
BULK SYNCHRONOUS PARALLEL ML
WITH EXCEPTIONS

Louis Gesbert1, Frédéric Gava1, Frédéric Loulergue2

and Frédéric Dabrowski3

1Laboratory of Algorithms, Complexity and Logic, University Paris XII, France
2Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, France
3Institut de Recherche en Informatique et Automatique, Sophia-Antipolis, France

Abstract Bulk Synchronous Parallel ML is a high-level language for programming
parallel algorithms. Built upon OCaml and using the BSP model, it
provides a safe setting for their implementation, avoiding concurrency
related problems (deadlocks, indeterminism). Only a limited set of the
features of OCaml can be used in BSML to respect its properties of
safety: this paper describes a way to add exception handling to this set
by extending and adapting OCaml’s exceptions. The behaviour of these
new exceptions and the syntactic constructs to handle them, together
with their implementation, are described in detail, and results over an
example are given.

Keywords: Parallel programming, exception handling, functional programming,
BSP, syntax of languages

1. Introduction
The Bulk Synchronous Parallel ML (BSML) language [9] is a parallel

extension of ML (a family of functional programming languages). BSML
aims at providing the right balance between the two opposite approaches
to parallel programming, low-level and subject to concurrency issues,
and high-level with loss of flexibility and efficiency. In the former, we
find libraries such as MPI [12] generally used with Fortran or C; these
approaches are unsafe and leave the programmer responsible for deadlock
or indeterminism issues. In the latter stand traditional algorithmic
skeletons [3] where programs are safe but limited to a restricted set
of algorithms.

BSML follows the BSP (Bulk Synchronous Parallel [1, 11]) paradigm
to structure the computation and communication between the processors

34 Gesbert, Gava, Loulergue, Dabrowski

in a data-parallel fashion. All communications in BSML are collective
(require all processes) and deadlocks are avoided by a strict distinction
between local and global computation; BSP also provides BSML with a
simple and efficient cost model.

Exception handling is a traditional and natural mechanism to manage
errors and events that disrupt the normal flow of instructions of a program.
It can also be used purposefully to extract the results in the course of
some recursive algorithms. Widely used languages or libraries for data-
parallel programming are mostly imperative like C or Fortran [2, 7].
These languages do not provide exception mechanisms. In the case
of Java [6], the interaction of parallel constructions with exceptions
is not studied. Exception handling is accordingly an issue in parallel
languages and efficient, simple and expressive solutions to this problem
are a current research topic [10]. To our knowledge, there exists no
related work on exception mechanisms for data-parallel languages.

BSML is implemented as a library for Objective Caml [8], which
enables it to benefit from the advanced, general-purpose features of
this language. A few of these features however, among which exception
handling, do not provide the desired safety when used in parallel. In
this paper, we adapt and extend the exception handling mechanism of
OCaml to respect the constraints of parallel programming in BSML.
The approach we define is not specific to OCaml though, and it could
be applied to any strict language with exceptions. In particular, Java
behaves very similarly to OCaml regarding exceptions and we think there
would be little work involved in adapting our system to this language.

In section 2, we introduce the BSP model and Bulk Synchronous
Parallel ML (BSML). In section 3 we study issues related to OCaml-style
exception handling in a parallel setting, and our solution is presented in
section 4. The implementation of this solution for BSML is described
in section 5, followed by an example of use and results in section 6. We
conclude and introduce future work in section 7.

2. Functional Bulk Synchronous Parallel
Programming

2.1 The BSP Model
In the BSP model, a computer is a set of uniform processor-memory

pairs, a communication network allowing inter-processor delivery of mes-
sages and a global synchronization unit which executes collective requests
for a synchronization barrier (for the sake of conciseness, we refer to [11]
for more details). A BSP program is executed as a sequence of super-
steps, each one divided into (at most) three successive and logically

BSML with exceptions 35

disjoint phases: (a) Each processor uses its local data (only) to perform
sequential computations and to request data transfers to/from other
nodes; (b) the network delivers the requested data transfers; (c) a global
synchronization barrier occurs, making the transferred data available for
the next super-step.

