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Abstract—As the usage of the cloud becomes pervasive in our
lives, it is needed to ensure the reliability, safety and security
of cloud environments. In this paper we study a usual software
stack of a cloud environment from the perspective of formal
verification. This software stack ranges from applications to the
hypervisor. We argue that most of the layers could be practically
formally verified, even if the work to verify all levels is huge.
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I. INTRODUCTION

With the development of mobile and internet applications,
cloud computing becomes more and more important. More
and more of our data is in the cloud. It is thus necessary to
have reliable, safe and secure cloud environments.

If the certification of programs in critical systems is an old
concern, there is a recent trend in this area to formally verify
both the programs and the tools used to produce them [1]
(and even the tools used to analyse them) using automated
and interactive provers, i.e. to have a program and a machine-
checked proof that this program meets its specifications.
Verified programs could take several forms.

One could use a methodology based on the specification
of software and refinement down to an implementation, such
as the B method [2]. One could also use methods based
on Hoare logic and associated tools. For example in [3] the
specifications are pre- and post-conditions of the program,
and the programmer should add some invariants to help the
verification condition generator and the automated provers to
prove the correctness of the program.

Another possibility is to take advantage of the fact that
the logic of some interactive provers (such as Coq [4], [5])
contains a functional programming language. One writes the
program to verify as a functional program, and proves that the
function meets its specification (usually written in the logic
of the proof assistant that corresponds to usual mathematical
logic). A use case of such an approach is [6] where the
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program is a compiler, i.e. a function from source code abstract
syntax trees to assembly code, that is proved to preserve the
semantics of the source program. An actual compiler is then
extracted [7] from the Coq development as an OCaml [8], [9]
program and compiled to native code.

A program runs in an environment: when a program is
proved correct in its source form, the proof is done with respect
to the semantics of the source language. If the compiler is
incorrect, even a proved program could go wrong. A verified
compiler itself makes some assumptions about the operating
system, and so on. The Trusted Computing Base or TCB is the
software (and hardware) that is assumed to be correct, without
having proved its correctness, in a computing environment.
The trust of an environment increases as the size of the TCB
decreases.

In the area of distributed systems (excluding work on
distributed algorithms), the focus is often on security rather
than functional correctness. Security is of course important,
but security properties can rely on some other properties at
different levels of the environment. From this point of view
verifying software with respect to functional specifications is
a sub-domain of verifying security properties. But verifying
the correctness of a program with respect to a functional
specification is interesting by itself and is not necessarily
related to security matters. Thus we mostly consider in this
paper formal verification of software with respect to functional
specifications.

A usual software stack in cloud computing environments is
depicted in figure 1. In this paper we argue that verification at
all these levels is possible and existing work makes us think
it is manageable, even if it is not at all in the reach of a single
team effort. We discuss each level of the software stack as
follows.

At the application level, we will first consider only struc-
tured applications, such as MapReduce [10] and Pregel [11]
applications, in their Hadoop [12] implementations (respec-
tively MapReduce and Hama). However we will consider two
ways of ensuring the correctness of programs: constructive
methods, where a program is derived from a specification,
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i.e. is correct by construction; a posteriori methods where a
program is first written, then proved correct with respect to a
specification (section II).

For executing the applications, first we need to compile
them: we will consider here only compilation towards byte-
code for the JVM [13] as Java is popular for Cloud comput-
ing platforms in particular MapReduce. We will nevertheless
consider two languages: Java and Scala [14]. Second we
need a run-time system: this system consists of a JVM but
also of compiled versions of the supporting libraries such as
MapReduce (section III).

The JVM runs inside an operating system, itself embedded
in a virtual machine running on top of an hypervisor. We
will consider here a special case of JVM, such as Oracle’s
JRockit Virtual Edition [15], that can run directly on top of
the hypervisor, without a host operating system. In our stack
of verified software, it means that the only remaining piece of
software to deal with is the hypervisor (section IV).

We conclude and give the first directions of research in
section V.

II. VERIFIED APPLICATIONS

We discuss the verification of programs that rely on two
programming libraries for cloud computing: the well-known
MapReduce, and Pregel/Hama. Two kinds of verification
methods are considered: constructive methods (section II-A)
or a posteriori methods (section II-B).

