
Salable Computing: Pratie and ExperieneVolume 6, Number 4, pp. 43�69. http://www.spe.org ISSN 1895-1767© 2005 SWPSEXTERNAL MEMORY IN BULK-SYNCHRONOUS PARALLEL ML∗FRÉDÉRIC GAVA†Abstrat. A funtional data-parallel language alled BSML was designed for programming Bulk-Synhronous Parallel algo-rithms, a model of omputing whih allows parallel programs to be ported to a wide range of arhitetures. BSML is based on anextension of the ML language with parallel operations on a parallel data struture alled parallel vetor. The exeution time an beestimated. Dead-loks and indeterminism are avoided. For large sale appliations where parallel proessing is helpful and wherethe total amount of data often exeeds the total main memory available, parallel disk I/O beomes a neessity. In this paper, wepresent a library of I/O features for BSML and its formal semantis. A ost model is also given and some preliminary performaneresults are shown for a ommodity luster.Key words. Parallel Funtional Programming, Parallel I/O, Semantis, BSP.1. Introdution. Some problems require performane that an only be provided by massively parallelomputers. Programming these kind of omputers is still di�ult. Many important omputational appliationsinvolve solving problems with very large data sets [44℄. Suh appliations are also referred as out-of-oreappliations. For example astronomial simulation [47℄, rash test simulation [10℄, geographi informationsystems [32℄, weather predition [52℄, omputational biology [17℄, graphs [40℄ or omputational geometry [11℄and many other sienti� problems an involve data sets that are too large to �t in the main memory andtherefore fall into this ategory. For another example, the Large Hadron Collider of the CERN laboratoryfor �nding traes of exoti fundamental partiles (web page at lh-new-homepage.web.ern.h), when startsrunning, this instrument will produes about 10 Petabytes a month. The earth-simulator, the most powerfulparallel mahine in the top500 list, has 1 Petabyte of total main memory and 100 Petabytes of seondarymemories. Using the main memory is not enough to store all the data of an experiment.Using parallelism an redue the omputation time and inrease the available memory size, but for hal-lenging appliations, the memory is always insu�ient in size. For instane, in a mesh deomposition of amehanial problem, a sientist might want to inrease the mesh size. To inrease the available memory size, atrivial solution is to use the virtual memory mehanism present in modern operating systems. This has beenestablished as a standard method for managing external memory. Its main advantage is that it allows theappliation to aess to a large virtual memory without having to deal with the intriaies of bloked seondarymemory aesses. Unfortunately, this solution is ine�ient if standard paging poliy is employed [7℄. To get thebest performanes, the algorithms must be restrutured with expliit I/O alls on this seondary memory.Suh algorithms are generally alled external memory (EM) algorithms and are designed for large ompu-tational problems in whih the size of the internal memory of the omputer is only a small fration of the sizeof the problem ([55, 53℄ for a survey). Parallel proessing is an important issue for EM algorithms for the samereasons that parallel proessing is of pratial interest in non-EM algorithm design. Existing algorithm anddata strutures were often unsuitable for out-of-ore appliations. This is largely due to the need of loality ondata referenes, whih is not generally present when algorithms are designed for internal memory due to thepermissive nature of the PRAM model: parallel EM algorithms [54℄ are �new� and do not work optimally andorretly in �lassial� parallel environments.Delarative parallel languages are needed to simplify the programming of massively parallel arhitetures.Funtional languages are often onsidered. The design of parallel programming languages is a tradeo� betweenthe possibility to express the parallel features that are neessary for preditable e�ieny (but with programsthat are more di�ult to write, prove and port) and the abstration of suh features that are neessary tomake parallel programming easier (but whih should not hinder e�ieny and performane predition). Onthe one hand the programs should be e�ient but without the prie of non portability and unpreditabilityof performanes. The portability of ode is needed to allow ode reuse on a wide variety of arhitetures.The preditability of performanes is needed to guarantee that the e�ieny will always be ahieved, whateverarhiteture is used.
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Fig. 2.1. The BSP model of omputationAnother important harateristi of parallel programs is the omplexity of their semantis. Deadloksand non-determinism often hinder the pratial use of parallelism by a large number of users. To avoid theseundesirable properties, there is a trade-o� between the expressiveness of the language and its struture whihould derease the expressiveness.We are urrently exploring the intermediate position of the paradigm of algorithmi skeletons [6, 42℄ inorder to obtain universal parallel languages where the exeution ost an easily be determined from the soureode. In this ontext, ost means the estimate of parallel exeution time. This last requirement fores the useof expliit proesses orresponding to the proessors of the parallel mahine. Bulk-Synhronous Parallel ML orBSML is an extension of ML for programming Bulk-Synhronous Parallel algorithms as funtional programswith a ompositional ost model. Bulk-Synhronous Parallel (BSP) omputing is a parallel programming modelintrodued by Valiant [46, 50℄ to o�er a high degree of abstration like PRAM models and yet to allow portableand preditable performane on a wide variety of arhitetures with a realisti ost model based on a struturedparallelism. Deadloks and indeterminism are avoided. BSP programs are portable aross many parallel arhi-tetures. Suh algorithms o�er preditable and salable performanes ([38℄ for a survey) and BSML expressesthem with a small set of primitives taken from the on�uent BSλ alulus [37℄. Suh operations are implementedas a library for the funtional, with a strit evaluation strategy, programming language Objetive Caml [33℄.We refer to [27℄ for more details about the hoie of this strategy for massively parallel omputing.Parallel disk I/O has been identi�ed as a ritial omponent of a suitable high performane omputer.Researh in EM algorithms has reently reeived onsiderable attention. Over the last few years, omprehensiveomputing and ost models that inorporate disks and multiple proessors have been proposed [35, 55, 54℄, butnot with all the above elements. [14, 16℄ showed how an EM mahine an take full advantage of parallel disk I/Oand multiple proessors. This model is based on an extension of the BSP model for I/O aesses. Our researhaims at ombining the BSP model with funtional programming. We naturally need to also extend BSML withI/O aesses for programming EM algorithms. This paper is the follow-up to our work on imperative featuresof our funtional data-parallel language [22℄.This paper desribes a further step after [21℄ towards this diretion. The remainder of this paper is organizedas follows. First we review the BSP model in Setion 2 and, then, brie�y present the BSML language. Insetion 3 we introdue the EM-BSP model and the problems that appear in BSML. In setion 4, we then givenew primitives for our language. In setion 5, we desribe the formal semantis of our language with persistentfeatures. Setion 6 is devoted to the formal ost model assoiated to our language and Setion 7 to somebenhmarks of a parallel program. We disuss related work in setion 8 and we end with onlusions and futureresearh (setion 9).2. Funtional Bulk-Synhronous Parallel ML.2.1. Bulk-Synhronous Parallelism. A BSP omputer ontains a set of proessor -memory pairs, aommuniation network allowing inter-proessor delivery of messages and a global synhronization unit whih



External Memory in Bulk-synhronous Parallel ML 45exeutes olletive requests of a synhronization barrier. For the sake of oniseness, we refer to [5, 46℄ for moredetails. In this model, a parallel omputation is subdivided into supersteps (Figure 2.1) at the end of whih abarrier synhronization and a routing are performed. After that, all requests for data posted during a preedingsuperstep are ful�lled. The performane of the mahine is haraterized by 3 parameters expressed as multiplesof the loal proessing speed r:(i) p is the number of proessor-memory pairs;(ii) l is the time required for a global synhronization and(iii) g is the time for olletively delivering a 1-relation, a ommuniation phase where every proessorreeives/sends at most one word. The network an deliver an h-relation in time g × h for any arity h.These parameters an easily be obtained using benhmarks [28℄. The exeution time of a superstep s is thusthe sum of the maximal loal proessing time, the maximal data delivery time and the global synhronizationtime, i.e, Time(s) = maxi:processor ws
i + maxi:processor hs

i ∗ g + l where ws
i= loal proessing time on proessor

i during superstep s and hs
i =max{hs

i+, hs
i−} where hs

i+ (resp. hs
i−) is the number of words transmitted (resp.reeived) by proessor i during superstep s. The exeution time ∑

s Time(s) of a BSP program omposed of Ssupersteps is therefore the sum of 3 terms:
tcomp + tcomm + L where 





