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Abstract

Bulk Synchronous Parallel ML is a high-level language for programming parallel
algorithms. Built upon OCaml and using the BSP model, it provides a safe set-
ting for their implementation, avoiding concurrency related problems (deadlocks,
indeterminism). Only a limited set of the features of OCaml can be used in BSML
to respect its properties of safety: this paper describes a way to add exception han-
dling to this set by extending and adapting OCaml’s exceptions. The behaviour of
these new exceptions and the syntactic constructs to handle them, together with
their implementation, are described in detail, and results over an example are given.
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1 Introduction

The Bulk Synchronous Parallel ML (BSML) language [14] is a parallel ex-
tension of ML (a family of functional programming languages). BSML aims
at providing the right balance between the two opposite approaches to paral-
lel programming, low-level and subject to concurrency issues, and high-level
with loss of flexibility and efficiency. In the former, we find libraries such as
MPI [19] generally used with Fortran or C; these approaches are unsafe and
leave the programmer responsible for deadlock or indeterminism issues. In the
latter stand traditional algorithmic skeletons [3] where programs are safe but
limited to a restricted set of algorithms.

Preprint submitted to Elsevier December 12, 2007



BSML follows the BSP (Bulk Synchronous Parallel [16,10,1]) paradigm to
structure the computation and communication between the processors in a
data-parallel fashion. All communications in BSML are collective (require all
processes) and deadlocks are avoided by a strict distinction between local and
global computation; BSP also provides a simple and efficient cost model which
is particularly helpful in the design of efficient parallel algorithms [11,17,20]
and that can be applied to BSML programs.

Exception handling is a traditional and natural mechanism to manage errors
and events that disrupt the normal flow of instructions of a program. It can
also be used purposefully to extract the results in the course of some recursive
algorithms. Widely used languages or libraries for data-parallel programming
are mostly imperative like C or Fortran [2,9]. These languages do not provide
exception mechanisms. In the case of Java [7], the interaction of parallel con-
structions with exceptions is not studied. Exception handling is accordingly an
issue in parallel languages and efficient, simple and expressive solutions to this
problem are a current research topic [18]. To our knowledge, there exists no
related work on exception mechanisms for data-parallel languages. The works
on exceptions in a concurrent or distributed setting [15] or non data-parallel
functional programming languages [8] are not really related to our work which
is based on the well-structured parallelism of the BSP model.

BSML is implemented as a library for Objective Caml [12], which enables
it to benefit from the advanced, general-purpose features of this language.
However, not all of them are compatible with parallelism. Exceptions are one
of the features that don’t provide the desired safety when used in parallel. In
this paper, we adapt and extend the exception handling mechanism of OCaml
to respect the constraints of parallel programming in BSML. The approach
we define is not specific to OCaml though, and it could be applied to any
strict language with exceptions. In particular, Java behaves very similarly to
OCaml regarding exceptions and we think there would be little work involved
in adapting our system to this language.

In section 2, we introduce the BSP model and Bulk Synchronous Parallel
ML (BSML). In section 3 we study issues related to OCaml-style exception
handling in a parallel setting, and our solution is presented in section 4. The
implementation of this solution for BSML is described in section 5, followed by
an example of use and results in section 6. We conclude and introduce future
work in section 7.
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2 Functional Bulk Synchronous Parallel Programming

2.1 The BSP Model

In the BSP model, a computer is a set of uniform processor-memory pairs,
a communication network allowing inter-processor delivery of messages and a
global synchronization unit which executes collective requests for a synchroni-
zation barrier (for the sake of conciseness, we refer to [16] for more details). A
BSP program is executed as a sequence of super-steps, each one divided into
(at most) three successive and logically disjoint phases: (a) Each processor
uses its local data (only) to perform sequential computations and to request
data transfers to/from other nodes; (b) the network delivers the requested data
transfers; (c) a global synchronization barrier occurs, making the transferred
data available for the next super-step.

The performance of the machine is characterised by 3 parameters: p is the
number of processor-memory pairs, L is the time required for a global synchro-
nization and g denotes the speed of the network. Using these and the structure
of the execution, it is possible to predict the performance of a program.