MapReduce [10] was initially developed for simple com-
putations such as page-ranking but for a large set. It is

inspired by the algorithmic skeleton paradigm [16]–[18]. In
a MapReduce application, the computation proceeds in two
phases: the map phase and the reduce phase. The programmer
of the application has to specify two functions to be given
to the framework: the map function and the reduce function.
The former takes key-value pairs as input and outputs key-
value pairs of a possibly different type. The map function is
applied in parallel to chunks of the input data. The output key-
value pairs produced by the application of the map function
are sorted by key and all values with the same key are grouped
together. These new key-values pairs are given as input to the
reduce function that usually reduces, for each key, the set of
values to only one value. This is also done on chunks of the
reduce phase input data.

Google’s Pregel [11] is a new paradigm for large-graph
processing. It is graph oriented: each vertex performs a com-
putation where it can send data to other vertices and take
into account data received from other vertices. This kind of
computing is done until every vertex votes the end of the
execution. Each operation on vertices should have a purely
functional specification since there is no order of execution.
Pregel has thus a BSP [19] like runtime execution. Each stage
of computation of Pregel corresponds to a BSP super-step.
Page-ranking and shortest paths are natural applications for
Pregel and more complicated algorithms can be developed as
small-world graph partition (for social networks) or bi-graph
decompositions, etc.

Hama [20] is a Apache project language inspired from
Pregel and BSP computing for Java which mainly provides the
classical BSP’s send/received operations with explicit barriers
of synchronisation. Only the low-level details of execution
which is using what is called a BSP Master for scheduling the
computations over multi-core architectures is really a change
with respect to classical BSP libraries. It handles a large
variety of computations (all BSP algorithms that have been
developed over many years, see [21] for an overview) but
it is currently mainly used for graph partitioning for social
networks. Communications are performed with side-effects.
Thus a posteriori verification methods seem more suitable than
constructive methods.

A. Constructive Methods

Transformational programming [22], [23] is a methodology
that offers some scope for making the construction of efficient
programs more mathematical. Program calculation is a kind of
program transformation based on the theory of Constructive
Algorithms [24]–[26]. An efficient program is derived step-
by-step through a sequence of transformations that preserve
the meaning and hence the correctness. With suitable data-
structures, program calculation can be used for writing parallel
programs [27]–[29].

Constructive algorithms are often related to functional pro-
gramming [30]. Higher-order combiners are used to write a
specification, in a way that is not efficient. This specification,



that is a functional program, is then refined into a more
efficient functional program. An example of such a derivation
could be found in [31]. In the case of parallel program-
ming, the final result is usually still a sequential functional
program (in Haskell notation [32], [33]). There is a final
step that translates this functional program into a parallel
program with algorithmic skeletons (usually written in C++,
for example [34], [35]): this translation is not verified. One
exception is [36], [37] where the derivation process is done
within the Coq proof assistant [5], and a Bulk Synchronous
Parallel ML [38], [39] program is extracted from the Coq
development [7].

In the case of MapReduce programs, a semantics analysis of
Google’s MapReduce has been conducted in [40]. [41] extends
this analysis and uses it as a basis for a constructive method for
building Java Hadoop MapReduce programs. The constructive
method is further extended in [42]. In this work if the formal
basis is sound, there is no verification that the arguments of
the derivation framework, written in Java, actually verify the
conditions imposed by the formal framework. Moreover there
is actually no guarantee that the MapReduce implementation
actually fulfills the functional specification of [40] or [41].

To have a more reliable way to construct MapReduce
programs, it would be better to derive programs within a proof
assistant, then to extract programs from the proof assistant
development. There is currently no proof assistant that can
produce Java programs. However the Scala programming
language could be considered as a functional language. Thus
it is appropriate as a target language for proof assistants
(Isabelle [43] could produce Scala programs, and in Feburary
2012, a team released the first version of a partial extraction
module for the Coq proof assistant [44]). Moreover it compiles
to the JVM thus allows to directly use Java MapReduce and
Pregel/Hama implementations.

Thus the semantics of MapReduce should be axiomatised in
a functional way, the derivation done using this semantics, and
extracted programs would depend on the Scala layer on top of
MapReduce. Of course, we should verify that the implemen-
tation of this Scala layer, as well as the Java implementations
of the structured parallel programming libraries, are indeed
satisfying the axiomatisation used using the derivation process.
We discuss this issue in section III-A.