tcomp =
∑

s maxi ws
i

tcomm = H × g where H =
∑

s maxi hs
i

L = S × l.In general tcomp, H and S are funtions of p and of the size of data n, or of more omplex parameters like dataskew and histogram sizes. To minimize exeution time, the BSP algorithm design must jointly minimize thenumber S of supersteps and the total volume h (resp. tcomp) and imbalane hs (resp. tcomm) of ommuniation(resp. loal omputation). Bulk Synhronous Parallelism and the Coarse-Grained Multiomputer (CGM),whih an be seen as a speial ase of the BSP model are used for a large variety of appliations. As statedin [13℄ �A omparison of the proeedings of the eminent onferene in the �eld, the ACM Symposium onParallel Algorithms and Arhitetures between the late eighties and the time from the mid-nineties to todayreveals a startling hange in researh fous. Today, the majority of researh in parallel algorithms is within theoarse-grained, BSP style, domain�.bsp_p: unit→int bsp_l: unit→�oat bsp_g: unit→�oatmkpar: (int→α )→αparapply: (α→β )par→αpar→β partype α option = None | Some of αput: (int→α option)par→(int→α option)parat: αpar→int→α Fig. 2.2. The Core Bsmllib Library2.2. Bulk-Synhronous Parallel ML. BSML does not rely on SPMD programming. Programs areusual �sequential� Objetive Caml (OCaml) programs [33℄ but work on a parallel data struture. Some of theadvantages are simpler semantis and better readability. The exeution order follows the reading order in thesoure ode (or, at least, the results are suh as seems to follow the exeution order). There is urrently noimplementation of a full BSML language but rather a partial implementation as a library for OCaml (web pageat http://bsmllib.free.fr/).The so-alled BSMLlib library is based on the elements given in Figure 2.2. They give aess to the BSPparameters of the underling arhiteture: bsp_p() is p the stati number of proesses (this value does nothange during exeution), bsp_g() is g the time for olletively delivering a 1-relation and bsp_l() is l thetime required for a global synhronization barrier.There is an abstrat polymorphi type αpar whih represents the type of p-wide parallel vetors of objetsof type α one per proessor. BSML parallel onstruts operate on parallel vetors. Those parallel vetors arereated by mkpar so that (mkpar f) stores (f i) on proess i for i between 0 and p− 1:mkpar f = (f 0) (f 1) · · · (f i) · · · (f (p−1))We usually write f as fun pid→e to show that the expression e may be di�erent on eah proessor. Thisexpression e is said to be loal, i.e, a usual ML expression. The expression (mkpar f) is a parallel objet and



46 F. Gavait is said to be global. A usual ML expression whih is not within a parallel vetor is alled repliate, i.e,idential to eah proessor. A BSP algorithm is expressed as a ombination of asynhronous loal omputations(�rst phase of a superstep) and phases of global ommuniation (seond phase of a superstep) with globalsynhronization (third phase of a superstep). Asynhronous phases are programmed with mkpar and applysuh that (apply (mkpar f) (mkpar e)) stores ((f i) (e i)) on proess i:apply f0 f1 · · · fi · · · fp−1 v0 v1 · · · vi · · · vp−1

= (f0 v0) (f1 v1) · · · (fi vi) · · · (fp−1 vp−1)Let us onsider the following expression:let vf=mkpar(fun pid x→x+pid)and vv=mkpar(fun pid→2∗pid+1)in apply vf vvThe two parallel vetors are respetively equivalent to:fun x→x + 0 fun x→x + 1 · · · fun x→x + i · · · fun x→x + (p− 1)and
0 3 · · · 2× i + 1 · · · 2× (p− 1) + 1The expression apply vf vv is then evaluated to:
0 4 · · · 2× i + 2 · · · 2× (p− 1) + 2Readers familiar with BSPlib [28℄ will observe that we ignore the distintion between a ommuniation requestand its realization at the barrier. The ommuniation and synhronization phases are expressed by put.Consider the expression: put(mkpar(fun i→fsi)) (∗). To send a value v from proess j to proess i, thefuntion fsj at proess j must be suh that (fsj i) evaluates to Some v. To send no value from proess j toproess i, (fsj i) must evaluate to None. The expression (∗) evaluates to a parallel vetor ontaining a funtionfdi of delivered messages on every proess i. At proess i, (fdi j) evaluates to None if proess j sent no messageto proess i or evaluates to Some v if proess j sent the value v to the proess i.The full language would also ontain a synhronous projetion operation at. (at ve n) returns the nthvalue of the parallel vetor ve: at v0 · · · vn · · · vp−1 n = vnat expresses ommuniation and synhronization phases. Without it, the global ontrol annot take into aountdata omputed loally. Global onditional is neessary for expressing algorithms like: Repeat Parallel IterationUntilMax of loal errors < ǫ. The nesting of par types is prohibited and the projetion should not be evaluatedinside the sope of a mkpar. Our type system enfores these restritions [23℄.2.3. Examples.2.3.1. Often Used Funtions. Some useful funtions an be de�ned by using only the primitives. Forexample the funtion repliate reates a parallel vetor whih ontains the same value everywhere. The primitiveapply an be used only for a parallel vetor of funtions whih take only one argument. To deal with funtionswhih take two arguments we need to de�ne the apply2 funtion.let repliate x = mkpar(fun pid→x)let apply2 vf v1 v2 = apply (apply vf v1) v2It is also ommon to apply the same sequential funtion at eah proess. This an be done using the parfunfuntions. They only di�er in the number of arguments to apply:let parfun f v = apply(repliate f) vlet parfun2 f v1 v2 = apply(parfun f v1) v2let parfun3 f v1 v2 v3 = apply(parfun2 f v1 v2) v2



External Memory in Bulk-synhronous Parallel ML 47It is also ommon to apply a di�erent funtion on a proess. applyat n f1 f2 v applies funtion f1 at proess nand funtion f2 at other proesses:let applyat n f1 f2 v =apply(mkpar(fun i→if i=n then f1 else f2)) v2.3.2. Communiation Funtion. Our example is the lassial omputation of the pre�x of a list. Herewe make the hypothesis that the elements of the list are distributed to all the proesses as lists. Eah proessorperforms a loal redution, then sends its partial result to the following proessors and �nally loally reduesits partial result with the sent values. Take for example the following expression:san_list_diret e (+) [1; 2] [3; 4] [5]It will be evaluated to:
[e + 1; e + 1 + 2] [e + 1 + 2 + 3; e + 1 + 2 + 3 + 4; ] [e + 1 + 2 + 3 + 4 + 5]for a pre�x of three proessors and where e is the neutral element (here 0). To do this, we need �rst theomputation of the pre�x of a parallel vetor:(∗ san_diret:(α→α→α )→α→α par→α par ∗)let san_diret op e vv =let mkmsg pid v dst=if dst<pid then None else Some v inlet pros_lists=mkpar(fun pid→from_to 0 pid) inlet reeivedmsgs=put(apply(mkpar mkmsg) vv) inlet values_lists= parfun2 List.map(parfun (ompose noSome) reeivedmsgs) pros_lists inapplyat 0 (fun _ →e) (List.fold_left op e) values_listswhere





