The performance of the machine is characterised by 3 parameters: p
is the number of processor-memory pairs, L is the time required for a
global synchronization and g denotes the speed of the network. Using
these and the structure of the execution, it is possible to predict the
performance of a program.

2.2 The BSML Language

bsp p: unit→int
bsp g: unit→float
bsp l: unit→float

mkpar: (int →α) →α par
apply: (α →β) par →α par →β par
put: (int→α option) par →(int→α option) par
proj: α option par →(int →α option)

Figure 1. Primitives

The BSML language is based on seven primitives, three of which are
used to access the physical parameters of the machine. A BSML program
is built as a sequential program on a parallel data structure called parallel
vector. Its type is α par, which expresses that it contains a value of type α
at each of the p processors, where type α may be any type not containing
an occurrence of par (this point is discussed in detail in [4]). We adopt
the notation 〈x0, . . . , xp−1〉 to denote the parallel vector with value xi

at processor i.
BSML programs use the four parallel primitives mkpar, apply, put and

proj for the creation and manipulation of parallel vectors. The asynchronous
computation phase is programmed using the two primitives mkpar and
apply.

mkpar creates a parallel vector from a sequential function.
mkpar: f 7→ 〈f 0, . . . , f (p − 1)〉

This primitive induces local computation that will be resolved differently
on each processor. We call in comparison replicated top-level sequential
execution, which is in fact replicated at every one of the processors, and
parallel execution that involves different values at different processors
(e.g. parallel vectors and primitives).

The primitive apply applies a parallel vector of functions to a parallel
vector of arguments:

apply:
〈f0, . . . , fp−1〉
〈x0, . . . , xp−1〉

7→ 〈f0 x0, . . . , fp−1 xp−1〉

36 Gesbert, Gava, Loulergue, Dabrowski

Unlike BSPlib [7] or PUB [2] we do not distinguish between commu-
nication phase and synchronization barrier. The two primitives put and
proj both end implicitly with a synchronization barrier, putting an end
to the current super-step.

put is the first communication primitive. It takes as argument a
parallel vector of functions which should return, when applied to i, the
value to be sent to processor i. put returns a parallel vector with the
vector of received values at each processor.

put: 〈f0, . . . , fp−1〉 7→

* f0 0 f0 (p − 1)
... , . . . ,

...
fp−1 0 fp−1 (p − 1)

+

The second communication primitive, proj, allows to get replicated
values back from locally computed ones. It projects a parallel vector to
a standard, replicated vector.

proj: 〈x0, . . . , xp−1〉 7→ x0 · · · xp−1

3. Exceptions and BSML
Exceptional situations and errors are handled in OCaml with a power-

ful system of exceptions. There are two major reasons to use exceptions:
first, as a way to quickly get out of a computation and return some
parameters. This is specially useful when doing an in-depth search
for example, as it saves the trouble of returning the results manually
at every level while climbing back in the stack. In parallel, this is
at least as relevant since you get the trouble of gathering the results
from the different processors. The second reason is error recovery: an
unexpected error in OCaml raises an exception. If one processor triggers
a Stack overflow exception during the course of a parallel computation,
BSML has to deal with it, like OCaml would, and prevent a crash. This
section describes how OCaml handles exceptions and what could get
wrong if OCaml exceptions are used in BSML without special care.

exception Exc of τ declares a new OCaml exception Exc that encloses
data of type τ . Exceptions are considered an extensible variant type,
e.g. for matters of pattern-matching. The above-defined exception
would be triggered with the syntax raise (Exc x), where x is of type τ .
Once an exception is raised, it is propagated up the stack until it meets
an enclosing try...with Exc x →t block that pattern-matches against the
exception. The exceptional behaviour t is then followed and returns a
value of the type expected for the expression without exception.