Axiomatising the semantics of Pregel is possible and would
allow us to extract certified graph algorithms. A step by
step derivation of graph algorithms from the specification
could be done using variants of the BH skeleton [37] (which
manipulates distributed lists) since graphs can be considered
in a logical point of view as lists of lists of vertices.

B. A Posteriori Verification

Hoare logic [45] which is a discipline for annotating
programs with logical formulae (called assertions) and for
extracting logical formulae (called proof obligations) from

such programs, can be used for reasoning rigorously about
the correctness of programs.

For sequential languages, the traditional way for verifying
programs is based on a Verification Condition Generator
(VCG). The user annotates the source code with assertions
that describe pre- and post-conditions as well as invariants.
The VCG tool extracts proof obligations from programs with
annotations. The program is correct, i.e. it is guaranteed to
satisfy its specification, if the proof obligations can be proved
correct. The Boogie [46] and Why [47] systems follow this
approach. Why generates proof obligations from an annotated
program. These proof obligations can then be sent to auto-
mated provers, such as Alt-Ergo [48], and if they fail, to
an interactive theorem prover such as Coq. It is to notice
that recent work [49] has even studied the verification of the
verification condition generators.

In the case of MapReduce, the approach of [50] is similar
to the approach of [51], [52] in the context of functional
parallel programming. They take advantage of the fact that
the Coq proof assistant logic contains a functional language.
To allow the writing of MapReduce programs in Coq and
reasoning on them, the authors axiomatise the MapReduce
functions. The Coq programs are then extracted to Haskell
programs that are themselves linked to Hadoop MapReduce
through Hadoop Streaming. However the efficiency of the
obtained programs is not evaluated. In the same paper they
use the Krakatoa/Why [47] framework to reason about Java
MapReduce programs.

We think that the approach is interesting and should be
mixed with [41] to obtain a framework where one could
derive and/or write MapReduce programs within Coq and
extract them. However, it would be best to extract Java
programs, or at least programs that could be linked to Hadoop
implementation without too much overhead such as Scala;
or to extract programs in languages that have an Hadoop-
like implementation, such as OCaml with the Plasma [53]
framework. In the former case, Scala is an interesting choice.

III. VERIFIED COMPILATION AND EXECUTION

A. Verified Supporting Libraries

In a MapReduce or Pregel application, the supporting li-
braries are a large part of the application semantics. Therefore,
these libraries, as Java programs, should be proved correct
with respect to functional specifications (or axiomatisations
used for reasoning about MapReduce and Pregel programs)
such as [40].

However, contrary to the case of MapReduce arguments
– where the Map and Reduce programs are sequential Java
programs – the implementations of the MapReduce and
Pregel/Hama libraries are both concurrent and distributed.

To handle the concurrent aspects in the verification, logics
that deal with threads and synchronisation primitives are
necessary [54]. Of course the implementations of such libraries



rely often on parts of the Java library API implemented in C
and linked with the Java Native Interface (JNI). The JNI calls
refer to low level implementations that in turn calls low level
services of the underlying extended JVM or (a library based
on calls to) the hypervisor. At this level, the semantics of such
low-level functions and OS calls would be axiomatised: only
their functional specifications should be used. However during
the verification of the JVM (section III-C) and of the hyper-
visor (section IV), one would check that the implementations
indeed follows these specifications.

Distributed aspects are also very important. Indeed the
Hadoop framework relies on several software components
in particular the Hadoop Distributed File System (HDFS),
the job-tracker which coordinates the jobs run and the task-
trackers which handle the execution of the (map and reduce)
tasks that have been created to perform the job. HDFS and the
job-tracker both deal with replication to ensure fault tolerance
and high-performance. The parametrisation of the framework
is also very high.

A strategy for proving the correctness of such a framework
should be progressive: in a first step a functional specification
of these components should be designed, with few parameters.
Then in a second step, one needs to prove that each component
implementation indeed satisfies the functional specification. A
first version of the proof may be done with assuming that
there is no fault during execution. A second version of the
proof should state clearly the hypothesis about the faults.
Later on, additional parameters could be added to the verified
framework.