List.map f [v0; . . . ; vn] = [(f v0); . . . ; (f vn)]List.fold_left f e [v0; . . . ; vn] = f (· · · (f (f e v0) v1) · · · ) vnfrom_to n m = [n; n + 1; n + 2;. . . ; m]noSome (Some v) = vompose f g x = (f (g x)).Then, we an diretly have the pre�x of lists using some generi san:let san_wide san seq_san_last map op e vv =let loal_san=parfun (seq_san_last op e) vv inlet last_elements=parfun fst loal_san inlet values_to_add=(san op e last_elements) inlet pop=applyat 0 (fun x y→y) op inparfun2 map (pop values_to_add) (parfun snd loal_san)let san_wide_diret seq_san_last map op e vv =san_wide san_diret seq_san_last map op e vvlet san_list san op e vl =san_wide san seq_san_last List.map op e vl(∗ san_list_diret:(α→α→α )→α→α list par→α list par ∗)let san_list_diret op e vl = san_list san_diret op e vlwhere seq_san_last f e [v0; v1; . . . ; vn] = (last, [(f e v0); f(f e v0) v1; . . . ; last]) wherelast = f (· · · (f (f e v0) v1) · · · ) vn. The BSP ost formula of the above funtion (assuming op has a onstantost cop) is thus 2×N × cop × r + (p− 1)× s× g + l where s denotes the size in words of a value ompute bythe san and N the length of the biggest list held at a proess. We have thus the time to ompute the partialpre�x, the time to send the partial results, time to perform the global synhronization and the time to �nishthe pre�x.
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@ �NetworkRouter Fig. 3.1. A BSP omputer with external memories2.4. Advantages of Funtional BSP Programming. One important bene�t of the BSP model is theability to aurately predit the exeution time requirements of parallel algorithms. Communiations are learlyseparated from synhronization, i. e., this avoids deadloks and it an be performed in any order, providedthat the information is delivered at the beginning of the next superstep. This is ahieved by onstrutinganalytial formulas that are parameterized by a few values whih aptured the omputation, ommuniationand synhronization performane of the parallel system.The larity, abstration and formal semantis of funtional language make them desirable vehiles foromplex software. The funtional approah of this parallel model allows the re-use of suitable tehniques fromfuntional languages beause a few number of parallel primitives is needed. Primitives of the BSML languagewith a strit strategy are derived from a on�uent alulus [37℄ so parallel algorithms are also on�uent andkeep the advantages of the BSP models: no deadlok, e�ient implementation using optimized ommuniationalgorithms, stati ost formulas and ost previsions. The lazy evaluation strategy of pure funtional languageis not suited for the need of the massively parallel programmer. Lazy evaluation has the unwanted property ofhiding omplexity from the programmer [27℄. The strit strategy of OCaml makes the BSMLlib a better toolfor high performane appliations beause programs are transparent in the sense of making omplexity expliitin the syntax.Also, as in funtional languages, we ould easily prove and ertify funtional implementation of suh algo-rithms with a proof assistant [1, 4℄ as in [20℄. Using the extration possibility of the proof assistant, we ouldgenerate a erti�ed implementation to be used independently of the sequential or parallel implementation ofthe BSML primitives.3. External Memory.3.1. The EM-BSP model. Modern omputers typially have several layers of memories whih inludethe main memory and ahes as well as disks. We restrit ourselves to the two-level model [54℄ beause thespeed di�erene between disks and the main memory is muh more signi�ant than between other layers ofmemories. [16℄ extended the BSP model to inlude seondary loal memories. The basi idea is simple and itis illustrated in Figure 3.1. Eah proessor has, in addition to its loal memory, an external memory (EM) inthe form of a set of disks. This idea is applied to extend the BSP model to its EM version alled EM-BSP byadding the following parameters to the standard BSP parameters:(i) M is the loal memory size of eah proessor;(ii) D is the number of disk drives of eah proessor;(iii) B is the transfer blok size of a disk drive, and(iv) G is the ratio of loal omputational apaity (number of loal omputation operations) divided byloal I/O apaity (number of bloks of size B that an be transferred between the loal disks and memory)per unit time.In many pratial ases, all proessors have the same number of disks and, thus, the model is restrited tothat ase (although the model forbids di�erent memory sizes). The disk drives of eah proessor are denoted by

D0,D1, . . . ,DD−1. Eah drive onsists of a sequene of traks whih an be aessed by diret random aess. Atrak stores exatly one blok of B words. Eah proessor an use all its D disk drives onurrently and transfer
D × B words from/to the loal disks to/from its loal memory in a single I/O operation being at ost G. Insuh an operation, only one trak per disk is permitted to be aessed without any restrition and eah trakis set on eah disk. Note that an operation involving fewer disk drives inurs the same ost. Eah proessor is



External Memory in Bulk-synhronous Parallel ML 49assumed to be able to store in its loal main memory at least some bloks from eah disk at the same time,i. e., M >> DB.Like omputation on the BSP model, the omputation of the EM-BSP model proeeds in a suession ofsupersteps. The ommuniation osts are the same as for the BSP model. The EM-BSP model allows multipleI/O operations during the omputation phase of the superstep. The total ost of eah superstep is thus de�ned as
tcomp,io + tcomm +L where tcomp,io is the omputational ost and additional I/O ost harged for the supersteps,i.e, tcomp,io =

∑

s maxi(w
s
i +ms

i ) where ms
i is the I/O ost inurred by proessor i during superstep s. We referto [16℄ to have the EM-BSP omplexity of some lassial BSP algorithms.3.2. Examples of EM algorithms. Our �rst example is the matrix inversion whih is used by manyappliations as a diret method to solve linear systems. The omputation of the inverse of a matrix A anbe derived from its LU fatorization. [8℄ presents the LU fatorization by bloks. For this parallel out-of-orefatorization, the matrix is divided in bloks of olumns alled superbloks. The width of the superblok isdetermined by the amount of physial available memory: only bloks of the urrent superblok are in the mainmemory, the others are on disks. The algorithm fatorize the matrix from left to right, superblok by superblok.Eah time a new superblok of the matrix is fethed in the main memory (alled the ative superblok), allprevious pivoting and update of a history of the right-looking algorithm are applied to the ative superbloks.One the last superblok is fatorized, the matrix is re-read to apply the remaining row pivoting of the reursivephases. Note that the omputation is done data in plae, the matrix has been �rst distributed on proessorsand thus, for load balaning, a yli distribution of the data is used.[9℄ presents PRAM algorithms using external-memory for graph problems as bionneted omponents of agraph or minimum spanning forest. One of them is the 3-oloring of a yle applied to �nding large independentssets for the problem of list ranking (determine, for eah node v of a list, the rank of v de�ne as the number oflinks from v to the end of the list). The methods for solving it is to update sattered suessor and predeessorolors as needed after re-oloring a group of nodes of the list without sorting or sanning the entire list. Asbefore, the algorithms works group by groups with only one group in the main memory.The last example is the multi-string searh problem whih onsists of determining whih of k pattern stringsour in another string. Important appliations on biologial databases make use of very large text olletionsrequiring speialized nontrivial searh operations. [19℄ desribes an algorithm for this problem with a onstantnumber of supersteps and based on the distribution of a proper data struture among the proessors and thedisks to redue and balane the ommuniation ost. This data struture is based on a bind tree built on thesu�xes of the strings and the algorithm works on longest ommon pre�x on suh trees and by lexiographiorder. The algorithm takes advantage of disks by only keeping a part of a bind tree in the main memory andby olleting subpart of trees during the supersteps.4. External Memory in BSML.4.1. Problems by Adding I/O in BSML. The main problem by adding external memory and so I/Ooperators to BSML is to keep safe the fat that in the global ontext, the repliate values, i.e, usual OCamlvalues repliate on eah proessor, are the same. Suh values are dediated to the global ontrol of the parallelalgorithms. Take for example the following expression:let han=open_in "�le.dat" inif (at (mkpar(fun pid→(pid mod 2)=0)) (input_value han))then san_diret (+) 0 (repliate 1)else (repliate 1)It is not true that the �le on eah proessor ontains the same value. In this ase, eah proessor reads on itsseondary memory a di�erent value. We would have obtained an inoherent result beause eah proessor reads adi�erent integer on the hannel han and some of them would exeute san_diret whih need a synhronization.Others would exeute repliate whih does not need a synhronization. This breaks the on�uent result of theBSML language and the BSP model of omputation with its global synhronizations. If this expression hadbeen evaluated with the BSMLlib library, we would have a breakdown of the BSP omputer beause at is aglobal synhronous primitive. Note that we also have this kind of problems in the BSPlib [28℄ where the authorsnote that only the I/O operations of the �rst proessor are �safe�. Another problem omes from side-e�etsthat an our on eah proessor. Take for example the following expression:
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	P/M P/M P/M P/M P/MDisk0 DiskDg−1NetworkRouter Fig. 4.1. A BSP omputer with shared diskslet a=mkpar(fun i→if i=0 then(open_in "�le.dat");()else ())in (open_out "�le.dat")where () is an empty value. If this expression had been evaluated with the BSMLlib library, only the �rstproessor would have opened the �le in a read mode. After, eah proessor opened the �le with the same namein a write mode exept the �rst one. This �le has already been opened in read mode. We would also have aninoherent result beause the �rst proessor raised an exeption whih is not aught at all by other proessesin the global ontext. This problem of side-e�ets ould also be ombined with the �rst problem if there is no�le at the beginning of the omputation. Take for example the following expression:let han=open_out "�le.dat" inlet x=mkpar(fun i→if i=0 then (ouput_value 0) else ()) inouput_value 1; lose ha;let han=open_in "�le.dat" inif (at (mkpar(fun pid→(pid mod 2)=0)) (input_value han))then san_diret (+) 0 (repliate 1)else (repliate 1)The �rst proessor adds the integers 1 and 2 on its �le and other proessors add the integer 2 on their �les. Asin the �rst example, we would have a breakdown of the BSP omputer beause the integer read would not bethe same and at is a global synhronous primitive.4.2. The proposed solution. Our solution is to have two kinds of �les: global and loal ones. In thisway, we have two kinds of I/O operators. Loal I/O operators do not have to our in the global ontext andglobal I/O ones do not have to our loally. Loal �les are in loal �le systems whih are presents in eahproessor as in the EM-BSP model. Global �les are in a global �le system. These �les need to be the same fromthe point of view of eah node. The global �le system is thus in shared disks (as in Figure 4.1) or as a opy ineah proessor. They thus always give the same values for the global ontext. Note that if they are only shareddisks and not loal ones, the loal �le systems ould be in di�erent diretories, one per proessor in the global�le system.An advantage of having shared disks is the ase of some algorithms whih do not have distributed data atthe beginning of the omputation. As those whih sort, the list of data to sort is in a global �le at the beginningof the program and in another global �le at the end. On the other hand, in the ase of a distributed global �lesystem, the global data are also distributed and programs are less sensitive to the problem of faults. Thus, wehave two important ases for the global �le system whih ould be seen as a new parameter of the EM-BSPmahine: have we shared disks or not?In the �rst ase, the ondition that the global �les are the same for eah proessor point of view requiressome synhronizations for some global I/O operators as reated, opened or deleted a �le. For example, it isimpossible or un-deterministi for a proessor to reate a �le in the global �le system if at the same time anotherproessor deleted it. On the other hand, reading (resp. writing) values from (resp. to) �les do not need anysynhronization. All the proessors read the same values in the global �le and only one of the proessors needsto really write the value on the shared disks. In the ase of a global output operator only one of the proessorswrites the value and in the ase of a global input operator the value is �rst read from the disks by a proessorand then is read by other proessors from the operating system bu�ers. In this way, for all global operators,there is not a bottlenek of the shared disks.In the seond ase, all the �les, loal and global ones, are distributed and no synhronization is needed atall. Eah proessor reads/writes/deletes et. in its own �le system. But at the beginning, the global �le systemneeds to be empty or repliated to eah proessor and the global and loal �le systems in di�erent diretories.