When using this scheme in parallel with BSML, we face three different
cases:

BSML with exceptions 37

1 If, during a parallel computation, a single processor raises an ex-
ception but catches it before the end of the local section, no global
operations or communications are hindered and the function that
catches the exception returns a result as expected.

2 Exceptions may be raised during a replicated section. In that
case, all processors follow the same path of execution and catch
the exception or fail together: no inconsistency appears either.

3 When an exception is raised locally, but not caught immediately,
however, the processor concerned is not going to execute any of the
replicated code that might occur until the end of the superstep:
the system gets into an inconsistent state. Worse, the concerned
processor is most likely not to meet the expected synchronisation
at the end of the superstep and cause a deadlock when the other
processors reach the barrier.

Let’s take a closer look at the last case with an example:
let f pid = if pid=0 then raise (Failure ”0”) else (fun →Some pid)
in let v = mkpar f
in put v

Evaluation at processor 0 Evaluation at processor 1

let v = <raise (Failure ”0”),..>
in put v

let v = <..,fun →Some 1,..>
in put v

*** Exception raised *** put: trying to send “Some 1” to 0

Here, an exception is raised locally on processor 0 but processor 1
continues to follow the main execution stream, until it is stopped by the
need for a synchronisation. Then, a deadlock occurs. If the same code
had been enclosed in a try...with Failure →..., processor 0 and 1 would have
branched into different global execution streams, the normal one and
the exceptional one, leading to a global inconsistency: they could have a
different number of super-steps which is not possible in the BSP model.

The solution we provide intends to stay as familiar as possible to the
programmer. We explain in the next parts how to extend it to manage
the problematic case.

4. An Exception Mechanism for BSML

4.1 Syntax
The missing piece to a parallel exception system is a way to catch

globally exceptions that are raised locally. Exceptions are defined and
raised in the usual way from the user side, using the keywords exception

and raise. Only the catching of local exceptions in a replicated setting is
changed. Below is an example of use of exceptions in BSML.

38 Gesbert, Gava, Loulergue, Dabrowski

trypar
let f pid = match pid with
| 0 →raise (Failure ”0”)
| x →x

in mkpar f

withpar
eset →Exception set.iter

(fun e →prerr endline
(Printexc.to string e.exc))

eset

The parallel execution of f in this example raises a local exception
on processor 0 only. The structure trypar...withpar, which is similar to
try...with in OCaml is then used to safely recover this local exception,
globally. Globalised local exceptions caught this way are implemented
as sets (of type Exception set.t) of records containing the standard OCaml
exceptions raised and their originating processor number. Here, withpar

binds the name eset to a set containing the Failure raised by processor 0.
The exceptional code provided after the arrow iterates on this set and
prints the exception on standard error.

The new structure trypar...withpar, somehow similar to the standard
one, is needed mainly for two reasons: first, a formerly-local exception
and a standard replicated exception may exist at the same time and
need to be distinguished. Second, it deals with sets of exceptions and
not with single exceptions.

4.2 A new mechanism
We will consider this two points carefully: (a) a local exception should

never prevent replicated code from being executed, or the system becomes
inconsistent (replicated code is not executed by all the processors anymore).
(b) at the end of the super-step, a local exception has to be treated
replicatedly.

Since replicated and local code may be juxtaposed in the same super-
step, we need to get aside from the standard exception handling techniques
to ensure that replicated code is run normally even after a local exception.
During a super-step, there might be local and replicated exceptions
coexisting and they must be treated at different levels: a replicated
exception, since it is raised by all processors, is treated immediately in
the OCaml way. A local exception, on the other hand, must not hinder
the global behaviour of the processor yet, so it is kept silent to replicated
code until the end of the super-step. This means, in particular, that a
processor in a state of exception may not perform any local computation
until the next synchronisation.