2.2 The BSML Language

bsp p: int mkpar: (int → α ) → α par

bsp g: float apply: (α → β ) par → α par → β par

bsp l: float put: (int→α ) par → (int→α ) par

proj: α par → (int → α )

Figure 1. Primitives

The BSML language is based on seven primitives, three of which are used to
access the physical parameters of the machine. A BSML program is built as a
sequential program on a parallel data structure called parallel vector. Its type
is α par, which expresses that it contains a value of type α at each of the p

processors, where type α may be any type not containing an occurrence of par

(this point is discussed in detail in [5]). We adopt the notation 〈x0, . . . , xp−1〉
to denote the parallel vector with value xi at processor i.

BSML programs use the four parallel primitives mkpar, apply, put and proj for
the creation and manipulation of parallel vectors. The asynchronous compu-
tation phase is programmed using the two primitives mkpar and apply.

mkpar creates a parallel vector from a sequential function.
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mkpar: f 7→ 〈f 0, . . . , f (p − 1)〉

This primitive induces local computation that may be resolved differently on
each processor. We call in comparison replicated top-level sequential execution,
which is in fact replicated at every one of the processors, and parallel execution
that involves different values at different processors (e.g. parallel vectors and
primitives).

The primitive apply applies a parallel vector of functions to a parallel vector
of arguments:

apply:
〈f0, . . . , fp−1〉

〈x0, . . . , xp−1〉
7→ 〈f0 x0, . . . , fp−1 xp−1〉

The two primitives put and proj are used for communication, but they also
implicitely apply a synchronisation barrier in order to make the exchanged
data readily available to the programmer, thus ending the current super-step.
This differs from other approaches like BSPlib [9] or PUB [2] where barriers
are explicit.

The first communication primitive is put. It takes as argument a parallel vector
of functions which should return, when applied to i, the value to be sent to
processor i. put returns a parallel vector with the vector of received values at
each processor (at each processor these values are stored in a function which
takes as argument a processor identifier and returns the value sent by this
processor).

put: 〈f0, . . . , fp−1〉 7→

〈
f0 0 f0 (p − 1)

... , . . . ,
...

fp−1 0 fp−1 (p − 1)

〉

The second communication primitive, proj, allows to get replicated values back
from locally computed ones. It projects a parallel vector to a standard, repli-
cated vector (again in the form of a function).

proj: 〈x0, . . . , xp−1〉 7→ x0 · · · xp−1
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3 Exceptions and BSML

Exceptional situations and errors are handled in OCaml with a powerful sys-
tem of exceptions. There are two major reasons to use exceptions: first, as a
way to quickly get out of a computation and return some parameters. This
is specially useful when doing an in-depth search for example, as it saves the
trouble of returning the results manually at every level while climbing back in
the stack. In parallel, this is at least as relevant since you get the trouble of
gathering the results from the different processors. The second reason is error
recovery: an unexpected error in OCaml raises an exception. If one processor
triggers a Stack overflow exception during the course of a parallel computation,
BSML has to deal with it, like OCaml would, and prevent a crash. This section
describes how OCaml handles exceptions and what could get wrong if OCaml
exceptions are used in BSML without special care.

exception Exc of τ declares a new OCaml exception Exc that encloses data of
type τ . Exceptions are considered an extensible variant type, e.g. for matters
of pattern-matching. The above-defined exception would be triggered with
the syntax raise (Exc x), where x is of type τ . Once an exception is raised,
it is propagated up the stack until it meets an enclosing try...with Exc x → t

block that pattern-matches against the exception. The exceptional behaviour
t is then followed and returns a value of the type expected for the expression
without exception.

When using this scheme in parallel with BSML, we face three different cases:

(1) If, during a parallel computation, a single processor raises an exception
but catches it before the end of the local section, no global operations or
communications are hindered and the function that catches the exception
returns a result as expected.

(2) Exceptions may be raised during a replicated section. In that case, all
processors follow the same path of execution and catch the exception or
fail together: no inconsistency appears either.

(3) When an exception is raised locally, but not caught immediately, however,
the processor concerned is not going to execute any of the replicated code
that might occur until the end of the superstep: the system gets into an
inconsistent state. Worse, the concerned processor is most likely not to
meet the expected synchronisation at the end of the superstep and cause
a deadlock when the other processors reach the barrier.

Let’s take a closer look at the last case with an example:

let f pid = if pid=0 then raise (Failure ”0”) else (fun → pid)
in let v = mkpar f
in put v
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Evaluation at processor 0 Evaluation at processor 1

let v = <raise (Failure ”0”),..>

in put v

let v = <..,fun → 1,..>

in put v

*** Exception raised *** put: trying to send “1” to 0

Here, an exception is raised locally on processor 0 but processor 1 continues
to follow the main execution stream, until it is stopped by the need for a
synchronisation. Then, a deadlock occurs. If the same code had been enclosed
in a try...with Failure →..., processor 0 and 1 would have branched into different
global execution streams, the normal one and the exceptional one, leading to a
global inconsistency: they could have a different number of super-steps which
is not possible in the BSP model.