External Memory in Bulk-synhronous Parallel ML 51Note that many modern parallel mahines have onurrent shared disks. Suh disks are always onsideredas user disks, i.e, disks where the users put the data needed for the omputations whereas loal disks are onlygenerally used for the parallel omputations of programs. For example, the earth simulator has 1,5 Petabytesfor users as mass storage disks and a speial network to aess them. If there are no shared disks, NFS orsalable low level libraries as in [36℄ are able to simulate onurrent shared disks. Note also that if they are onlyshared disks, loal disks ould be simulated by using di�erent diretories for the loal disks of the proessors(one diretory for one proessor).
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Fig. 4.2. Benhmarks of EM parameters4.3. Our new model. After some experiments to determine the EM-BSP parameters of our parallelmahine, we have found that operating systems do not read/write data in a onstant time but in a linear timedepending on the size of the data. We also notie that there is an overhead depending on the size of the bloks,i. e., if we have n× (DB) < s < (n + 1)×DB, where s is the size in words of the data, there is n + 1 overheads



52 F. Gavato read/write this value from/to the D onurrent disks. Figure 4.2 gives the results of this experiment on aPC with 3 disks, eah disk with bloks of 4096 words (seonds are plotted on the vertial axis). This programwas run 10000 times and the average was taken. Suh results are not altered if we derease the number of disks.Our proposed solution gives the proessors aess to two kinds of �les: global and loal ones. By this way,our model alled EM2-BSP extends the BSP model to its EM2 version with two kinds of external memories,loal and global ones. Eah loal �le system will be on loal onurrent disks as in the EM-BSP model. Theglobal one will be on onurrent shared disks (as in Figure 4.1) if they exist or repliate on the loal disks. TheEM2-BSP model is thus able to take into aount the time to read the data and to distributed them into theproessors. The following parameters are thus adding to the standard BSP parameters:(i) M is the loal memory size of eah proessor;(ii) Dl is the number of independent disks of eah proessor;(iii) Bl is the transfer blok size of a loal disk;(iv) Gl is the time to read or write in parallel one word on eah loal disk;(v) Ol is the overhead of the onurrent loal disks;(vi) Dg is the number of independent shared disks (or global disks);(vii) Bg is the transfer blok size of a global disk;(viii) Gg is the time to read or write in parallel one word on eah global disk and(ix) Og is the overhead of the onurrent global disks.Of ourse, if there are no shared disks or no loal disks: Dl = Dg, Bl = Bg, Gl = Gg and Ol = Og. A proessoris able to read/write n words to its loal disks in time ⌈ n
Dl⌉ ×Gl + ⌈n+1

DlBl⌉ ×Ol and n words to the global disksin time ⌈ n
Dg⌉ ×Gg + ⌈ n+1

DgBg⌉ ×Og.As in the EM-BSP model, the omputation of the EM2-BSP model proeeds in a suession of supersteps.The ommuniation osts are the same as for the EM-BSP model and multiple I/O operations are also allowedduring the omputation phase of a superstep.Note that Gg is not g even if proessors aess to the shared disks by the network (in ase of some parallelmahines): g is the time to perform a 1-relation and Gg is the time to read/write D words on the sharedonurrent disks. It ould depend on g in some parallel mahine as lusters but it ould depend on many otherhardware parameters if, for example, there is a speial network to aess to the shared onurrent disks.4.4. New Primitives. In this setion we desribe the ore of our I/O library, i. e., the minimal set ofprimitives for programming EM2-BSP algorithms. This library will be inorporated in the next release of theBSMLlib. This I/O library is based on the elements given in Figure 4.3. As in the BSMLlib library, we havefuntions to aess to the EM2-BSP parameters of the underlining arhiteture. For example, embsp_lo_D()is Dl the number of loal disks and glo_shared() gives if the global �le system is shared or not. Sine wehave two �le systems, we need two kinds of names and two kinds of abstrat types of output hannels (resp.input hannels): glo_out_hannel (resp. glo_in_hannel) and lo_out_hannel (resp. lo_in_hannel) toread/write values from/to global or loal �les.We an open a named �le for writing. The primitive returns a new output hannel on that �le. The �le istrunated to zero length if it already exists. Either it is reated or the primitive will raise an exeption if the �leould not be opened. For this, we have two kinds of funtions for global and loal �les: (glo_open_out F)whih opens the global �le F in write mode and returns a global hannel positioned at the beginning of that�le and (lo_open_out f) whih opens the loal �le f in write mode and returns a loal hannel positionedat the beginning of that �le. In the same manner, we have two funtions, glo_open_in and lo_open_infor opening a named �le in read mode. Suh funtions return new loal or global input hannels positioned atthe beginning of the �les. In the ase of global shared disks, a synhronization ours for eah global �open�.With this global synhronization, eah proessor ould signal to the other ones if it managed to open the �lewithout errors or not and eah proessor would raise an exeption if one of them has failed to open the �le.Now, with our hannels, we an read/write values from/to the �les. This feature is generally alled per-sistene. To write the representation of a strutured value of any type to a hannel (global or loal), we usedthe following funtions: (glo_output_value Cha v) whih writes the repliate value v to the opened global�le and (lo_output_value ha v) whih loally writes the loal value v to the opened loal �le. The objetan be then read bak, by the reading funtions: (glo_input_value Cha) (resp. (lo_input_value ha))whih returns from the global hannel Cha (resp. loal hannel ha) the repliate value Some v (resp. loalvalue) or None if there is no more value in the opened global �le (resp. loal �le). This is the end of the �le.