At the end of a super-step (put or proj), the exception state is communicated
to all processors to allow a global decision to be taken. In such a
situation, the local results obtained are partial, inconsistent or nonexistent.
Although we are discussing a way to enable the program to recover them

BSML with exceptions 39

afterwards, we currently adopt the standard approach and discard them,
switching to the exceptional treatment specified by the user.

Local exceptions are thus deferred until the end of the super-step.
However, it is undesirable that an exception escapes the scope of the
trypar...withpar it was raised in. For this reason, communications (and
barrier) must be forced at the withpar.

This behaviour is described formally and in more detail in the semantics
presented in [5].

5. Implementation
Keeping local exceptions hidden from replicated execution is made

possible by the strict distinction between local and replicated execution
in BSML: by enclosing local execution in a try...with safety net in the
implementation of the parallel primitives, we are sure to catch every
exception raised on a single processor. These exceptions can’t be ignored
in further local computation on that processor though, so they are
retained in a local variable status: (Fine | Stopped of int ∗ exn) ref. The second
role of the safety net is then to prevent any local operation on that
processor until the end of the super-step, since these operations may use
results that failed to compute; replicated code will continue to execute
normally.

At the end of the super-step, initiated by the put or proj primitives
or by withpar, the communication phase starts with an exchange of data
sizes. We take the opportunity to communicate processor states: in case
there is any exception, normal communication is replaced by a total
exchange of the exceptions and their parameters. We then get back
to a consistent replicated state with the same set of exceptions raised
everywhere. The propagation of exceptions drives out of the normal
execution flow and can’t be implemented in OCaml (without exceptions)
outside of the compiler, it is therefore piggy-backed onto the OCaml
exception Global exn of Exception set.t.

To implement the extension in the language, in particular the new
keywords trypar and withpar, we chose to use OCaml’s generic precompi-
ler, camlp4. The core of trypar...withpar is a try...with catching exceptions
of the kind Global exn, but several other problems must be taken into
account:

A barrier must be done before the with.
The super-step may end at an imbrication level different from the
one the exception was raised at.
Local exceptions and global exceptions may conflict. A native
global exception has to meet the withpar barrier before jumping
further in the stack.

40 Gesbert, Gava, Loulergue, Dabrowski

Our Global exn must be protected from being caught by the user
with a normal try...with.

6. Experiments

6.1 A generic parallel backtracking algorithm
Backtracking consists in searching for a solution by exploring a tree of

possibilities depth-first. If a recursive function doing this search raises
an exception whenever a solution is found, it can be caught directly
by the calling function without the need to switch cases and return a
solution if it exists, or continue exploring otherwise. The parallelisation
of this process explores the children of several different nodes at the same
time, making the gathering of solutions even more difficult without using
exceptions.

To assess the usability of exceptions in BSML, we present a simple
implementation of generic parallel backtracking. It takes as argument a
sequential function that returns all the children of a given node in the
tree and raises a specific exception on a solution. The function exploring
the tree proceeds in three steps:

1 the list of current nodes is split into a parallel vector
2 the function returning the children is run in parallel on a limited

amount of the nodes at each processor
3 the resulting children nodes are gathered globally, and these three

steps are processed recursively on them.

If no solution has been found at the third step (no exception raised),
new nodes from step 2 are tried. If there are none left, the algorithm
backtracks to the caller. This recursive function is enclosed into a
trypar. . . withpar that gathers and returns any solution found.

Another version, without any use of exceptions, was implemented.
The main descending function had to gather the results of all processors
and check if there was a solution at one of them. Accordingly, the size
of the core part of the algorithm was increased from 26 lines of code to
44 – exceptions made us save 40% in code size on that example.

