed by conclusions and future work in Section 6.

2 BSP Core Language

Our core language is the classical IMP with a set Exp of expressions (integers,
matrix, etc.) with operations on them. Set X of variables is a subset of Exp

2 We refer to the manual, http://wwwcs.uni-paderborn.de/~pub/documentation.html for C type
and more details of the routines of the PUB.

http://lacl.univ-paris12.fr//gava/bsp-sem.tar
http://wwwcs.uni-paderborn.de/~pub/documentation.html


with two special variables: pid and nprocs. The syntax is as follows:

c ::= skip Null command
| x := e Assignment
| c1; c2 Sequence
| if e then c1 else c2 endif Conditional
| while edo cdone Iteration
| declare y := ebegin c end New variable

with x, y∈X and e∈Exp. Expressions are evaluated to values v (subset of Exp)

and we write: Ei,Ri |=
i,p

e⇓ v with p the number of processors and i the pid. In
the Coq formalization, this abstract syntax is presented as inductive data types.
Ei is the store (memory as a mapping from variables to values) of processor i

and Ri is the set of received values. We suppose that Ei,Ri |=
i,p

pid ⇓ i and

Ei,Ri |=
i,p

nprocs⇓p. Evaluation of Exp is not total (e.g. evaluation of 1+true)
but for simplicity always terminates. Parallel operations are3:

| sync Barrier of synchronisation
| push(x) Registers a variable x for global access
| pop(x) Delete x from global access
| put(e, x, y) Distant writing of x to y of processor e

| get(e, x, y) Distant reading from x to y

| send(x, e) Sending value of x to processor e

Sending a single message is done using send. In the next super-step, each
processor can access the received messages. Another way of communication is
remote memory access: after every processor has registered a variable for direct
access, all processors can read or write the value on other processors. Registering
a variable or deleting it from global access is done using push and pop. DRMA
operations are put and get. All get and put operations are executed during the
synchronisation and all get operations are served before a put overwrites a value.

According to the BSP model all messages are received during the barrier of
synchronisation and cannot be read before. Barrier is done using sync which
blocks the node until all other nodes have called sync and all messages sent to
it in the current super-step have been received.

In contrast to the PUB, we use basic values instead of arbitrary buffer ad-
dresses (char ∗). Exp is extended with findmsg(i, e) that finds the eth message
of processor i of the previous super-step and nmsg that returns the arity of Ri.

All BSP primitives of communications have thus their high performance ver-
sion (called hpput,hpget and hpsend with the same parameters). The copies
are done asynchronously and unbuffered. They are finished after the next super-
step and the buffer (src and dest) must not be changed before. Time the desti-
nation is written is undefined (architecture depandant). It is no surprise to say
that high-performance operations improve speedup·

3 We briefly recall that execution of a BSP program is divided into super-steps, each
separated by a global synchronisation; a super-step consists of each processor doing
some calculations on local data and communicating some data to other processors;
the collective barrier of synchronisation event guarantees that all communications
of data have completed before the commencement of the next super-step.



3 High Performance semantics

In [6] the dynamic semantics is specified using a big-step operational semantics.
This choice simplifies greatly the semantics and the proof of programs. We used
here a small-step semantics that emphasizes the high-performance (HP) routines.
by specifing the operation of a program one step at a time.

There is thus a set of rules that we continue to apply to configurations until
reaching a final configuration if ever. In our case, we will have two kinds of
reductions: local ones (on each processor) and global ones (for the whole parallel
machine). The main property is that HP routines are non-deterministic and
communications can be performed at any time.

We denote E [x/v] the insertion or substitution in E of a new binding from
x to v. We denote R the received values of the previous super-step. The com-
munications environment C contains messages to be sent in the current super-
step (noted with ←) and asynchronous messages received from other processors
(noted with →). We also note x a variable that has been registered for global
access (DRMA), x for the contrary and x when that is not important. Note
that HP routines do not put in the environment a value but a variable that is a
pointer to the value: values are sent asynchronously with special rules.

Rules for the local computations are given in Figure 2 and Figure 3. In
Figure 2 the rules describe the control flow, as in the classical semantics of IMP.
In Figure 3, we show the semantics for the PUB-specific instructions. In the case
of send, put, get, . . . the rule just adds a message in the environment before it
is actually sent by the global communication rules.

