
Type System for a Safe Execution
of Parallel Programs in BSML

Frédéric Gava
LACL, University Paris-East Créteil

Créteil, France
Frederic.Gava@univ-paris-est.fr

Louis Gesbert
MLstate

Paris, France
Louis.Gesbert@mlstate.com

Frédéric Loulergue
LIFO, University of Orléans

Orléans, France
Frederic.Loulergue@univ-orleans.fr

Abstract
BSML, or Bulk Synchronous Parallel ML, is a high-level language
based on ML and dedicated to parallel computation. In this pa-
per, an extended type system that guarantees the safety of parallel
programs is presented. It prevents non-determinism and deadlocks
by ensuring that the invariants needed to preserve the structured
parallelism are verified. Imperative extensions (references, excep-
tions) are included, and the system is designed for compatibility
with modules.

Categories and Subject Descriptors D3.2 [Programming Lan-
guages]: Language Classifications—Concurrent, distributed, and
parallel languages

General Terms Reliability, Theory

Keywords Functional Programming, Parallel Programming, Bulk
Synchronous Parallelism, Formal Semantics

1. Introduction
The Bulk Synchronous Parallel ML (BSML) language [?] is a par-
allel extension of ML (a family of functional programming lan-
guages). BSML is an attempt at providing the right balance be-
tween the two opposite approaches of parallel programming, low-
level and subject to concurrency issues, and high-level with loss of
flexibility and efficiency. In the former, we find general-purpose li-
braries such as MPI [?], generally used with Fortran or C; these
approaches are unsafe and leave the programmer responsible for
deadlock or non-determinism issues. In the latter stand traditional
algorithmic skeletons [? ? ?] where programs are safe but limited
to a restricted set of algorithms.

BSML is implemented as an extension for Objective Caml [?
], consisting of a pre-processor and a library. This makes the ad-
vanced general-purpose features of Objective Caml, such as multi-
platform native-code compilation, available in the language; BSML
also benefits from Ocaml type system, but in a limited way. Par-
allelism, in BSML, is strongly structured and follows the BSP
(Bulk Synchronous Parallel [? ? ?]) paradigm. All communica-
tions in BSML are collective (require all processes) and deadlocks
are avoided by a strict distinction between local and global com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
HLPP’11, September 18, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0862-5/11/09. . . $10.00

putation. BSP also provides BSML with a simple and efficient cost
model.

The formal semantics of BSML have made it possible to write
proofs of parallel programs [? ?] using the Coq proof assistant [?
?]. However, given the extensions that have been added to BSML
recently (references, exceptions), BSML does not have a type sys-
tem that is able to prevent run-time problems due to an incorrect
use of the parallelism in standard user programs. A previous static
analysis [?] achieved this goal in a smaller language by building
constraints along expressions, but it is not relevant with the cur-
rent version of BSML anymore; the system presented here is less
restrictive and more scalable, and is inherently compatible with ref-
erences, exceptions and modules.

In order to present how to statically ensure the safety of parallel
programs, we will start by a description of BSML itself. The differ-
ent problems that may be caused by the parallelism are described
in section ??. The core of the type system is given in ??, and how it
applies to the more advanced features of the language is the subject
of section ??. A type inference algorithm is given in section ??.
We compare with related work (section ??) and finally conclude in
section ??.

2. The BSML Approach to Parallelism
BSML is designed as an inclusive extension, by which we mean
that a program in the host language will be compatible with BSML
(with some exceptions that will be discussed later). Parallelism
is achieved by the use of a data structure called parallel vector
noted 〈x1, . . . , xp〉 for “value xi at processor i” on a machine
with a fixed number p of processors. The parallel vector is the
only way to obtain different values at different processors: all code
outside is indeed replicated among the processors and assured to be
consistent everywhere. A sequential host language program would
thus be executed p times, once on each of the processors, returning
– assuming the prerequisite that it is deterministic – a consistent
replicated value at each of them.

Parallel vectors are manipulated through four primitives (fig-
ure ??).
p, the number of processors of the parallel machine, is a constant

defined at run-time. mkpar is used to build a parallel vector from
a function; proj does the opposite, turning a parallel vector back to
a replicated function. apply locally applies a vector of functions to
a vector of arguments, enabling local application of functions. put
is a versatile communication primitive, taking as arguments local
functions that explicit what data to send to each processor, and
returning local functions used to get, at each processor, the data
received from the others.

An important difference exists between, on one part, mkpar and
apply, and on the other part, put and proj. The first two, indeed,

mkpar : f 7→ 〈f 0, . . . , f (p− 1)〉
apply :

〈f0, . . . , fp−1〉
〈x0, . . . , xp−1〉 7→ 〈f0 x0, . . . , fp−1 xp−1〉

put : 〈f0, . . . , fp−1〉 7→ 〈fun i→ fi 0, . . . , fun i→ fi (p− 1)〉
proj : 〈x0, . . . , xp−1〉 7→ fun i→ xi

Figure 1. BSML Primitives

are performed asynchronously by all the processors, as they do not
need any communication. put and proj, on the other hand, trigger
a phase of collective communications, ended with a global barrier.
This, in accordance with the BSP model, ends the current super-
step and ensures the determinism of the execution.

In BSP, a program is a sequence of super-steps which are com-
posed of three stages, in this order: asynchronous computation at
each processor, global communication and global barrier. Super-
steps in BSML are implicit, and always ended by put or proj, which
wait for the barrier before making the communicated results avail-
able locally.