B. Verified Compilation

Although the interest in the verification of compilers is not
new, it is only recently that fully formally verified compilers
for large subsets of widely used programming languages were
developed, in particular the CompCert compiler [6], [55]–
[57] for the C language compiled to ARM, PowerPC or
x86 assembler. Such a verified C compiler is needed for the
compilation of the hypervisor and for the implementation of
the JVM. However for the upper layers of the considered
software stack, a formally verified Java compiler is needed.
A verified compiler for a small subset of Java is presented
in [58]. To handle not only user arguments to the MapReduce
and Hama frameworks, but also the implementation of the
framework, this subset is not sufficient.

The Java language and the byte-code of the JVM are not
very different, and the usual Java compilers do not perform
complicated optimisations. The compilation of the sequential
part of the Java language to JVM byte-code may not be
one of the very difficult tasks. However the Java language
specification [59] includes threads: the formalisation of the
full specification will be more complicated that the sequential
subset and in particular should deal with Java memory model.
On the other hand, the Java Virtual Machine specification [13]
does not have any instruction for manipulating threads. A look

at the implementation of the Thread class of Java API reveals
that this implementation relies on native code through JNI.
One could imagine that such calls could be given a functional
specification for formalising Java’s semantics and that the
native code would be proved correct with respect with this
specification. This is conceivable for some native code API but
not for threads. Indeed in this case the native code interacts
with the JVM in a non trivial way: it changes the internal
state of the JVM. Therefore the formalisation of a multi-
threaded JVM should contained both a formalisation of the
JVM specification but also a full formalisation of the Thread
class (and related classes), including native code. This is the
only way in order to be able to prove the correctness of the
compilation of multi-threaded Java programs.

The Scala language is also compiled to JVM byte-code.
In [60], the author studies the correctness of the compiler
passes, but to our knowledge it is not formalised in proof
assistant. If Scala programs are to be derived from specifica-
tions, a verified Scala compiler would be necessary to a full
verified chain.

It is to be noticed that this line of work is not specific
to cloud environments: any system using Java or Scala could
benefit from certified versions of the compilers.

C. Verified Runtime System

The Java and Scala compilers produce Java byte-code to
be executed by a Java Virtual Machine. In case we want to
avoid a host operating system in a virtualised environment,
this JVM could be extended so it could be run directly by the
hypervisor.

Existing JVM implementations are usually written in multi-
threaded C or C++. Thus proving the correctness of an
extended version of one of these implementations would be
a huge work. Most of JVM instructions may be not very
difficult to prove correct in a sequential and non-optimised
version of a JVM, but still a JVM has other components such
as the garbage collector, that is not easy to prove correct (some
simple GCs have been proved correct, for example [61]). In the
case of parallel JVM, the garbage collector will be concurrent
and thus even more difficult to prove correct.

Moreover, to provide efficient executions, the JVMs rely
on Just-In-Time compilation. There is preliminary work on
the verification of JIT [62], but there is still a lot of work
to do to attain for example a coverage of real JVMs similar
to the coverage provided by the verified CompCert compiler
with respect to usual optimising C compilers. In the case
of the CompCert compiler, the performance of the programs
compiled with CompCert are close to the performances of
programs compiled with gcc at the first and second level of
optimisation, and better in some cases. Verified software could
be almost as efficient as non verified software.

The remark about the compilers applies also to the JVM:
a verified JVM is interesting for cloud computing but also in



other contexts. Only the extensions needed to run the JVM
directly on top of the hypervisor would be specific to cloud
environments.

IV. VERIFIED HYPERVISOR

Hypervisors virtualise the underlying architecture, allowing
a number of guest machines (partitions) to be run on a single
physical host. They represent an interesting and challenging
target for software verification because of their critical and
complex functionalities.

Anaxagoros [63] is a secure microkernel that is also capable
of virtualising preexisting operating systems, for example
Linux virtual machines. It is capable of executing hard real-
time tasks or operating systems, for instance the PharOS real-
time system [64], securely with non real-time tasks, on a single
chip.

This goal has required to put a strong emphasis on security
in the design of the system, and not only on traditional
“behavioural” security (isolation and access control to protect
confidentiality and integrity) but also on availability (being
able to slow down or steal resources from another task is
considered a breach in security).

As it is a microkernel, Anaxagoros is the only piece of code
that requires to run in the privileged mode of the CPU in an
Anaxagoros-based system. Every piece of code that can be
moved out of the kernel is placed in a separated user-level
service, with limited rights.

This approach contributes to TCB minimisation in two
ways:

• first, the kernel, which is the only globally trusted piece
of code, is minimized,

• second, as services are isolated, their faults does not affect
applications that do not require them. For instance, a bug
in a network stack would not affect a task that does not
use the network.