PUB programs are SPMD so a configuration of the parallel machine is repre-
sented by a p-vector of instructions, stores, communications and received values:

〈〈E0, C0,R0, c0‖ · · · ‖Ep−1, Cp−1,Rp−1, cp−1〉〉

A final configuration is an empty set of instructions (with their environment)
on all processors: 〈〈E0, C0,R0, skip‖ · · · ‖Ep−1, Cp−1,Rp−1, skip〉〉 The global reductions
call the local ones with this rule:

〈Ei, Ci,Ri, ci〉 ⇀
i,p
〈E′i, C

′

i,R
′

i, c
′

i〉

〈〈· · · ‖Ei, Ci,Ri, ci‖ · · ·〉〉⇀ 〈〈· · · ‖E′i, C
′

i
,R′

i
, c′

i
‖ · · ·〉〉

This represents a reduction by a single processor, which then introduces an
interleaving of computations. Note that in the following rules, each ci could be
skip. Asynchronous communications are done with these rules:

〈〈· · · ‖Ei, Ci ∪ {hpsend, j, x,←},Ri, ci‖ · · ·〉〉 where {x 7→ v} ∈ Ei
⇀ 〈〈· · · ‖Ei, Ci,Ri, ci‖ · · · ‖Ej , Cj ∪ {hpsend, j, x,→},Rj , cj‖ · · ·〉〉

〈〈· · · ‖Ei, Ci ∪ {hpput, j, y, x,←},Ri, ci‖ · · ·〉〉 where {x 7→ v} ∈ Ei
⇀ 〈〈· · · ‖Ei, Ci,Ri, ci‖ · · · ‖Ej [y/v], Cj ,Rj , cj‖ · · ·〉〉

〈〈· · · ‖Ei, Ci ∪ {hpget, j, x, y,←},Ri, ci‖ · · · ‖Ej , Cj ,Rj , cj‖ · · ·〉〉 where {y 7→ v} ∈ Ej
⇀ 〈〈· · · ‖Ei[x/v],Ci,Ri, ci‖ · · · ‖Ej, Cj ,Rj , cj‖ · · ·〉〉

That is hpsend sends the value pointed by x to the memory Ej of processor
j, hpput writes the value to the memory at destination and hpget takes the
value at source and the two counters are increased.



〈E,C,R, c1〉 ⇀
i,p
〈E′, C′,R′, c′

1
〉 if c1 6≡sync

〈E, C,R, c1; c2〉 ⇀
i,p
〈E′, C′,R′, c′

1
; c2〉

E,R |=
i,p

e⇓v

〈E,C,R, x := e〉 ⇀
i,p
〈E[x/v],C,R, skip〉 〈E,C,R, skip; c2〉 ⇀

i,p
〈E, C,R, c2〉

〈E, C,R, (sync; c1); c2〉 ⇀
i,p
〈E, C,R, sync; (c1; c2)〉 〈E, C,R, sync〉 ⇀

i,p
〈E,C,R, sync; skip〉

E,R |=
i,p

e⇓true

〈E,C,R, if e then c1 else c2 endif〉 ⇀
i,p
〈E, C,R, c1〉

E,R |=
i,p

e⇓ false

〈E,C,R, if e then c1 else c2 endif〉 ⇀
i,p
〈E, C,R, c2〉

〈E, C,R,while edo cdone〉 ⇀
i,p
〈E, C,R, if e then (c;while edo cdone) else skipendif〉