2.1 Examples
These minimal primitives are very suitable for semantics and proofs
of programs, but they can, and are indeed intended to be embedded
in higher-level functions.

• apply, for example, is most commonly used to apply the same
function on the members of a vector:

let replicate x = mkpar(fun pid→ x)
let parfun f v = apply(replicate f) v

replicate turns a replicated value into a parallel vector, while
parfun f v applies f in parallel to all members of the vector v.

• Total-exchange is a well-known pattern in parallel computation:
it makes local data from all processors available everywhere,
and can be defined in BSML with:

let totex v = put (parfun (fun v′ i→ v′) v)

or alternatively let totex v = replicate (proj v).
• A simple reduction on a vector of lists v using function f with

a neutral element z could be performed with:

let proj list v = List.map (proj v) [0, . . . , p− 1]
let fold parlist v f z =
let v′ = parfun (funx→ List.fold left x f z) v in
List.fold left (proj list v′) f z

where List.fold left and List.map are functions from the stan-
dard library of Objective Caml that perform list reduction and
mapping of a function to a list, respectively. proj list is used to
convert the results of proj into a list, and fold parlist performs
local reductions, gathers the results globally and reduces again.

2.2 Definition of Mini-BSML
To fit the definition of the type system within this paper, we concen-
trate on a small core of the language that nevertheless comprehends
BSML parallel characteristics.

e ::= x variables
| c constants
| op operators
| funx→ e functions
| e e function application
| letx = e in e definition
| (e, e) pair
| if e then e else e conditional

Among the operators op are, at least:

op ::= mkpar | apply | put | proj | fst | snd | · · ·
The syntax of imperative features will be introduced in section

??, where they will be discussed.
The full semantics of the language is not described within this

paper. The curious reader is invited to refer to [?]; nevertheless,
the core language used here is very standard apart from the parallel
primitives.

3. Different Kinds of Unsafe BSML Programs
Programs in BSML are supposed to follow some invariants in order
to keep the properties of BSP and the strict distinction between
local and global execution. This section describes these invariants,
and how they can be broken by programs that would be correctly
typed in ML.

As it may already appear to the reader, the most important one
is the consistency of replicated expressions. We say that we lose
replicated consistency if an expression outside of a parallel vector
holds different values at different processors. For example, in the
following program (where v is a parallel vector).

if a then put v else v

An inconsistent value for a would cause a different branch of
execution at different processors, some of them waiting at a barrier
(when a = true) and the others not, causing a deadlock. Loss
of replication happens for example when using non-deterministic
operations, e.g. random, or operations that are dependant on the
local processor, e.g. system or i/o related. In the example above,
defining a = ((random int 10) < 5) is likely to trigger the
problem. A complete system for the management of global and
local I/O for BSML is discussed in detail in [?].

3.1 Local execution of parallel primitives
BSML is built around the notion of global execution and parallel
vectors. This makes the semantics of programs such as

mkpar(fun i→ mkpar(fun j → i ∗ j))
ambiguous: the parameter of the first mkpar is a function that is

supposed to be executed locally. The second mkpar would thus be
executed once on each processor; since this primitive is supposed
to create a new parallel vector, that would require each of them
to communicate with its neighbours to create locally a new global
object, actually creating p parallel vectors containing p values each.
The semantics of such a behaviour would be very complex, not

to mention the loss in readability, performance and performance
prediction possibilities.

The local execution of the other primitives would be even more
difficult to make sense of: what would be the meaning of put used
locally by a processor i and requesting communications between
processors j and k ? To keep the language and the semantics
simple and usable, the type system rules out local execution of the
primitives, which will be called invalid parallelism.

3.2 Nested parallel vectors
Preventing invalid parallelism still allows the definition of nested
parallel vectors, because global values can be accessed anywhere
from the local code.

let v = mkpar(fun i→ i) inmkpar(fun j → v)

is a valid program that would supposedly return the value w =
〈〈0, . . . , p−1〉, . . . , 〈0, . . . , p−1〉〉. This, however, does not faith-
fully describe the actual data since by definition each processor
only holds one value of a vector. The data stored would rather look
like 〈〈0〉, . . . , 〈p− 1〉〉. The expression projw 2, instead of return-
ing the expected vector v, thus returns the result 〈2, . . . , 2〉, which
is a parallel vector which has actually lost its parallel information.

There is no good compromise between the clarity of the seman-
tics and implementation concerns if nested parallelism is accepted.
Therefore, our type system rules it out.

4. Definition of the Type System
We use a Hindley/Milner type system inspired from that of ML,
with added effects [? ?] and constraints [?]. In this section,
we will first concentrate on the prevention of invalid parallelism,
then introduce more constructs that are needed to avoid nested
parallelism. In the core language described above, types are defined
by:

τ ::= α type variable
| Base base type
| τ

π−→ τ function
| τ × τ pair type
| τ par parallel vector

Λ ::= δ locality variable
| ` local
| g global

The first and main concern of our type system is to prevent local
execution of parallel primitives. For that purpose, we use effects.
We write Γ ` e : τ/π if the expression e is typed τ with effect π in
the context Γ. An effect π can remain latent in a function, in which
case we write τ1

π−→ τ2.
We define locality Λ as given above: locality variable δ behaves

in a way similar to type variables and takes values in Λ. Though
they will be extended later, for now we consider simple effects
indicating only the current locality, and take π = Λ.