The solution we provide intends to stay as familiar as possible to the program-
mer. We explain in the next parts how to extend it to manage the problematic
case.

4 An Exception Mechanism for BSML

4.1 New syntax constructs for exceptions

The missing piece to a parallel exception system is a way to catch globally
exceptions that are raised locally. Exceptions are defined and raised in the
usual way from the user side, using the keywords exception and raise. Only
the catching of local exceptions in a replicated setting is changed. Below is an
example of use of exceptions in BSML.

trypar

let f pid = match pid with

| 0 → raise (Failure ”0”)
| x → x

in mkpar f

withpar

eset → Exception set.iter
(fun e → prerr endline

(Printexc.to string e.exc))
eset

The parallel execution of f in this example raises a local exception on processor
0 only. The structure trypar...withpar, which is similar to try...with in OCaml
is then used to safely recover this local exception, globally. Globalised local
exceptions caught this way are implemented as sets (of type Exception set.t) of
records containing the standard OCaml exceptions raised and their originating
processor number. Here, withpar binds the name eset to a set containing the

6



Failure raised by processor 0. The exceptional code provided after the arrow
iterates on this set and prints the exception on standard error.

The new structure trypar...withpar, somehow similar to the standard one, is
needed mainly for two reasons: first, a formerly-local exception and a standard
replicated exception may exist at the same time and need to be distinguished.
Second, it deals with sets of exceptions and not with single exceptions.

4.2 Parallel exception handling mechanism

We will consider this two points carefully: (a) a local exception should never
prevent replicated code from being executed, or the system becomes inconsis-
tent (replicated code is not executed by all the processors anymore); (b) at
the end of the super-step, a local exception has to be treated replicatedly.

Since replicated and local code may be juxtaposed in the same super-step, we
need to get aside from the standard exception handling techniques to ensure
that replicated code is run normally even after a local exception. During a
super-step, there might be local and replicated exceptions coexisting and they
must be treated at different levels: a replicated exception, since it is raised by
all processors, is treated immediately in the OCaml way. A local exception, on
the other hand, must not hinder the global behaviour of the processor yet, so
it is kept silent to replicated code until the end of the super-step. This means,
in particular, that a processor in a state of exception may not perform any
local computation until the next synchronisation.

At the end of a super-step (put or proj), the exception state is communicated
to all processors to allow a global decision to be taken. In such a situation,
the local results obtained are partial, inconsistent or nonexistent. Although
we are discussing a way to enable the program to recover them afterwards,
we currently adopt the standard approach and discard them, switching to the
exceptional treatment specified by the user.

Local exceptions are thus deferred until the end of the super-step. However,
it is undesirable that an exception escapes the scope of the trypar...withpar it
was raised in. For this reason, communications (and barrier) must be forced
at the withpar.

This behaviour is described formally and in more detail in the semantics pre-
sented in [6].
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5 Implementation

Keeping local exceptions hidden from replicated execution is made possible
by the strict distinction between local and replicated execution in BSML; the
implementation relies on standard OCaml exception handling to deal with
local exceptions. Any local execution is enclosed try...with safety net in the
implementation of the parallel primitives, ensuring that we catch any excep-
tion that is raised on a single processor. These exceptions can’t be ignored in
further local computation on that processor though, so they are retained in a
local variable :

status: (Fine | Stopped of int ∗ exn) ref.

The value of this reference indicates what state the processor is in; in the
Stopped state, all primitives that perform local computation will simply ig-
nore them, as they could try to use results that didn’t compute. Replicated
execution, on the other hand, is not affected.

At the end of the super-step, initiated by the put or proj primitives (or by
withpar), the communication phase starts with an exchange of data sizes. We
take the opportunity to communicate processor states: in case there is any
exception, normal communication is replaced by a total exchange of the ex-
ceptions and their parameters. Then, a new super-step starts and the processor
states are reset to fine. This is consistent w.r.t. replication, because the same
set of exception is raised everywhere.

The set of local exceptions has yet to be raised. As propagation of excep-
tions drives out of the normal functional execution flow and can’t be imple-
mented in OCaml (without exceptions) without modifying the internals of
the compiler, the set of exceptions is piggy-backed onto an OCaml exception
Global exn of Exception set.t.