E,R |=
i,p

e⇓v and x 6∈E

〈E,C,R,declare x := ebegin c end〉 ⇀
i,p
〈E[x/v],C,R, c〉

Fig. 2. Reduction rules of sequential control flow

if {x 7→ v}∈E with E′ = E ⊕ {x 7→ v}

〈E, C,R,push(x)〉 ⇀
i,p
〈E′, C,R, skip〉

if {x 7→ v}∈E with E′ = E ⊕ {x 7→ v}

〈E, C,R,pop(x)〉 ⇀
i,p
〈E′, C,R, skip〉

E,R |=
i,p

e⇓pid and {x 7→ v}∈E and {y 7→ v′}∈E with C′ = C ∪ {put, pid%p, y, v,←}

〈E, C,R,put(e, x, y)〉 ⇀
i,p
〈E, C′,R, skip〉

E,R |=
i,p

e⇓pid and {x 7→ v}∈E and {y 7→ v′}∈E with C′ = C ∪ {get, pid%p, x, y,←}

〈E, C,R, get(e, x, y)〉 ⇀
i,p
〈E,C′,R, skip〉

E,R |=
i,p

e⇓pid and {x 7→ v}∈E with C′ = C ∪ {send, pid%p, v,←}

〈E, C,R, send(x, e)〉 ⇀
i,p
〈E, C′,R, skip〉

E,R |=
i,p

e⇓pid and {x 7→ v}∈E and {y 7→ v′}∈E with C′ = C ∪ {hpput, pid%p, y, x,←}

〈E,C,R,hpput(e, x, y)〉 ⇀
i,p
〈E, C′,R, skip〉

E,R |=
i,p

e⇓pid and {x 7→ v}∈E and {y 7→ v′}∈E with C′ = C ∪ {hpget, pid%p, x, y,←}

〈E, C,R,hpget(e, x, y)〉 ⇀
i,p
〈E, C′,R, skip〉

E,R |=
i,p

e⇓pid and {x 7→ v}∈E with C′ = C ∪ {hpsend, pid%p, x,←}

〈E,C,R,hpsend(x, e)〉 ⇀
i,p
〈E, C′,R, skip〉

Fig. 3. Reduction rules of the PUB’s routines

When all asynchronous communications have been done, synchronous com-
munications and BSP synchronisation is done with this rule:

〈〈E0, C0,R0, sync; c0‖ · · · ‖Ep−1, Cp−1,Rp−1, sync; cp−1〉〉
⇀ 〈〈Comm(E0, C0,R0), c0‖ · · · ‖Comm(Ep−1, Cp−1,Rp−1), cp−1〉〉

if ∀i, j, x, y, v {hpsend, j, v} /∈ Ci ∧ {hpget, j, x, v} /∈ Ci ∧ {hpput, j, y, v} /∈ Ci

That is if each processor is in the sync case, communications are done us-
ing the Comm function that exchanges the messages, which finishes the cur-



rent super-step. The Comm function specifies the order of the messages during
the communications. It modifies the environment of each processor i such that
Comm(Ci,Ri, Ei) = (C′i,R

′
i, E
′
i) as follows: C

′
i = ∅ and

R′

i =

p−1
⋃

j=0

nj
⋃

n=0

{j, n +

j
∑

a=0

na, v} if {send, i, v} ∈n Cj

for BSMP, that is each processor j has sent nj messages to i and thus we take
the nth message from this ordering set. DRMA accesses are defined as follow:

E′i = Ei





p−1
⋃

j=0

[y/v][y′/v′] if

{

x 7→ v ∈ Ej and {get, j, x, y ∈ Ci}

y′ 7→ v′ ∈ Ej and {put, i, y′, v′} ∈ Cj





That is, first, get accesses with the natural order of processors are done (list of
substitutions) and then put accesses finish the communications.

We denote ⇒ for a finite derivation and ⇒
∞

for an infinite one. ⇒ (resp. ⇒
∞

)
is defined by induction (resp. by co-induction):