4.1 Definitions
Type scheme. A type scheme σ is a type with universally quanti-

fied type and locality variables, written σ = ∀α1 · · ·αkδ1 · · · δl.τ
Typing context. A context Γ is a map from language variables to

type schemes

Substitution. Given two partial, finite domain applicationsϕτ and
ϕΛ, from type variables to types and from locality variables to
localities respectively, we define a substitution ϕ as the exten-

sion of ϕτ ◦ ϕΛ to types:

ϕ(α) = ϕτ (α) if α ∈ Dom(ϕτ)
ϕ(δ) = ϕΛ(δ) if δ ∈ Dom(ϕΛ)

ϕ(τ1
π−→ τ2) = ϕ(τ1)

ϕ(π)−−−→ ϕ(τ2)
ϕ(τ1× τ2) = ϕ(τ1)×ϕ(τ2)
ϕ(τ par) = ϕ(τ) par

ϕ(x) = x in all other cases

Instance. Given a type scheme σ = ∀α1 · · ·αkδ1 · · · δl.τ , we say
that τ ′ is an instance of σ and write σ ≤ τ ′ if, and only if
there exists a substitution ϕ on {α1 · · ·αkδ1 · · · δl} (by which
we mean that any variables not in this set are left unchanged by
ϕ), such that τ ′ = ϕ(τ)

Free variables The setL(τ) of free variables in a type τ is defined
by induction:

L(α) = {α}
L(Base) = ∅

L(τ1
π−→ τ2) = L(τ1) ∪ L(τ2) ∪ L(π)

L(τ1× τ2) = L(τ1) ∪ L(τ2)

L(τ par) = L(τ)

L(δ) = {δ}

The definition of L is extended to type schemes by:
L(∀α1 · · · δl.τ) = L(τ) \ {α1 · · · δl}.

The locality of an expression denotes its presence on a single
processor or on all of them. A function does not have a specific
locality as a value (it is usually defined globally), but may be re-
stricted to a specific one for its execution. Since this cannot be seen
from its return type alone, we use latent effects on function arrows
to denote it. mkpar, for example, should have a latent locality g
since it can only be executed on the whole set of processors. Some
functions (like the identity and most sequential functions) do not
have a specific locality, in which case their locality is a free vari-
able.

Other functions, on the other hand, may be inherently local
if they cannot consistently be applied in a replicated way on all
processors. The function random int, for example, would not
return a valid replicated value if executed by all processors: we
give it the type unit `−→ int.

Operators need to have statically defined types. These are stored
in a map TC, from operators to type schemes.

TC(mkpar) = ∀α.(int `−→ α)
g−→ α par

TC(apply) = ∀αβδ.(α `−→ β) par
δ−→ α par

g−→ β par

TC(put) = ∀αδ.(int `−→ α) par
g−→ (int

δ−→ α) par

TC(proj) = ∀αδ.α par
g−→ int

δ−→ α

TC(fst) = ∀αβδ.α×β δ−→ α

TC(fst) = ∀αβδ.α×β δ−→ β

These types make the locality constraints of the primitives clear:
they are all restricted to global execution, while the functions they
take as parameters must accept to be executed in a local scope, i.e.
must not themselves execute primitives.

The rules of the type system are given in figure ??. The first four
are the most important:

DEFFUN stores the locality induced by a function in the type
arrow, but does not constrain the current locality (the rule is true for
any π1): the function itself can be defined anywhere. APPFUN then

ENVTYPE
Γ(x) ≤ τ

Γ ` x : τ/π

LET-IN
Γ ` e1 : τ1/π Γ; (x : Gen(τ1,Γ)) ` e2 : τ2/π

Γ ` letx = e1 in e2 : τ2/π

DEFFUN
Γ; (x : τ1) ` e : τ2/π

Γ ` funx→ e : τ1
π−→ τ2/π1

APPFUN

Γ ` f : τ1
π−→ τ2/π Γ ` e : τ1/π

Γ ` f e : τ2/π

CONST

Γ ` c : TC(c)/π

OP

Γ ` op : TC(op)/π

PAIR
Γ ` e1 : τ1/π Γ ` e2 : τ2/π

Γ ` (e1, e2) : τ1× τ2/π

IFTHENELSE
Γ ` e : bool/π Γ ` e1 : τ/π Γ ` e2 : τ/π

Γ ` if e then e1 else e2 : τ/π

Figure 2. Induction rules of the type system

forces the current locality and the locality of an applied function to
be the same, forbidding the use of functions that are not compatible
with the current locality.

ENVTYPE specifies that when taking a type from the environ-
ment, it can be assigned any locality π. Together with LET-IN, this
allows to use the results of a parallel computation at the desired
locality (after using proj). This is needed for valid programs like
letx = proj(· · ·) in 〈expression using x locally〉.
Gen(τ,Γ) is defined in the usual way, except that it also gener-

alises locality variables.
Definition: Generalisation is defined by

Gen(τ,Γ) = ∀α1 . . . αkδ1 . . . δl.τ

with {α1 . . . αkδ1 . . . δl} = L(τ) \ L(Γ).
The other rules are standard ML typing rules, and just propagate

the current locality to sub-terms, which denotes the fact that the
locality can only be changed by using the primitives, or applying
functions that use them.