External Memory in Bulk-synhronous Parallel ML 53EM2-BSP parametersembsp_lo_D:unit→int embsp_lo_B:unit→int embsp_lo_G:unit→�oatembsp_glo_D:unit→int embsp_glo_B:unit→int embsp_glo_G:unit→�oatembsp_lo_O:unit→�oat embsp_glo_O:unit→�oat glo_shared:unit→boolGlobal I/O primitives Loal I/O primitivesglo_open_out:glo_name→glo_out_hannelglo_open_in:glo_name→glo_in_hannelglo_output_value:glo_out_hannel→α→unitglo_input_value:glo_in_hannel→α optionglo_lose_out:glo_out_hannel→unitglo_lose_in:glo_in_hannel→unitglo_delete:glo_name→unitglo_seek:glo_in_hannel→int→unit
lo_open_out: lo_name→lo_out_hannello_open_in:lo_name→lo_out_hannello_output_value:lo_out_hannel→α→unitlo_input_value:lo_in_hannel→α optionlo_lose_out:lo_out_hannel→unitlo_lose_in:lo_in_hannel→unitlo_delete:lo_name→unitlo_seek:lo_in_hannel→int→unitFrom loal to globalglo_opy:int→lo_name→glo_name→unitFig. 4.3. The Core I/O Bsmllib LibrarySuh funtions read the representation of a strutured value and we refer to [34℄ about having type safety inhannels and reading them in a safe way. We also have (glo_seek Cha n) (resp. lo_seek) whih allows topositioned the hannel at the nth value of a global �le (resp. loal �le). The behavior is unspei�ed if any ofthe above funtions is alled with a losed hannel.Note that only loal or repliate values ould be written on loal or global �les. Nesting of parallel vetorsis prohibited and thus lo_output_value ould only write loal values. It is also impossible to write on ashared global �le a parallel vetor of values (global values) beause these values are di�erent on eah proessorand glo_output_value is an asynhronous primitive. Suh values ould be written in any order and ouldbe mixed with other values. This is why only loal and repliate values should be read/write from/to disks (seesetion 6 for more details).After, read/write values from/to hannels, we need to lose them. As previously, we need four kinds offuntions: two for the input hannels (loal and global ones) and two for the output hannels. For example,(glo_lose_out Cha), loses the global output hannel Cha whih had been reated by glo_open_out. Theglo_delete and lo_delete primitives delete a global or a loal �le if it is �rst losed.The last primitive opies a loal �le from a proessor to the global �le system. It is thus a global primitive.(glo_opy n f F) opies the �le f from the proessor n to the global �le system with the name F. This primitiveould be used at the end of a BSML program to opy the loal results from loal �les to the global (user) �lesystem. It is not a ommuniation primitive beause used as a ommuniation primitive, glo_opy has a moreexpensive ost than any ommuniation primitive (see setion 6). In the ase of a distributed global �le system,the �le is dupliated on all the global �le systems of eah proessor and thus all the data of the �le are allput into the network. On the ontrary, in the ase of global shared disks, it is just a opy of the �le beause,aess to the global shared disks is generally slower than putting values into the network and read them bakby another proessor.Using these primitives, the �nal result of any program would be the same (but naturally without the sametotal time, i. e., without the same osts) with shared disk or not. Now, to better understand how these newprimitives work, we desribe a formal semantis of our language with suh persistent features.5. High Order Formal Semantis.5.1. Mini-BSML. Reasoning on the omplete de�nition of a funtional and parallel language suh asBSML, would have been omplex and tedious. In order to simplify the presentation and to ease the formalreasoning, this setion introdues a ore language as a mini programming language. It is an attempt to tradebetween integrating the prinipal features of persistene, funtional, BSP language and being simple. The



54 F. Gavaexpressions of mini-BSML, written e possibly with a prime or subsript, have the following abstrat syntax:
e ::= x variables | c onstants

| op operators | fun x→ e abstration
| (e e) appliation | let x = e in e binding
| (e, e) pairs | if e then e else e onditional
| (mkpar e) parallel vetor | (apply e e) parallel appliation
| (put e) ommuniation | (at e e) projetion
| f �le names or hannelsIn this grammar, x ranges over a ountable set of identi�ers. The form (e e′) stands for the appliation of afuntion or an operator e, to an argument e′. The form fun x → e is the so-alled and well-known lambda-abstration that de�nes the �rst-lass funtion of whih the parameter is x and the result is the value of e.Constants c are the integers, the booleans, the number of proesses p and we assume having a unique valuefor the type unit: (). The set of primitive operations op ontains arithmeti operations, pair operators, testfuntion isn of the n onstrutor whih plays the role of the None onstrutor in OCaml, �xpoint to de�nednatural iteration funtions and our I/O operators: openr (resp. openw) to open a �le as a hannel in readmode (resp. write mode), loser (resp. losew) to lose a hannel in read mode (resp. write mode), read,write to read or write in a hannel, delete to delete a �le and seek to hange the reading position. All thoseoperators are distinguished with a subsript whih is l for a loal operator and g for a global one. We also haveour parallel operators: mkpar, apply, put and at. We also have two kinds of �le systems, the loal and theglobal ones, de�ned with (possibly with a prime):

• f for a �le name;
• fw for a write hannel, fr for a read hannel and gξ

k for a hannel pointed on the kth value of a �lewhere ξ is the name of the hannel;
• ?f

vn.
..

v0

is a �le where ? is , r or w for a lose �le or an open �le in read or write mode and where
v0, . . . , vn the values hold in the �le.When a �le is opened in read mode, it ontains the name [ga

n, . . . , gz
m] of the hannels that pointed to it and theposition of these hannels. Before presenting the dynami semantis of the language, i. e., how the expressionsof mini-BSML are omputed to values, we present the values themselves and the simple ML types [39℄ of thevalues. There is one semantis per value of p, the number of proesses of the parallel mahine. In the following,the expressions are extended with the parallel vetors: 〈e, . . . , e〉 (nesting of parallel vetors is prohibited; ourstati analysis enfores this restrition [23℄). The values of mini-BSML are de�ned by the following grammar:

v ::= fun x → e funtional value | c onstant
| op primitive | (v, v) pair value
| 〈v, . . . , v〉 p-wide parallel vetor value | f �le names or hannelsand the simple ML types of values are de�ned by the following grammar:

τ ::= κ base type (bool, int, unit, �le names or hannels) | α type variables
| τ1 → τ2 type of funtional values from τ1 to τ2 | τ1 ∗ τ2 type for pair valuesWe note ⊢ v : τ to say that the value v has the type τ and we refer to [39℄ for an introdution to the types ofthe ML language and to [23℄ for those of BSML.5.2. High Order Semantis. The dynami semantis is de�ned by an evaluation mehanism that relatesexpressions to values. To express this relation, we used a small-step semantis. It onsists of a prediatebetween an expression and another expression de�ned by a set of axioms and rules alled steps. The small-step semantis desribes all the steps of the language from an expression to a value. We suppose that weevaluate only expressions that have been type-heked [23℄ (nesting of parallel vetors has been prohibited).Unlike in a sequential omputer with a sequential programming language, a unique �le system (a set of �les)for persistent operators is not su�ient. We need to express the �le system of all our proessors and ourglobal �le system. We assume a �nite set N = {0, . . . , p − 1} whih represents the set of proessor namesand we write i for these names and ⋊⋉ for the whole parallel omputer. Now, we an formalize the �les foreah proessor and for the network. We write {fi} for the �le system of proessor i with i ∈ N . We assumethat eah proessor has a �le system as an in�nite mapping of �les whih are di�erent at eah proessor. Wewrite {f} = {{f0}, . . . , {fp−1}} for all the loal �le systems of our parallel mahine and {F} for our global �le
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(bsp_p ()) ⇀

δ
p

(fst (v1, v2)) ⇀
δ

v1if true then e1 else e2 ⇀
δ

e1

(isn n) ⇀
δ

true
(�x op) ⇀

δ
op (+ (n1, n2)) ⇀

δ
n with n = n1 + n2

(snd (v1, v2)) ⇀
δ

v2if false then e1 else e2 ⇀
δ

e2

(isn v) ⇀
δ

false if v 6= n
(�x (fun x→ e)) ⇀

δ
e[x← (�x (fun x→ e))]Fig. 5.1. Funtional δ-rulessystem. The persistent version of the small-steps semantis has the following form: {F}/e/{f}⇀ {F ′}/e′/{f ′}.We note ∗

⇀, for the transitive and re�exive losure of ⇀, e. g., we note {F0}/e0/{f
0}

∗
⇀ {F}/v/{f} for

{F0}/e0/{f0} ⇀ {F1}/e1/{f1} ⇀ {F2}/e2/{f2} ⇀ . . . ⇀ {F}/v/{f}. To de�ne the relation ⇀, we beginwith some rules for two kinds of redutions:(i) e/{fi}
i

⇀ e′/{f ′
i} whih ould be read as �with the initial loal �le system {fi}, at proessor i, theexpression e is redued to e′ with the �le system {f ′

i}";(ii) {F}/e/{f}
⋊⋉

⇀ {F ′}/e′/{f} whih ould be read as �with the initial global �le system {F} and withthe initial set of loal �le systems, the expression e is redued to e′ with the global �le system F ′ and with thesame set of loal �le systems".To de�ne these relations, we begin with some axioms for the funtional head redution ε
⇀:

(fun x→ e) v
ε
⇀ e[x← v] and let x = v in e

ε
⇀ e[x← v]We write e[x ← v] for the expression obtained by substituting all the free ourrenes of x in e by v. Freeourrenes of a variable are de�ned as a lassial and trivial indutive funtion on our expressions. Thisfuntional head redution has two versions. First, a loal redution, ε

⇀
i
, of just the proessor i and seond, aglobal redution, ε

⇀
⋊⋉

, of the whole parallel mahine:
e

ε
⇀ e′

e / {fi}
ε
⇀
i

e′ / {fi}
(1)

e
ε
⇀ e′

{F} / e / {f}
ε
⇀
⋊⋉

{F} / e′ / {f}
(2)For primitive operators we also have some axioms, the δ-rules. The funtional δ-rules ⇀

δ
are given in Figure 5.1.First, we have funtional δ-rules whih ould be used by one proessor i, ⇀

δi

or by the parallel mahine, ⇀
δ⋊⋉

. Asin the funtional head redution, we have two di�erent ases for using funtional δ-rules:
e⇀

δ
e′

e / {fi}⇀
δi

e′ / {fi}
(3)

e⇀
δ

e′

{F} / e / {f}⇀
δ⋊⋉

{F} / e′ / {f}
(4)Suh redutions, whih are not persistent redutions, do not hange and do not need the �les. Only persistentoperators hange and need them.

{F} / (mkpar v) / {f} ⇀
δ≎

{F} / 〈(v 0), . . . , (v (p − 1))〉 / {f}

{F}/(apply 〈v0, . . . , vp−1〉 〈v′0, . . . , v′p−1
〉) / {f} ⇀

δ≎

{F}/〈(v0 v′
0
), . . . , (vp−1 v′p−1

)〉/{f}

{F} / (at 〈. . . , vn, . . .〉 n) / {f} ⇀
δ≎

{F} / vn / {f} if Ac(vn) 6= True
{F} / (put 〈v0, . . . , vp−1〉) / {f}⇀

δ≎

{F} / (mkfun (〈send (init v0 p), . . . , send (init vp−1 p)〉)) / {f}

{F} / 〈send [v0

0 , .., vp−1

0
], . . . , send [v0

p−1, .., vp−1

p−1
]〉 / {f}

⇀
δ≎

{F} / 〈[v0

0 , .., v0

p−1], . . . , [vp−1

0
, .., vp−1

p−1
]〉 / {f} if ∀n, m ∈ 0, . . . , p− 1 Ac(v

m
n ) 6= Truewhere mkfun = apply (mkpar (fun j t i→ if (and (≤(0, i), <(i,p))) then (aess t i) else n))Fig. 5.2. Parallel δ-rules



56 F. GavaSeond, for the parallel primitives, we naturally have δ-rules but we do not have those δ-rules on a singleproessor but only for the parallel mahine (Figure 5.2). For simple reasons it is impossible for a proessor tosend a hannel to another proessor. This seond proessor does not have to read in this hannel beause itould be seen as a hidden ommuniation. In this way, we have to test if the sent values ontain hannels ornot. To do this, we used a trivial indutive funtion Ac whih tells whether an expression ontains a hannelor not. Note that this work is done when OCaml serializes values. This raises an exeption when an abstratdatum like a hannel has been found. The evaluation of a put primitive proeeds in two steps. In a �rst step,eah proessor reates a pure funtional array of values. Thus, we need a new kind of expression, arrays written
[e, . . . , e]. init and aess operators are used to manipulate these funtional arrays:aess [v0, . . . , vn, . . . , vm] n ⇀

δ
vn and init f m ⇀

δ
[(f 0), . . . , (f (m−1))]In the seond step, the send operations exhange these arrays. For example, the value at the index j of thearray held at proess i is sent to proess j and is stored at index i of the result. The funtion mkfun onstrutsa parallel vetor of funtions from the resulting vetor of arrays.

(openr f)/{f ′, . . . , f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

far / {f ′, . . . , rf vn.
..

v0

[ga
0
], . . . , f ′′}

(openr f)/{f ′, . . . , rf vn.
..

v0

[ga, . . . , gz ], . . . , f ′′}
io
⇀
δ

fξr / {f ′, . . . , rf vn.
..

v0

[ga, . . . , gz , gξ
0
], . . . , f ′′}

(openw f)/{f ′, . . . , f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

fξw / {f ′, . . . ,wf ∅, . . . , f ′′}

(openwl f)/{f ′, . . . , f ′′}
io
⇀
δ

fξw / {f ′, . . . ,wf ∅, . . . , f ′′} if f /∈{f ′, . . . , f ′′}
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io
⇀
δ
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v0

[ga, . . . , gz ], . . . , f ′′}

(loser fξr )/{f ′, . . . , rf vn.
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v0
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io
⇀
δ
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(loser fξr )/{f ′, . . . , rf vn.
..

v0
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δ
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v0

, . . . , f ′′}
io
⇀
δ

() / {f ′, . . . , f vn.
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v0

, . . . , f ′′}

(losew fξw/{f ′, . . . , ?f vn.
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v0

, . . . , f ′′}
io
⇀
δ

() / {f ′, . . . , f vn.
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v0

, . . . , f ′′} where ?=w or ?=
(readτ fξr )/{f ′, . . . , rf .

..
vk.
..

[ga, .., gξ
k
, . . . , gz ], . . . , f ′′}

io
⇀
δ

vk / {f ′, . . . , rf .
..

vk.
..

[ga, .., gξ
m, . . . , gz ], . . . , f ′′}if ⊢ vk : τ and m = k + 1. vk is the kth value of f

(readτ fξr )/{f ′, . . . , rf vn.
..

v0

[ga, .., gξ
k
, . . . , gz ], . . . , f ′′}

io
⇀
δ
n / {f ′, . . . , rf vn.

..
v0

[ga, .., gξ
k
, . . . , gz], . . . , f ′′}if k > n

(seek fξr k)/{f ′, . . . , rf vn.
..

v0

[ga, .., gξ
m, . . . , gz ], . . . , f ′′}

io
⇀
δ
n / {f ′, . . . , rf vn.

..
v0

[ga, .., gξ
k
, . . . , gz ], . . . , f ′′}

(write (v, fξw))/{f ′, . . . ,wf
.
.., . . . , f ′′}

io
⇀
δ
()/{f ′, . . . ,wf

v
.
.. , . . . , f ′′} if Ac(vn) 6= True

(delete f)/{f ′, . . . , f .
.., . . . , f ′′}

io
⇀
δ

()/{f ′, . . . , f ′′}Fig. 5.3. δ-rules of the persistent operatorsThird, we omplete our semantis by giving the δ-rules io
⇀
δ
of the I/O operators given in Figure 5.3. Theopen operation opens a �le (in read or write mode) and returns a new hannel, pointing to this �le, to aessto the values of the �le or write values in this �le. Opening a �le in write mode, gives an empty �le. If possible,readτ gives the value of type τ ontained in the �le from the hannel. If no more value ould be read thenreadτ returns an empty value. The write operation writes a new value into the �le using the hannel. delete
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Γ ::= []
| Γ e
| v Γ
| let x = Γ in e
| (Γ, e)
| (v, Γ)
| if Γ then e else e
| (mkpar Γ)
| (apply Γ e)
| (apply v Γ)
| (put Γ)
| (at Γ e)
| (at v Γ)

Γi
l

::= Γi
l

e
| v Γi

l
| let x = Γi

l
in e

| (Γi
l
, e)

| (v, Γi
l
)

| if Γi
l
then e else e

| (mkpar Γi
l
)

| (apply Γi
l

e)
| (apply v Γi

l
)

| (put Γi
l
)

| (at Γi
l

e)
| (at v Γi

l
)

| 〈e, . . . ,

i
z}|{

Γl , e, . . . , e〉

Γl ::= []
| Γl e
| v Γl

| let x = Γl in e
| let re g x = Γl in e
| (Γl, e)
| (v, Γl)
| if Γl then e else e
| (send Γl)
| [Γl, e1, . . . , en]
| [v0,Γl, . . . , en]
| . . .
| [v0, v1, . . . , Γl]Fig. 5.4. Context of evaluationdeletes a �le from the �le system if it has been fully losed. lose loses a hannel or do nothing if the hannelhas been �rst losed. All those rules ould be distinguished with a subsript (l or g) for the loal or the globaloperators. Thus, we need two kinds of redutions, one for the loal redution io