∀i 〈〈· · · ‖Ei, Ci,Ri, skip‖ · · ·〉〉 ⇒ 〈〈· · · ‖Ei, Ci,Ri, skip‖ · · ·〉〉

∀i 〈〈· · · ‖Ei, Ci,Ri, ci‖ · · ·〉〉⇀ 〈〈· · · ‖E
′

i, C
′

i,R
′

i, c
′

i‖ · · ·〉〉
〈〈· · · ‖E′i, C

′

i,R
′

i, c
′

i‖ · · ·〉〉
⇒ 〈〈· · · ‖E′′i , C′′i ,R′′

i , skip‖ · · ·〉〉

〈〈· · · ‖Ei, Ci,Ri, ci‖ · · ·〉〉 ⇒ 〈〈· · · ‖E′′i , C′′
i
,R′′

i
, skip‖ · · ·〉〉

∀i 〈〈· · · ‖Ei, Ci,Ri, ci‖ · · ·〉〉⇀ 〈〈· · · ‖E
′

i, C
′

i,R
′

i, c
′

i‖ · · ·〉〉 〈〈· · · ‖E
′

i, C
′

i,R
′

i, c
′

i‖ · · ·〉〉 ⇒
∞

〈〈· · · ‖Ei, Ci,Ri, ci‖ · · ·〉〉 ⇒
∞

That is, execution of a program is complete in the final configuration case or
there exists a reduction step or the program diverges. Programs that neither
evaluate nor diverge according to the rules above are said to “go wrong”.

As mentioned, the semantics was developed using the Coq. We give here some
intuitions of this development. The full development is available at http://lacl.univ

-paris12.fr/gava/bsp-hp.tar. In the Coq specification, the dynamic semantics are
encoded as inductive predicates. Each defining case of each predicate corresponds
exactly to an inference rule in the conventional, on-paper presentation of our
semantics. For example, we have one inference rule for each kind of expression
and statement. We do not list the inference rules for lack of space. p-vectors are
represented as functions from Z (Coq’q integer) to instructions or environments.
Lemma 1. ⇒ is deterministic for programs that do not used HP routines.

Lemma 2. ⇒ is not deterministic.

Take for example, the simple following program:
declare x := pidbegin declare y := 1begin

push(x);hpput((pid+ 1)modnprocs, x, x);x := x + 1; sync; y := x
end end

It is impossible to know which value (pid, pid+1 or pid− 1) is affected to y.

Lemma 3. ⇒ and ⇒
∞

are mutually exclusive.

4 Transformation of the source code

In the general case, knowing if it is possible to replace a standard operation
by a high-performance one is undecidable. In this paper, we will only consider
detecting some simple cases but still frequent enough in practice to be useful

http://lacl.univ
-paris12.fr/gava/bsp-hp.tar


(all BSP algorithms that have a constant number of super-steps, e.g. parallel
sorting, FFT, some graph algorithms etc.).

Optimization Conditions. When using the hpput instruction, correct data
delivery is only guaranteed if: (1) no communications alter the source area; (2)
no subsequent local computations alter the source area; (3) no other commu-
nications alter the destination area (4) no computation on the remote process
alters the destination area during the entire superstep.

Conditions to replace safely the routine get by hpget are close to these ones.
For the send instruction, we suppress only one buffer on the source area, so the
conditions (1) and (2) are enough.

Overview of the Translation . In order to simplify the detection of optimizable
operations, we will only consider the programs in which the instruction sync

are located outside conditional instructions (while and if). The program is then
composed of an alternation of sequential blocks and sync instructions:

The advantage is that during the execution, every processor does the same syn-
chronisation at the same point of the program. This way, if in the block bi we
have an instance of put(xl, yd, pid), the four conditions can be translated (within
the block bi): (1) for each processor, no communication alter xl; (2) the proces-
sor does not modify xl after the call to put; (3) for each processor, no other
communication alters yd on processor pid; (4) for the processor pid, there is no
local modification of yd. The optimisation function must comply with those four
conditions. For (1) the check is easy by searching the block of code. For (2) it is
necessary to analyse the control flow in order to know which instructions are to
be executed after the call to the put instruction.

For (3), a problem is raised by the determination of the target pid, which
might be computed by a complex method. Thus, it is practically impossible
to statically check this exact condition. However, when we are in one of the
following two cases, the analysis is made possible: no communication alters yd,
on any processor. and the pid are computed by simple arithmetic expressions,
for which it is possible to obtain the result by a direct analysis4. In practice,
both cases cover a significant number of programs. For (4), there is the same
problem with the pid determination. We treat the programs in the same cases
than previously. For other instructions get and send, the technique is identical.

Optimisation of a block . From the previous unformal analysis we can de-
duce the following optimisation function on a block of code (to simplify the

4 For instance, a systolic algorithm will often have communications done by a processor
to his neighbour, which is computed by the expression (mypid+ 1)%nprocs.