Take for example the previous expression:

mkpar(fun i→ mkpar(fun j → i ∗ j))
Using our type system, we can have:

Γ ` (fun j → i ∗ j) : int
`−→ int/g

and thus:

Γ ` mkpar(fun j → i ∗ j) : int par /g

the expression have thus the global effect, i.e., the expression makes
parallelism. We have thus:

Γ ` (fun imkpar(fun j → i ∗ j) : int par /g) : int
g−→ int par /δ

and them following the application rule, there is no way to apply a
mkpar to this expression since the effect over the arrow is global.

4.2 Preventing nested parallelism
The type system defined above prevents crashes due to local execu-
tion of parallel code, but still allows the definition and projection of

nested parallel vectors. Since we do not want to prevent the access
to global values from local code – which is a very useful feature –,
and values that are members of parallel vectors can only be defined
from the return values of local function, we choose to restrict the
attribution of the ` locality to functions, depending on their return
type. Note that this does not prevent values of type τ par from be-
ing manipulated locally; however, since these can only be “opened”
by the use of primitives that are forbidden in this scope, no harm
can be done.

This amounts to adding a constraint on its locality and return
type to the definition of a function. We write τ /Λ to specify that
the type τ must be acceptable in the locality Λ, i.e. that if Λ = `, τ
must not contain parallel vectors.

Definition: Locally acceptable types are a subset of all types,
defined as

τ̇ ::= Base | τ π−→ τ | τ̇ × τ̇ | τ̇ array
The constraint τ / ` means that τ should belong to τ̇ .

We extend the effects π from the previous type system with sets
of constraints as follows:

π ::= Λ[C]
C ::= ρ row variable

| τ /Λ; C constraint and rest of row

π now contains a set of constraints C along with the locality
information. C is a row formed of constraints and terminated by
a row variable, which is used for unification. With these extended
effects, the function funx → x would be typed α

δ[α/ δ;ρ]−−−−−→ α,
which shows that the local use of the function is restricted by the
type α.

We can omit the terminating row variable when it is a free

variable and write α
δ[α/ δ]−−−−→ α. By allowing not to write the full

row when it is empty (as in funx → 0 : α
δ−→ int), this stays in

accordance with former type definitions.
We extend previous definitions to take row variables into ac-

count:

• Type schemes now quantify row variables:

σ = ∀α1 · · ·αkδ1 · · · δlρ1 · · · ρm.τ

• Substitutions ϕ are extended with a partial application ϕC from
a finite domain of row variables to rows.

ϕ(ρ) = ϕC(ρ) if ρ ∈ Dom(ϕC)

ϕ(τ /Λ; C) = ϕ(τ) /ϕ(Λ);ϕ(C)

• Free variables L may include row variables too.

L(τ1
π[C]−−→ τ2) = L(τ1) ∪ L(τ2) ∪ L(π) ∪ L(C)

L(α/ δ : C) = {α, δ} ∪ L(C)

L(ρ) = {ρ}

As a consequence of these new definitions,Gen also generalises
row variables.

4.2.1 Equational theory on constraint rows
We need to define an equational theory on rows, to express the fact
that the same constraints can be expressed in different ways.

First, order of constraints does not matter:

γ1; γ2; C = γ2; γ1; C

Several constraints can be ignored:

τ / g ; C = C

τ1
π−→ τ2 /Λ; C = C
Base /Λ; C = C

τ / `; τ /Λ; C = τ / `; C

Finally, the constraints can be distributed on subtypes until they
either apply to type variables, or are of the form τ par /Λ:

τ1× τ2 /Λ; C = τ1 /Λ; τ2 /Λ; C

According to this theory, constraint rows can be reduced to
rows containing only constraints of the form α/ δ, α/ `, τ par / δ
or τ par / `. The last case, τ par / `, is unsatisfiable and should
obviously be rejected ; the rules of the unification algorithm can,
therefore, be limited to the three first cases.

4.2.2 Constraint construction by type inference
As before, the effects are built by unification during inference. The
only rule that needs to be changed is DEFFUN, since we need to
make the constraint on the return values of local functions explicit
in the constraint row.

DEFFUN
Γ; (x : τ1) ` e : τ2/Λ[C] C = τ2 /Λ; C′

Γ ` funx→ e : τ1
Λ[C]−−→ τ2/π

As example, we take the previous expression:

let v = mkpar(fun i→ i) inmkpar(fun j → v)

We have:
Γ ` mkpar(fun i→ i) : α par /g

which is generalised in the environment Γ as ∀α.α par /[α/ `]. In
this way, we have

Γ ` (fun j → v) : β
[α/ `]−−−→ α par

which is thus not a possible argument for mkpar.

4.3 Properties
As defined by Milner [?], the safety property of typing can be
stated as “well-typed programs do not go wrong”. This property is
obtained if the two following properties hold [?]:

• subject reduction: the reduction of a well-typed expression pre-
serves the typing,

• progress: any well-typed program that is not a value can be
reduced.

Both properties hold for our type system. The operational se-
mantics of BSML as well as the proofs of the properties can be
found in [?].

5. Imperative and Extended Features
5.1 References
Objective Caml provides several very useful imperative features.
The most commonly used are data structures that can be modified
in-place (arrays, strings, mutable record fields and references). To
make things simpler, we only consider references, as the others can
be easily reduced to them.