6.2 Results
As an example of use, we implemented a brute-force sudoku solver.

Sudoku is a fashionable game that consists in filling a n2 × n2 grid with
integers from 1 to n2 according to constraints that ensure, given some
initial numbers, that only one solution is possible. We generate the
children by trying every possibility for each free square and checking for
validity. A mild optimisation consists in composing the children function

BSML with exceptions 41

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

a
n
ce

(s
−

1
)

Number of processors

with exn – 7 steps at a time

without exn – 7 steps at a time

with exn – 5 steps at a time

without exn – 5 steps at a time

Figure 2. Sudoku of dimension 9 solved with and without exceptions

several times to obtain enough nodes for an even distribution between
processors, which becomes mandatory when increasing the size of the
machine.

We solved a given grid of dimension 9 on a cluster of PC (using native-
code execution) linked with a gigabit network, for a number of processors
varying from one to ten. Figure 2 shows the performance in seconds−1

depending on the number of processors (so that a linear speedup would
be a straight line), for two different levels of the latter optimisation. This
results are the median of a large number of experiments. We notice
little impact on performance between the versions with and without
exceptions, which is sound since the algorithm is not changed; better,
the difference is very stable and in favor of the version with exceptions:
we explain it by the added checks that have to be made to extract the
possible results at every step of computation.

7. Conclusion and Future Work
Hardware is heading massively towards parallel architectures. Advanced

programming paradigms, however, are still trying to find the best expression
for the adapted programs. In this paper, we tackled the problem of
exception handling for the functional, OCaml-based BSML language,
pushing it one step further to that goal.

We defined global sets of locally raised exceptions and dedicated
handlers which offer a natural way to deal with them. A realistic
implementation was presented, together with a test program and promising
benchmarks.

42 Gesbert, Gava, Loulergue, Dabrowski

The work presented here is tightly related to the BSP model, but the
exception scheme it bases on is not specific to OCaml. Hence, we reckon
there would be little work involved in translating it to, for instance, Java.
Future work includes recovery of partial results, a full type system, and
automated performance prediction.

References
[1] R. Bisseling. Parallel Scientific Computation. A structured approach using BSP

and MPI. Oxford University Press, 2004.

[2] O. Bonorden, B. Juurlink, I. von Otte, and O. Rieping. The Paderborn
University BSP (PUB) library. Parallel Computing, 29(2):187–207, 2003.

[3] M. Cole. Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, 1989.

[4] F. Gava and F. Loulergue. A Static Analysis for Bulk Synchronous Parallel ML
to Avoid Parallel Nesting. Future Generation Computer Systems, 21(5):665–671,
2005.

[5] L. Gesbert and F. Loulergue. Semantics of bulk synchronous parallel ml
with exceptions. In Zoltán Horváth, editor, Draft proceedings of the 18th
International Symposium on Implementation and Application of Functional
Languages (IFL’06). to appear, 2006.

[6] Yan Gu, Bu-Sung Lee, and Wentong Cai. JBSP: A BSP programming library in
Java. Journal of Parallel and Distributed Computing, 61(8):1126–1142, August
2001.

[7] J.M.D. Hill, W.F. McColl, and al. BSPlib: The BSP Programming Library.
Parallel Computing, 24:1947–1980, 1998.

[8] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective
Caml System release 3.09, 2005. web pages at www.ocaml.org.

[9] F. Loulergue, F. Gava, and D. Billiet. Bulk Synchronous Parallel ML: Modular
Implementation and Performance Prediction. In Vaidy S. Sunderam, G. Dick
van Albada, Peter M. A. Sloot, and Jack Dongarra, editors, International
Conference on Computational Science, Part II, number 3515 in LNCS, pages
1046–1054. Springer, 2005.

[10] Alexander B. Romanovsky, Christophe Dony, Jørgen Lindskov Knudsen, and
Anand Tripathi, editors. Advances in Exception Handling Techniques (the
book grow out of a ECOOP 2000 workshop), volume 2022 of Lecture Notes in
Computer Science. Springer, 2001.

[11] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about
BSP. Scientific Programming, 6(3):249–274, 1997.

[12] M. Snir and W. Gropp. MPI the Complete Reference. MIT Press, 1998.