⇀
δi

and another one for the globalredution io
⇀
δ⋊⋉

:
e / {fi}

io
⇀
δ

e′ / {f ′
i}

e / {fi}
io
⇀
δi

e′ / {f ′
i}

(5)
e / {F}

io
⇀
δ

e′ / {F ′}

{F} / e / {f}
io
⇀
δ⋊⋉

{F ′} / e′ / {f}
(6)First, for a single proessor i suh persistent operations work on the loal �le system of the proessor i wherethey are exeuted. Seond, for the whole parallel mahine, we have the same operations exept for the global�le system. The speial operator opy

⋊⋉
opies one �le of one proessor into the global �le system:

{F ′, .., F ′′}/(opy i f F)/{f0, . . . , fi, . . . , fp−1}
io
⇀
δ⋊⋉

{F ′, .., F ′′, F vn.
..

v0

}/()/{f0, . . . , fi, . . . , fp−1}if F /∈{F ′, .., F ′′} and fi = {f ′, . . . , f vn.
..

v0

, . . . , f ′′}Now, the omplete de�nitions of our two kinds of redutions are:
i

⇀ =
ε
⇀
i
∪ ⇀

δi

∪
io
⇀
δi

and ⋊⋉

⇀ =
ε
⇀
⋊⋉

∪ ⇀
δ⋊⋉

∪ ⇀
δ≎

∪
io
⇀
δ⋊⋉5.3. Contexts of evaluation. It is easy to see that we annot always make a head redution. We haveto redue �in depth� in the sub-expressions. To de�ne this deep redution, we de�ne two kinds of ontexts,i.e, expressions with a hole noted [] that have the abstrat syntax given in Figure 5.4. The hole gives whereexpressions ould be redued. In this way, the ontexts give the order of evaluation of the arguments of theonstrution of the language, i.e, the strategy of the language.The Γ ontext is used to de�ne a global redution of the parallel mahine. For example:

Γ = let x = [] in mkpar (fun pid→ e)The redution will our at the hole to �rst ompute the value of x. The Γi
l ontext is used to de�ne inwhih omponent i of a parallel vetor the redution is done, i.e., whih proessor i redues its loal expression.This ontext uses the Γl ontext whih de�nes a loal redution on a proessor i. Note that, in this way, thehole is always inside a parallel vetor. For example, the following ontext: Γi

l = apply v 〈v0, e1, . . . , Γl〉 and
Γl = openrl [] is used to de�ne that the last proessor �rst omputes the argument of the openrl primitive.Now we an redue �in depth� in the sub-expressions. To de�ne this deep redution, we use the inferenerules of the loal ontext rule:

e / {fi}
i

⇀ e′ / {f ′
i}

{F} / Γi
l
(e) / {f}⇀ {F} / Γi

l
(e′) / {f ′}

where 
{f} = {{f0}, . . . , {fi}, . . . , {fp−1}}
{f ′} = {{f0}, . . . , {f ′

i}, . . . , {fp−1}}
(7)



58 F. GavaSo, we an redue the parallel vetors and the ontext gives the name of the proessor where the expression isredued. The global ontext rule is:
{F} / e / {f}

⋊⋉

⇀ {F ′} / e′ / {f}

{F} / Γ(e) / {f}⇀ {F ′} / Γ(e′) / {f}
(8)We an remark that the ontext gives an order to evaluate an expression but not for the parallel vetors and thisrule is not deterministi. It is not a problem beause the BSλ-alulus is on�uent [37℄. We an also notie thatour two kinds of ontexts used in the rules exlude eah other by onstrution beause the hole in a Γi

l ontextis always in a omponent of a parallel vetor and never for a Γ one. Thus, we have a rule to redue globalexpressions and another one to redue usual expressions within the parallel vetors and we have the followingresult of on�uene:Theorem 5.1. if {F}/e/{f}
∗
⇀ {F1}/v1/{f1} and {F}/e/{f}

∗
⇀ {F2}/v2/{f2} then v1 = v2, F1 = F2and f1 = f2.Proof. (Sketh of) The BSML language is known to be on�uent [37℄. With our two kinds of �le systems,it is easy to see that a global rule never modi�es a loal �le system and never a loal rule modi�es the globalone. To be more formal, the global (resp. loal) �les are always the same before and after a loal (resp. global)redution. Thus, the global values are the same on all the proessors as proof of on�uent of the BSML languageneeded. All the δ-rules working on �les are deterministi (loal and global ones). So, the BSML language withparallel I/O features is on�uent.We refer to appendix 9 for a full proof. Note that the semantis is not deterministi. Several rules an beapplied at the same time, parallelism omes from ontext rules.6. Formal Cost Model. A formal ost model an be assoiated to redutions in the BSML language.�ost terms� are de�ned and eah rule of the semantis is assoiated to a ost rule on ost terms. Given the weakall-by-value strategy, i.e., arguments to funtions and operators need to be values (see setion 5), a program isalways redued in the �same way�. As stated in [41℄, �Eah evaluation order has its advantages and disanvatages,but strit evaluation is learly superior in at least one area: ease of reasoning about asymptoti omplexity�.In this ase, osts an be assoiated with terms rather than redutions. It is the way we hoose to ease thedisussion about the ompositional nature of the ost model of our language and the ost of our I/O primitives.6.1. Costs of the Parallel Operators. No order of redution is given between the di�erent omponentsof a parallel vetor and their evaluations are done in parallel. The ost in this ase is independent from the orderof redution. We will not desribe the osts of the evaluation of loal terms, i. e., funtional terms. They arethe same as those of a strit funtional language (OCaml for example) but we give the osts of the evaluationof global and I/O operations.The ost model assoiated to our programs follows the EM2-BSP ost model. We noted C(e) the ost termassoiated to an expression, S(v) the size in words of a serialized value v and ⊕ for the sum of ost with thefollowing rules:

c⊕ 〈◦c0, . . . , cp−1◦〉 = 〈◦c + c0, . . . , c + cp−1◦〉
c1 ⊕ c2 = c2 ⊕ c1

〈◦c1
0, . . . , c

1
p−1◦〉 ⊕ 〈◦c

2
0, . . . , c

2
p−1◦〉 = 〈◦c1

0 + c2
0, . . . , c

1
p−1 + c2

p−1◦〉where c, c1 c2 are ost terms and 〈◦c0, . . . , cp−1◦〉 is the ost term assoiated to a parallel vetor. Suh rules saythat the ost of repliate terms ould be inside or outside a parallel vetor ost term and when we have the ostterm of a full-evaluated superstep, this ost ould also be inside or outside a parallel vetor ost term. This is nota problem beause, using the BSP model of omputation, at the end of a superstep, we take the maximal of theosts. + and × are lassial ost addition and multipliation using the EM2-BSP parameters (g, l, r, Gl et.).We also noted ⊎ for the maximal ost of parallel vetor ost terms with this rules: ⊎

〈◦c0, . . . , cn, . . . , cp−1◦〉 = cnif cn is the maximal ost of the omponent of the parallel vetor ost term. We also noted ⊕p−1
i=0 hi for themaximal of sent/reeived words. The EM2-BSP osts of the parallel primitives are given in Figure 6.1. The ostof a program e is thus ⊎

(C(e)) the maximal time for a proessor to perform all the supersteps of the program.Let us explain suh formal rules with more details and more �readable notations�.If the omputational and I/O time for the evalution of the funtional parameter e of mkpar is wall (itis a repliate funtion and thus omputed by all the proessors) and if the sequential evaluation time of eah
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C(mkpar e)  C(e)⊕ 〈◦C((f 0)), . . . , C((f (p− 1)))◦〉 if e

∗
⇀ f

C(apply e1 e2)  C(e1)⊕ C(e2)⊕ 〈◦C((f0 v0)), . . . , C((fp−1 vp−1))◦〉if {

e1
∗
⇀ 〈f0, . . . , fp−1〉

e2
∗
⇀ 〈v0, . . . , vp−1〉

C(put e)  

⊎

(C(e)⊕ 〈◦
p−1
∑

j=0

C((f0 j)), . . . ,
p−1
∑

j=0

C((fp−1 j))◦〉)⊕ (
p−1
⊕

i=0

hi)× g ⊕ lwhere

















if e
∗
⇀ 〈f0, . . . , fp−1〉if ∀i, j ∈ {0, . . . , p− 1} (fi j)

∗
⇀ vi

jand hi =
⊕

(
p−1
∑

j=0

S(vi
j),

p−1
∑

j=0

S(vj
i ))

C(at e1 e2)  