References are manipulated through three operators: ref, to
create a reference, store to change the value stored in one, and
value to get the value currently stored:

e ::= · · ·
| ref e reference declaration
| store(x, e) reference assignment
| valuex dereference

References can easily cause a loss of replicated consistency, as
shows the following code:

let a = ref false in letx = mkpar(fun i→ store(a, i > 0)) in value a

a is a reference created globally, but which is written on locally.
If it is then read back globally, we lose replicated consistency: This
expression would have value false on processor 0 and true on the
others.

The problem occurs when references are written outside of the
locality they were created in. For this reason, the type system
annotates references with the locality they were created at:

τ ::= · · · | τ refΛ
The types of reference operators are then defined as:

TC(ref) = ∀αδ.α δ[α/ δ]−−−−→ α refδ

TC(store) = ∀αδ.α refδ ×α
δ−→ unit

TC(value) = ∀αδ1δ2.α refδ1
δ2[α/ δ2]−−−−−−→ α

Note that a reference can be read using value from any locality
(with respect to the constraint on the type referenced), but can only
be written from its native one.

A concern remains, however, for references put through the
primitives can change their locality. For example, if put is used on a
global reference, it is communicated via the network, and actually
becomes a local copy of the original. This can be prevented at a
small cost, by having the constraint / ` forbid global references in
local return types (this is the case if we do not extend the former
definition of constraints to accept the new ref type).

Local references, also, can be sent to the global space using
proj. We could prevent the use of proj on references (and arrays,
strings and records with mutable fields in a more comprehensive
language) in a similar way, but this would be too restrictive regard-
ing the expressiveness of the language. A better solution is to have
proj change the types of references from local to global (which is
actually what happens in the semantics and in the implantation).
We do this by adding an intermediary type construct glob.

τ ::= · · · | glob(τ)

TC(proj) = ∀αδ.α par
g−→ int

δ−→ glob(α)

The functions that were defined by induction previously (ϕ and L)
propagate naturally to the arguments of refΛ and glob.

ϕ(τ refΛ) = ϕ(τ) refϕ(π)

ϕ(glob(τ)) = glob(ϕ(τ))

L(τ refΛ) = L(τ) ∪ L(π)

L(glob(α)) = {α}

The type glob(τ) actually means a transformation on τ : it can
be reduced using the following rules, until it only applies to type
variables.

glob(Base) ⇒ Base

glob(τ1
π−→ τ2) ⇒ τ1

π−→ glob(τ2)

glob(τ1× τ2) ⇒ glob(τ1)× glob(τ2)

glob(τ refΛ) ⇒ glob(τ) refg

Note that glob(τ par) and glob(τ refg) are invalid, because the
argument of glob is a local return value, that must therefore follow
the constraint / `.

The reader may have noticed that glob propagates to the right-
hand side of arrows although constraints do not, and it is not
actually part of the data stored by values of these types. Since a
local function can return any local reference present in its context,
and which will in fact be communicated and globalised along with
it, this is needed. It is at the cost of a small restriction in some cases:

fun i → ref i for example, has its return type restricted to refg if
projected, forbidding its local execution.

As last example, if we want to type the previous (bad) ex-
pression with references, the first reference a would have the ef-
fect g and passing it to the store operator, the sub-expression
(fun i → store(a, i > 0)) would have a global effect which is
not a valid argument for mkpar.

5.2 Exceptions
Exceptions are another very useful imperative feature available in
Objective Caml. Their main purpose is the recovery of errors in
the course of execution of a program, but they are also sometimes
used algorithmically for “exceptional” behaviours that make it con-
venient to jump back in the pile of calls.

A thorough analysis of exceptions in BSML is given in [? ?].
For our purpose here, we suppose that a base type exn is defined
as well as a type exnset that holds associations between processor
numbers and values of type exn. Values of type exn can be raised
using the operator raise, which stops the current execution and
gets up the stack until it meets an enclosing try . . .withx → e
construct. This construct catches the exception, and triggers the
behaviour specified in e. If no exception is raised inside, it is simply
ignored.

e ::= · · ·
| raise e exception raise
| try ewithx→ e exception catch
| trypar ewithpar x→ e exception set catch

We allow exceptions to be raised at any locality. An exception
raised locally, however, could cause a global inconsistency, reason
for which it is gathered and raised globally as a set of processor-
exception pairs at the first request for communication. Such sets,
of type exnset, are caught by trypar instead of try, but follow a
similar pattern of exception propagation.

These new constructs are typed with:
TRYWITH
Γ ` e1 : τ/π Γ;x : exn ` e2 : τ/π

Γ ` try e1 withx→ e2 : τ/π

TRYPAR
Γ ` e1 : τ/g Γ ; x : exnset ` e2 : τ/g

Γ ` trypar e1 withpar x→ e2 : τ/g

TC(raise) = ∀αδρ. exn δ[ρ]−−→ α

The expression that triggers the exception and the expression
executed when an exception is caught must have the same type.
TRYWITH has no special effect on locality, while TRYPAR can only
be used globally.

A concern with exceptions is that they may allow values to
escape their scope. This has to be kept in mind when extending
the type exn – which is, in Objective Caml, a variant type that
can hold any other type –. In particular, the global propagation
of local exceptions has a power equivalent to that of proj; this
means that values that can be raised locally must be restricted in the
same way that local return values are. A simple and yet not overly
restrictive solution is to keep exceptions free of parallel vectors and
references, by adding a constraint to the types included in exn.