For safety and concurrency reasons [63], the interface of
the kernel and the main user services is low-level, close to
the hardware (this is contrary to other microkernel approaches
which attempt to provide a generic interface that abstracts the
hardware). This approach also allows to classify Anaxagoros
as an exokernel [65] or as an hypervisor.

This approach also contributes to TCB minimisation: as the
interface provides no abstraction, the code of the kernel and
services becomes much simpler, as it only has to check that
the required hardware operations are permitted.

The kernel generally strictly enforces Saltzer and Schroeder
behavioural security principles [66]. In addition to minimis-
ing TCB, the kernel provides protection domains using the
machine’s virtual memory mechanisms and controls access to
shared services using capabilities.

The kernel and services are designed to prevent availability
attacks, which are a problem often ignored in conventional

system design. In particular the denial of resources attack can
be made when a task can issue requests that make the kernel
or a service allocate a resource (e.g. memory): by issuing
a sufficient number of requests, the system can run out of
memory. New resource security mechanisms and principles
have been built in Anaxagoros to avoid this kind of attack
(for instance the kernel does not allocate any memory, while
still allowing dynamic creation of new virtual machines).

A recent work [67] presented rigorous, formal verification
for the OS microkernel seL4, allowing devices running seL4
to achieve the EAL7 evaluation level of the Common Cri-
teria [68]. Another formal verification of a microkernel was
reported in [69]. In both cases, the verification used interactive,
machine-assisted and machine-checked proof with the theorem
prover Isabelle/HOL. Although interactive theorem proving
requires human intervention to construct and guide the proof,
it has the benefit to serve a general range of properties
and is not limited to specific properties treatable by more
automated methods of verification such as static analysis or
model checking.

The formal verification of a simple hypervisor [70] uses
VCC [71], an automatic first-order logic based verifier for
C. The underlying system architecture is precisely modeled
and represented in VCC, where the mixed-language system
software is then proved correct. Unlike [67] and [69], this
technique is based on automated methods.

The purpose of our ongoing work is the formal verification
of the Anaxagoros hypervisor. Our approach is based on
the specification of the code in the ACSL [72] specification
language and proving it using the plugins Jessie and WP for
program proving of the Frama-C tool [73]. We are currently
working on the proof of the virtual memory management
module, one of the most critical modules.

An important future work direction is the verification of a
concurrent hypervisor. For instance, the verification in [67],
[70] was carried out for a sequential version. This research
direction is extremely important for an OS or a hypervisor
since concurrency naturally appears both for parallel execu-
tion on a multi-core architecture and for non-deterministic
interleaving via threads on a unique processor. We expect
that such verification may require the development of new
algorithms and specifications, adapted for the proof of a
concurrent version, in particular for the execution on multi-
core processors.

Future work will also include an extension of the verification
to complex mixed software and hardware designs in order to
avoid that a hardware failure alters the expected behavior of
a verified hypervisor.

Whatever particular verification technique is used, formal
verification of a microkernel or a hypervisor represents a great
effort and remains valid only for a particular version being
verified. Therefore, any evolution of the software requires
new verification. To allow industrial usage of formally verified



system software in a real-life environment, the verification of
a new version should require only a limited effort, without
carrying out a new specification and proof of the whole
system. Another important future work direction is developing
formal verification methodologies for modular proof such that
any evolution has a clearly defined, limited impact on the
verification.

V. CONCLUSION

In an usual software stack of a cloud computing environ-
ment, previous work in other context shows that it is possible
to formally verify all the layers of the stack. Some of the
component to be proved correct are very specific to cloud
computing: the applications, the supporting libraries imple-
mentations, extensions to the JVM, the hypervisor. Some are
not: the Java and Scala compilers, the JVM implementation.
The effort for verify the whole stack is not at all within the
reach of a single team.

[74] estimated the effort for developping a standard library
for a mathematical proof checker to 140 man-years. More
work is needed to be able to give an estimate of the needed
effort for verifying a cloud environment, but we think that it
would be of the same order.

Ongoing and future technical work includes both ends of the
stack: verification of MapReduce applications (by constructive
methods), verification of Hama applications (by a method
that extends [75]) and verification of parts of the Anaxagoros
hypervisor.
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Eds. Springer, 2008.

[8] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon,
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