Opos(c1; c2) = O1::pos(c1);O
2::pos(c2)

Opos(while bdo cdone) = while bdoO1::pos(c)done

O
pos

(if b then c1 else c2 endif) = if e thenO
1::pos

(c1) elseO
2::pos

(c2) endif

Opos(c) = c when c ∈ {skip, get, send,hpput,hpsend,hpget}

Opos(x := e) = x := e

O
pos

(declare y := ebegin c end) = declare y := ebeginO
pos

(c) end

Opos(put(xl, yd, pid)) =



























hpput(xl, yd, pid) if

no_comm_target(bl, xl) ∧
no_modify_after(bl, pos, xl) ∧
no_comm_target(bl, yd) ∧
no_modify(bl, yd))

put(xl, yd, pid) Otherwise

where bl is the initial whole block to be analysed

Fig. 4. Optimisation of a block

presentation we just take into account the put instruction). The function B
that decomposes a program into a list of blocks can be written as follows:

B(sync) = T []T

B(i1; sync) = a[b1; . . . ; bn]
T if B(i1) = a[b1; . . . ; bn]

b

B(sync; i2) = T [b1; . . . ; bn]
b if B(i2) = a[b1; . . . ; bn]

b

B(i1; i2) = a[b1; . . . ; bn; b
′

1
; . . . ; b′n]

b

if B(i1) = a[b1; . . . ; bn]
b and B(i2) = a′

[b′
1
; . . . ; b′m]b

′

and (b = T ) ∨ (a′ = T )

B(c) = F [c]F Otherwise

where a[b1; . . . ; bn]
b are blocks where a (resp. b) is a boolean (T or F ) that indicates

if a synchronization occurs before (resp. after) the first (resp. last) block.

This inductive function Opos is defined in Figure 4 and transforms a block (as
a command) to another one. It is apply to a whole block bl to be analysed (search
for a put instructions to be optimized) as follow O[](bl) and where pos coutains
the position in the instruction block tree of the current instruction, encoded by a
list of directions from the root (1 for the first sub-tree, 2 for the second sub-tree
if it exists). The functions no_modify and no_comm_target are simple in-depth
searchs of the instruction, to check that the matching instructions are not called.

pos is useful in the call to no_modify_after, which searches only in the
instructions that are executed after the put instruction. no_modify_after is in
the same way defined by an in-depth recursive search.

Lemma 4. For the semantics ⇒ and a program c, if B(c) = [b1; · · · ; bn] then
O[](b1); sync; · · · ; sync;O[](bn) and c holds to an equivalent result.

The proof of semantic preservation for the translation proceeds by induction
over the evaluation derivation and case analysis on the last evaluation rule used.
The proof shows that, assuming suitable consistency conditions over the BSP
routines, the generated high-performance ones evaluate in ways that simulate
the evaluation of the corresponding BSP programs.

The function that decomposes a program into blocks and the optimisation
function are written recursively, according to the definitions given above, with
the Fixpoint constructor. To prove the correctness of the translation, we proceed
by equivalence between the different states of the formalisation.



First, we prove that the decomposition into blocks is correct, that is to say,
the execution with the small-step semantics of the sequence of blocks gives the
same results that the execution of the original source code.

Then, for a given block, we prove that if the four conditions listed above are
true, the optimized code evaluates to the same values that the initial code would
give. To conclude the proof, we show that the optimization function given above
only changes the put instructions when the four conditions hold.

5 Related work

Proof of BSP Programs. Simplicity (yet efficiency) of the BSP model allows
to prove properties and correctness of BSP programs. Different approaches for
proofs of BSP programs have thus been studied such as BSP functional program-
ming using Coq [5] or the derivation of BSP imperative programs using Hoare’s
axiom semantics [3]. A small-step semantics for BSPlib programs is presented in
[13] but without BSMP routines, diverging or high-performance programs.

The main drawback of these approaches is that they use their own languages
that are not a subset of real programming languages. Also they neither used any
proof assistant (except [5]).
Formally verified source-code transformations. There exists a consider-
able body of earlier work on machine-checked correctness proofs of parts of
compilers (see [10] for surveys). Notably, there exists published work tending to
focus on a special part of a compiler, such as the underlying static analyses [9] or
translation of a high-level language to virtual machine code [7]. Several formal
semantics of C-like languages have also been defined [11].