5.3 Other features
The system described here does not, for the sake of simplicity,
include record or variants types. Records pose no real problem:
they are syntactic sugar over tuples, which can be simulated with

the pairs of our system. A record type follows / ` if, and only if all
the types it contains do.

Variants are more complicated, but the constructs and functions
we defined can be extended to them without particular problems:
a variant type follows / ` if all of its alternatives do, and glob
propagates likewise on all of them.

Although they have not been described here, modules are very
important in the construction of Objective Caml programs; the type
system has been designed to be compatible with them. Modules
can be compiled separately, and the inference system must be able
to work on a partial program given summarised interfaces of the
other modules used.

All values from other modules are considered to be stored in
the environment Γ. Effects on functions and locality annotations
on references thus appear even on foreign modules. The point
can cause some difficulty is the validation of the / ` constraint
on non-disclosed types from foreign modules. A possible solution
is to compute the result of this constraint in advance within the
foreign module and write it as an annotation in the interface. The
interaction with objects has not been yet studied.

6. Type Inference Algorithm
In HM(X) [?], inference is done by solving constraints. The
problem of type inference is transformed into determining whether
there exists a constraint C such that C,Γ ` e : τ/Λ, for given
Γ, e, τ,Λ. The unknown here is the constraint, and not as one may
thing, the type and the locality. As a matter of fact, by choosing
fresh variables for τ and Λ in Γ, the existence of C will give us
the existence of instances for these variables and the constraint will
contain the necessary information.

As a first step, we need to build a mechanism for building
a constraint C that should be necessary and sufficient to obtain
C,Γ ` e : τ/Λ. This constraint is also the constraint the less
specific to guarantee the result: any constraint C′ also ensuring it
should be such that C′
 C.

6.1 Constraints generation
The constraint generation mechanism that follows is complete and
coherent and it provides a property equivalent to the property of ex-
istence of principal type scheme in Damas/Milner. The coherence
of the mechanism ensures that the generated constraint C is suffi-
cient to ensure that C,Γ ` e : τ/Λ, and the completeness ensures
that the constraint is the less specific.

Some constraints are not necessary to the definition of the type
system but should be added to the system so we can ensure this
property:

C ::= · · ·
letx : σ in C Introduction of type scheme
x� τ Instantiation of type scheme

We use the notation σ� τ to mean, if σ = ∀αδ[C].τ ′ with
αδ#L(τ), the constraint ∃αδ.(C ∧ τ = τ ′). In other words, τ
is an instance of σ.

Constraint letx : σ in C binds identifier x to type scheme σ
inside C. It also assumes there exists an instance for σ. This leads
to giving the meaning σ� τ to all sub-constraints x� τ where x is
free inside C.

These two constraints allow to replace in usual Dalmas/Milner
systems, the extension of the typing environment and the search for
associations inside typing environments.

The constraint generated for Γ, e, τ,Λ is written C(Γ`e : τ/Λ).
Generation is done by induction on the structure of e: nodes let lead
to move a part of the current constraint inside a new type scheme
in the environment, and this sub-constraint is afterwards included

in the current constraint when the let-bound variable appears. It
corresponds to typing rules LET-IN and VAR. The problem is thus
simplified in C(e : τ/Λ) (without environment Γ), the solution of
the initial problem comes from letΓ inC(Γ ` e : τ/Λ). Constraint
generation is given in figure ??.

We assume in these rules that variables on the right-hand term
are always chosen to be fresh and distinct from left-hand term: the
obtained constraints are equal modulo α-conversion. The proposed
mechanism is very close to the mechanism of [?], the locality
constrained being added naturally.

The first equation corresponds to the instantiation of a variables
(typing rule: VAR): x has type τ in locality Λ if and only if τ
is acceptable in this locality, and τ is an instance of the type
scheme associated to x. This last constraint makes sense when a
let previously bound x to a type scheme.

The second equation corresponds to the type rule DEFFUN; it
gives an existential constraint, that is the constraint solver should
determine the corresponding terms. It states that term funx → e
will have type τ in locality Λ if and only if types α, β and locality
δ can be found such that τ is α δ−→ β, that locality δ is more local
than Λ, and that it can be ensured that e has type β in locality
δ if x has type α. This last condition is ensured by constraint
letx : α inC(e : β/δ): it is likely that e contains instances of
x, that will introduce the sub-constraint x� τ ′ in the generated
constraint, enforcing the coherence of α and τ ′.

The fourth rule corresponds to the typing rule LET-IN. It is
important as it defines generalisation. It states that term letx =
e1 in e2 has type τ in locality Λ if and only if, assuming x has any
type such that C(e1 : α/Λ), we are ensured that e2 has type τ in
locality Λ. By inductively assuming that C(e1 : α/Λ) is a sufficient
and minimal constraint, the type scheme ∀α[C(e1 : α/Λ)].α is by
construction a principal type scheme for e1. Thus,α is the only type
variable appearing free in C(e1 : α/Λ), and the only one needing
to be generalised.

Other rules are based on our typing rules and ensure that their
hypothesises hold by rewriting them as constraints as well as that
the format of the final type is correct.