To implement the extension in the language, in particular the new keywords
trypar and withpar, we chose to use OCaml’s generic precompiler, camlp4. The
trypar...withpar structure is replaced by some code including a try...with over
exceptions of the kind Global exn. Several critical points make the rewriting
rules actually more complicated than that:

• withpar should do a barrier to gather local exceptions before it can catch
them with with Global exn eset →....

• The user can catch any exceptions, including Global exn, with the default pat-
tern . A rewriting rule adds a pattern-matching rule that re-raises Global exn

before the default pattern when this is the case.
• There may be nested trypar...withpar structures. We use de Bruijn indices

to prevent an inner withpar from catching local exceptions raised out of its
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scope.
• Local exceptions and global exceptions may conflict. A native global excep-

tion is filtered by withpar, that still performs a barrier, to ensure it was not
raised after a local exception that should take precedence.

To summarize, the implementation is a combination of an added protection
on the primitives, an extended communication protocol that can be triggered
to global exchange of exceptions, and various rewriting rules that both add
new constructs and ensure the non-interference of this mechanism with the
user program.

6 Experiments

6.1 A generic parallel backtracking algorithm

Backtracking consists in searching for a solution by exploring a tree of possi-
bilities depth-first. If a recursive function doing this search raises an exception
whenever a solution is found, it can be caught directly by the calling function
without the need to switch cases and return a solution if it exists, or continue
exploring otherwise. The parallelisation of this process explores the children
of several different nodes at the same time, making the gathering of solutions
even more difficult without using exceptions.

To assess the usability of exceptions in BSML, we present a very simple
implementation of generic parallel backtracking. It takes as argument a se-
quential function f chld that returns all the children of a given node in the
tree and raises a specific exception on a solution. The backtracking function is
shown below in pseudo-OCaml code. We suppose that scatter and gather split
a list into a parallel vector and back, respectively.

let rec backtrack f chld nodes =

let vec = scatter nodes in

for v = take a limited amount of the nodes in vec at each processor, do

let chld v = locally, map f chld to v

in backtrack f chld (gather chld v)

done

This recursive function is initially called on f chld of the root of the tree, within
a trypar. . .withpar that gathers and returns any solution found.

Another version, without any use of exceptions, was implemented. The main
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Figure 2. 9 × 9 sudoku solved with and without exceptions

descending function had to gather the results of all processors and check if
there was a solution at one of them. Accordingly, the size of the backtrack
function was increased from 26 lines of code to 44 – exceptions made us save
40% in code size on this example.

6.2 Results

As an example, we used this backtracking algorithm to solve sudoku with
brute-force. Sudoku is a fashionable game that consists in filling a n2×n2 grid
with integers from 1 to n2 according to constraints that ensure, given some
initial numbers, that only one solution is possible. The children are generated
by trying every number at each free square and checking for validity. A mild
optimisation consists in composing the children function several times to obtain
enough nodes for an even distribution between processors, which becomes
mandatory when increasing the size of the machine.

We solved a given grid of dimensions 9 × 9 using native-code execution on a
cluster of PC linked with a gigabit network, for a number of processors varying
from one to ten. Figure 2 shows the performance in seconds−1 depending on
the number of processors (so that a linear speedup would be a straight line),
for two different levels of the latter optimisation. This results are the median
of a large number of experiments. We notice little impact on performance
between the versions with and without exceptions, which is sound since the
algorithm is not changed; better, the difference is very stable and in favor of
the version with exceptions: we explain it by the added checks that have to
be made to extract the possible results at every step of computation.
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7 Conclusion and Future Work

Parallel architectures are taking the lead in computer hardware. Advanced
programming paradigms, however, are still trying to find the best expression
for the adapted programs. In this paper, we tackled the problem of exception
handling for the functional, OCaml-based BSML language, pushing it one step
further to that goal.

We defined global sets of locally raised exceptions and dedicated handlers
which offer a natural way to deal with them. A realistic implementation was
presented, together with a test program and promising benchmarks.

The work presented here is tightly related to the BSP model, but the exception
scheme it is based on is not specific to OCaml. Hence, we reckon there would
be little work involved in translating it to, for instance, a Java implementation
of BSP. Future work includes recovery of partial results, a full type system
which could include detection of uncaught exceptions [4,13], and automated
performance prediction.
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