But all these works are for sequential programs. Also, as noticed in [10],
shared-memory concurrency is raising serious difficulties both with the verifi-

cation of concurrent programs and with the reuse, in a concurrent setting, of

languages and compilers designed for sequential execution.
A work that is close to ours is that of [8]. Using Isabelle/HOL, they formalize

the semantics of C0 (a subset of the C language, close to Pascal) and a compiler
from C0 down to DLX assembly code. They provide both a big-step semantics
and a small-step semantics for C0, the latter enabling reasoning about non-
terminating and concurrent executions.

Our approach has the advantage to be simpler than concurrent programming:
we used a structured parallelism (BSP execution). But that shows that the
simpler optimizations of how processors exchanged data generate hard proofs.

6 Conclusion

Formal methods in general and program proof in particular are increasingly
being applied to software. These applications create a strong need for on-machine
formalization and verification of programming language semantics.

In this paper, we have presented a formal operational semantics for BSP
programs which also introduces high-performance primitives. We have also given



a simple transformation of the source code that generated some calls to high-
performance routines in place of BSP classical ones. An originality of this paper
is that the semantics of the language as well as the transformation have been
written in the specification language of the Coq proof assistant. The proof of
observational semantic equivalence between the source and generated code has
been machine-checked using Coq which ensures a better trust in the results. An
executable compiler can be obtained by automatic extraction of executable Caml
code from Coq. This work is our first experiment to create a certified software for
optimization: transforming some buffered operations to unbuffered ones. Much
work is necessary to optimized more programs and certify this translator.

The main goal of this work is an environment where programmers could
prove correctness of their BSP programs and at the end automatically get high-
performance versions in a certified manner. In final, adapting all these works to
MPI would be a great challenge.

References

1. R. H. Bisseling. Parallel Scientific Computation. A structured approach using BSP
and MPI. Oxford University Press, 2004.

2. O. Bonorden, B. Juurlink, I. Von Otte, and O. Rieping. The Paderborn University
BSP (PUB) library. Parallel Computing, 29(2):187–207, 2003.

3. Y. Chen and W. Sanders. Top-Down Design of Bulk-Synchronous Parallel Pro-
grams. Parallel Processing Letters, 13(3):389–400, 2003.

4. A. Danalis, L. Pollock, and M. Swany. Automatic MPI application transforma-
tion with ASPhALT. In Workshop on Performance Optimization for High-Level
Languages and Libraries (POHLL 2007), in conjunction with IPDPS, 2007.

5. F. Gava. Formal Proofs of Functional BSP Programs. Parallel Processing Letters,
13(3):365–376, 2003.

6. F. Gava and J. Fortin. Formal Semantics of a Subset of the Paderborn’s BSPlib.
In PDCAT 2008, 2008. to appear.

7. G. Klein and T. Nipkow. A machine-checked model for a java-like language, vir-
tual machine and compiler. ACM Transactions on Programming Languages and
Systems, 4(28):619–695, 2006.

8. D. Leinenbach, W. Paul, and E. Petrova. Towards the formal verification of a C0
compiler. In Proc. Conf. on Software Engineering and Formal Methods (SEFM),
pages 2–11. IEEE Computer Society Press, 2005.

9. S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated soundness proofs
for dataflow analyses and transformations via local rules. In 32nd symposium
Principles of Programming Languages, pages 364–377. ACM Press, 2005.

10. Xavier Leroy. A formally verified compiler back-end. Submitted and available on-
line at http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf Com-
mented Coq development available at http://compcert.inria.fr/, July 2008.

11. M. Norrish. C formalised in HOL. PhD thesis, University of Cambridge, 1998.
12. D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about

BSP. Scientific Programming, 6(3):249–274, 1997.
13. J. Tesson and F. Loulergue. Formal Semantics for the DRMA Programming Style

Subset of the BSPlib Library. In J. Weglarz, R. Wyrzykowski, and B. Szyman-
ski, editors, Seventh International Conference on Parallel Processing and Applied
Mathematics (PPAM 2007), LNCS. Springer, 2007.

http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
http://compcert.inria.fr/

	From BSP Routines to High-performance ones: Formal Verification of a Transformation Case
	Jean Fortin and Frédéric Gava