THEOREM 1 (Correctness of Constraint Generation).
(C(Γ ` e : τ/Λ)),Γ ` e : τ/Λ.

THEOREM 2 (Completeness of Constraint Generation).
If C,Γ ` e : τ/Λ, with C and Γ without free variables, and Γ is
coherent in C, then C
 C(Γ ` e : τ/Λ).

The proof of these theorems are rather direct from the definition
of the constraint generation mechanism, each step of the mecha-
nism establishing a necessary and sufficient constraint. For a de-
tailed proof, the reader can refer to [?]: the constraint we add to
not interfere with the described systems.

Extensions. The exception extension presented in section ??
needs new rules for constraint generation (figure ??, “Additional
rules”). References do not need any new rule, but adding constraint
(9) (in addition to glob and loc constructions).

6.2 Constraints Solving
We will not describe here a full constraint solver. We base our work
on the version corresponding to HM(=) presented in [?].

The only difference between our constraints and the constraints
of HM(=) for which we have a solver are: locality variables, τ /Λ
constraints, for the references extension, constraints τ(9).

Locality variable are, at this level, like type variables. They can
be considered as type variables taking only g or ` as value. They
add no complexity to the constraint solver.

Constraints τ /Λ and τ(9) have a specific structure related to
the structure of τ . We showed that during their definitions, these

constraints propagate in the sub-term of a type. Therefore it is
possible to define a normal form where they are only applied to type
variables. Thus they only have a role during the unification of these
type variables. These variables could be either invalidated (from
example if α par and β are tentatively unified under constraint
β / `) or raise new constraints.

We only need to modify the constraint unification algorithm that
should solve type equations without introduction and type scheme
instantiation; the main part of the solver remains unchanged. The
solver in [?] offers a cyclic type detection: it is not so different from
our approach. When the unification algorithm can bring together a
variable and a type or a locality inside a same equivalence class, any
sub-constraint / or (9) that may appear in the current constraint
and involves the this variable would dealt with the corresponding
substitution and would be immediately normalised:

α = τ ∧ α/Λ⇒ α = τ ∧ τ /Λ

δ = Λ ∧ α/ δ ⇒ δ = Λ ∧ α/Λ

α = τ ∧ α(9)⇒ α = τ ∧ τ(9)

These rules could be applied immediately after a new equality
is formed during the solving process and are followed by the reduc-
tion of the right-hand side term, and possibly new applications of
the rules.

7. Related Work
There are many approaches to high-level parallel programming
and functional parallel programming. Few use the same model of
parallel than BSML [? ?]. Most of the time the type system is quite
close to the type system of the host language [?] as the model of
parallelism is very different and nesting is allowed [? ? ? ?].

In our case, parallelism and communications are explicit. Our
type system prohibits nested parallelism in order to optimise ef-
ficiency as well as to allow the predictability of performances.
BSML is clearly a lower level programming language compared
to algorithmic skeletons for example but it comes with a realistic
cost model and is well adapt to the writing coarse-grain algorithms.
Moreover, it can be used to implement higher-order parallel func-
tions that could be used as algorithmic skeletons [?].

8. Conclusion and Future Work
BSML provides high-level structured parallel computation; since it
is based on Objective Caml, it benefits from its type system, but as
we have seen this is not enough to guarantee the preservation of its
structured parallelism. This paper intends to be an important build-
ing stone for the language, providing a type system that ensures the
safety of parallel programs while retaining advanced features.

We are currently working on: the formalisation of the type
system presented here and the proof of its properties within the Coq
proof assistant and the extension to other features of the operational
semantics of pure functional BSML in Coq; the implementation of
a full BSML compiler including the type system, built upon the
Objective Caml compiler.

References
[] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program

Development. Springer, 2004.
[] R. Bisseling. Parallel Scientific Computation. A structured approach

using BSP and MPI. Oxford University Press, 2004.
[] G. Blelloch, S. Chatterjee, J. Hardwick, J. Sipelstein, and M. Zagha.

Implementation of a portable nested data-parallel language. Journal
of Parallel and Distributed Computing, 21(1):4–14, 1994.

[] D. Caromel, L. Henrio, and M. Leyton. Type safe algorithmic skele-
tons. In 16th Euromicro International Conference on Parallel, Dis-

C(x : τ/Λ) = x� τ ∧ τ /Λ

C(funx→ e : τ/Λ) = ∃αβδ.((letx : α inC(e : β/δ)) ∧ δ /Λ ∧ τ = α
δ−→ β)

C(e1 e2 : τ/Λ) = ∃α.(C(e1 : α
Λ−→ τ/Λ) ∧ C(e2 : α/Λ))

C(letx = e1 in e2 : τ/Λ) = letx : ∀α[C(e1 : α/Λ)].α inC(e2 : τ/Λ)

C((e1, e2) : τ/Λ) = ∃αβ.(C(e1 : α/Λ) ∧ C(e2 : β/Λ) ∧ τ = α×β)

C(if e then e1 else e2 : τ/Λ) = C(e : bool/Λ) ∧ C(e1 : τ/Λ) ∧ C(e2 : τ/Λ)

C([ei]
n
i : τ/Λ) = C(n : int/Λ) ∧ ∃α.(

∧
i

C(ei : α/Λ) ∧ τ = α par)

C(〈ei〉i : τ/Λ) = ∃α.(
∧
i

C(ei : α/`) ∧ α/ ` ∧ τ = α par)

Additional rules:

C(try ewithx→ e′ : τ/Λ) = C(e : τ/Λ) ∧ letx : τexn inC(e′ : τ/Λ)

C(trypar ewithpar x→ e′ : τ/Λ) = C(e : τ/g) ∧ let x : τexn array inC(e ′ : τ/g) ∧ Λ = g

C(fail e : τ/Λ) = C(e : τexn/Λ)

C(failpar e : τ/Λ) = C(e : τexn array /Λ)

Figure 3. Constraints Generation

tributed and Network-Based Processing (PDP 2008), pages 45–53.
IEEE Computer Society, 2008. doi: http://doi.ieeecomputersociety.
org/10.1109/PDP.2008.29.

[] M. M. T. Chakravarty, R. Leshchinskiy, S. L. P. Jones, G. Keller, and
S. Marlow. Data parallel haskell: a status report. In N. Glew and
G. E. Blelloch, editors, Workshop on Declarative Aspects of Multicore
Programming (DAMP 2007), pages 10–18. ACM, 2007. doi: 10.1145/
1248648.1248652.

[] M. Cole. Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, 1989.

[] F. Gava. Formal Proofs of Functional BSP Programs. Parallel Pro-
cessing Letters, 13(3):365–376, 2003.

[] F. Gava. External Memory in Bulk Synchronous Parallel ML. Scalable
Computing: Practice and Experience, 6(4):43–70, December 2005.

[] F. Gava and I. Garnier. CPS implementation of a BSP composition
primitive with application to the implementation of algorithmic skele-
tons. International Journal of Parallel, Emergent and Distributed Sys-
tems, 2011. doi: 10.1080/17445760.2010.481785.

[] F. Gava and F. Loulergue. A Static Analysis for Bulk Synchronous
Parallel ML to Avoid Parallel Nesting. Future Generation Computer
Systems, 21(5):665–671, 2005.

[] L. Gesbert. Développement systématique et sûreté d’exécution en
programmation parallèle structurée. PhD thesis, University Paris
Est, LACL, 2009. URL http://tel.archives-ouvertes.fr/
tel-00481376.

[] L. Gesbert, F. Gava, F. Loulergue, and F. Dabrowski. Bulk Syn-
chronous Parallel ML with Exceptions. Future Generation Computer
Systems, 26:486–490, 2010. doi: 10.1016/j.future.2009.05.021.

[] X. Leroy and F. Pessaux. Type-based analysis of uncaught excep-
tions. ACM Transactions on Programming Languages and Systems, 22
(2):340–377, 2000. doi: http://www.acm.org/pubs/citations/journals/
toplas/2000-22-2/p340-leroy/.

[] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The
Objective Caml System release 3.10, 2007. web pages at caml.inria.fr.

[] R. Loogen, Y. Ortega-Mallen, and R. Pena-Mari. Parallel functional
programming in eden. Journal of Functional Programming, 3(15):
431–475, 2005.

[] F. Loulergue, F. Gava, and D. Billiet. Bulk Synchronous Parallel
ML: Modular Implementation and Performance Prediction. In V. S.
Sunderam, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, editors,

International Conference on Computational Science (ICCS), LNCS
3515, pages 1046–1054. Springer, 2005.

[] W. F. McColl. Scalability, portability and predictability: The BSP
approach to parallel programming. Future Generation Computer
Systems, 12:265–272, 1996.

[] Q. Miller. BSP in a Lazy Functional Context. In Trends in Functional
Programming, volume 3. Intellect Books, may 2002.

[] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17(3):348–375, December 1978.

[] M. Odersky, M. Sulzmann, and M. Wehr. Type Inference with Con-
strained Types. Theory and Practice of Object Systems, 5(1):35–55,
1999.

[] S. Pelagatti. Structured Development of Parallel Programs. Taylor &
Francis, 1998.

[] F. Pottier and D. Rémy. The essence of ML type inference. In
B. C. Pierce, editor, Advanced Topics in Types and Programming
Languages, chapter 10, pages 389–489. MIT Press, 2005.

[] F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for
Parallel and Distributed Computing. Springer, 2003.

[] J. Reppy and Y. Xiao. Toward a parallel implementation of Con-
current ML. In Workshop on Declarative Aspects of Multicore Pro-
gramming (DAMP 2008), 2008. http://clip.dia.fi.upm.es/
Conferences/DAMP08/damp08proc.pdf.

[] M. Snir and W. Gropp. MPI the Complete Reference. MIT Press,
1998.

[] J.-P. Talpin and P. Jouvelot. The Type and Effect Discipline. Informa-
tion and Computation, 111(2):245–296, June 1994.

[] J. Tesson and F. Loulergue. A Verified Bulk Synchronous Parallel
ML Heat Diffusion Simulation. In 11th International Conference
on Computational Science (ICCS 2011), Procedia Computer Science,
pages 36–45. Elsevier, 2011. doi: 10.1016/j.procs.2011.04.005.

[] The Coq Development Team. The Coq Proof Assistant. http:
//coq.inria.fr.

[] L. G. Valiant. A bridging model for parallel computation. Comm. of
the ACM, 33(8):103, 1990.

[] A. K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115:38–94, 1994.

[] A. Zavanella. Skeletons, BSP and performance portability. Parallel
Processing Letters, 11(4):393–405, 2001.