⊎

(C(e1)⊕ C(e2))⊕ (p− 1)× S(vn)× g ⊕ lif {

e2
∗
⇀ n

e1
∗
⇀ 〈v0, . . . , vn, . . . , vp−1〉Fig. 6.1. Costs of our parallel operatorsomponent of the parallel vetor is wi + mi (omputational time and I/O time) then, the parallel evaluationtime of the parallel vetor is 〈◦wall + w0 + m0, . . . , wall + wp−1 + mp−1◦〉, i.e, it is a loal omputation.Provided the two arguments of the parallel appliation are parallel vetors of values, and if wi (resp.

mi) is the omputational time (resp. I/O time) of (fi vi) at proessor i, the parallel evaluation time of
(apply 〈f0, . . . , fp−1〉 〈v0, . . . , vp−1〉) is 〈◦wall +w0+m0, . . . , wall +wp−1+mp−1◦〉 where wall is the omputationaland I/O time to reate the two parallel vetors.The evaluation of put 〈f0, . . . , fp−1〉 requires a full superstep. Eah proessor evaluates the p loal terms
(fi j), 0 ≤ j < p leading to p2 sending values vj

i (�rst phase of the superstep). If the value vj
i of proessor iis di�erent from None, it is sent to proessor j (ommuniation phase of the superstep). One all values havebeen exhanged, a synhronization barrier ours. So, the parallel evaluation time is:

max
0≤i<p

(wi + mi + wall)⊕ max
0≤i<p

(hi × g)⊕ lwhere wi (resp. mi) is the omputation time (resp. I/O time) of (fi j), hi is the number of words transmitted(or reeived) by proessor i and wall is the omputation time to reate the parallel vetor 〈f0, . . . , fp−1〉.The evaluation of a global projetion (at 〈v0, . . . , vp−1〉 n) where n is an integer value also requires a fullsuperstep. First the proessor n sends the value vn to all other proessors and then a synhronization barrierours. The parallel evaluation time is thus the time to send this data, the time for ompute n and the maximalloal omputation and I/O time to reate the parallel vetor 〈v0, . . . , vp−1〉.6.2. Cost of I/O operators. Our I/O operators have naturally some omputational and I/O osts.We also made sure that arguments of the I/O operators be evaluated �rst (weak all-by-value strategy). Asexplained in the EM2-BSP model, eah transfer from (resp. to) the loal external memory to (resp. from) themain memory has the ost ⌈ n
Dl⌉ × Gl + ⌈n+1

DlBl⌉ × Ol (resp. ⌈ n
Dg⌉ × Gg + ⌈ n+1

DgBg⌉ × Og for the global externalmemory) for n words. Note that, in the ase of an empty �le, the value to be read would be an empty valuewith an empty size. Thus the ost would just be the overhead. In this way, we have the ost of the �operatingsystem I/O alls�. Depending on whether the global �le system is shared or not, the global I/O operators havedi�erent osts and some barrier synhronizations are needed (Figure 6.2).Loal operators are asynhronous operators. They belong to the �rst phase of a superstep. In the aseof a distributed global �le system, a global operator has the same ost as a loal operator. But, in the aseof global shared disks, global operators are synhronous operators beause they modify the global behaviourof the EM2-BSP omputer. The two exeptions are glo_output_value and glo_input_value whih areasynhronous global operators beause only one proess really has to write this repliate value (whih is thus thesame on eah proessor) or eah proessor read this value. The reading of this value ould be done in any order.Di�erent hannels are positioned at di�erent plaes in the �le but read the same value for the same position. Forexample, opening a global �le needs a synhronization beause glo_output_value and glo_input_value



60 F. GavaOperator Costlo_open_in (resp. out) onstant time tlor (resp. tlow)(lo_output_value v) ⌈size(v)
Dl ⌉×Gl + ⌈size(v)+1

DlBl ⌉×Ollo_input_value ⌈size(v)
Dl ⌉×Gl + ⌈size(v)+1

DlBl ⌉×Ol where v is the readed valuelo_lose_in (resp. out) onstant time tlcr (resp. tlcw)lo_delete onstant time tldglo_open_in {

(p− 1)× g + tgor + l If global �le system shared
tlor Otherwiseglo_open_out {

(p− 1)× g + tgor + l If global �le system shared
tlow Otherwise(glo_output_value v)

{

⌈size(v)
Dg ⌉×Gg + ⌈size(v)+1

DgBg ⌉×Og If shared
⌈size(v)

Dl ⌉×Gl + ⌈size(v)+1
DlBl ⌉×Ol Otherwiseglo_input_value 





⌈size(v)
Dg ⌉×Gg + ⌈size(v)+1

DgBg ⌉×Og If shared
⌈size(v)

Dl ⌉×Gl + ⌈size(v)+1
DlBl ⌉×Ol Otherwiseand where v is the readed valueglo_lose_in {

(p− 1)× g + tgcr + l If global �le system shared
tlcr Otherwiseglo_lose_out {

(p− 1)× g + tgcw + l If global �le system shared
tlcw Otherwiseglo_delete {

(p− 1)× g + tgd + l If global �le system shared
tld Otherwise(glo_opy F f)















⌈size(F )
Dg ⌉×Gg+⌈size(F )

DgBg ⌉×Og+⌈size(F )
Dl ⌉×Gl+⌈size(F )

DlBl ⌉×Ol+lIf global �le system shared
(⌈size(F )

Dl ⌉×Gl+⌈size(F )
DlBl ⌉×Ol)×2+size(F )×g+lFig. 6.2. Formal osts of our I/O operatorsare asynhronous operators and a proessor ould never write in a global �le when another reads in this �le oropens it in read mode. With this barrier of synhronization, all the proessors open (resp. lose) the �le andthey ould ommuniate to eah other whether they managed to open (resp. lose) that �le without errors ornot. In this way, p− 1 booleans are sent on the network and a global exeption will be raised if there are anyproblems.6.3. Formal Cost Composition. The osts (parallel evaluation time) above are ontext independents.This is why our ost model is ompositional. The ompositional nature of this ost model relies on the abseneof nesting of parallel vetors (our stati analysis enfores this ondition [23℄) and the fat of having two kindsof �le systems. A global I/O operator whih aesses a global �le and whih ould make some ommuniationsand synhronizations never ours loally. If the nesting was not forbidden, for a parallel vetor v and a sanfuntion, the following expression (mkpar (fun i → if i=0 then (san e (+) v) else v)) would be a orretone. The main problem is the meaning of this expression.We said that (mkpar f) evaluates to a parallel vetor suh that proessor i holds value (f i). In the aseof our example, this means that proessor 0 should hold the value of (san e (+) v). Sine the semantisof the language is on�uent, it is possible to evaluate (san e (+) v) loally. But in this ase, proessor 0would not have all the needed values. We ould hoose that another proessors broadast there own values toproessor 0 and then proessor 0 evaluates (san e (+) v) loally. The exeution time will not follow the formula



External Memory in Bulk-synhronous Parallel ML 61given by the above ost model beause the broadasting of these values need additional ommuniations anda synhronization. Thus, we have additional osts whih are ontext dependent. The ost of this expressionwill then depend on its ontext. The ost model will no be ompositional. This preliminary broadast is notneeded if (san e (+) v) ould be not under a mkpar. Furthermore, the above solution would imply the useof a sheduler for eah proessor to know, at every time, if the proessor need the values of other proessors ornot. Suh onstraints make the ost formulas very di�ult to write.As explained above, if the global �le system is shared, only one proess has to atually write a value toa global �le. In this way, if this value is di�erent on eah proessor (ase of a parallel vetor of values) thenproessors would asynhronously write di�erent values on a shared �le and we will not be able to reonstrutthis value. The on�uene of the language would be lost. In the ase of a distributed global �le system, thisproblem does not our beause eah proessor writes the value on a di�erent �le system. Programs would notbe portables beause they would be arhiteture dependent. The ompositional nature of the ost model is alsolost beause the �nal results would depend on the EM2-BSP arhiteture and not on the program. This is whyit is forbidden to write global values to keep safe the ompositional nature of the ost model. Note that thesemantis forbids a parallel operator or a parallel persistent operator to be used inside a parallel vetor and alsoforbid a loal persistent operator to be used outside a parallel vetor.7. Experiments.7.1. Implementation. The glo_hannel and lo_hannel are abstrat types and are implemented asarrays of hannels, one hannel per disk. The urrent implementation used the thread failities of OCaml towrite (or read) on the D-disks of the omputers: we reate D-threads whih write (or read) on the D hannels.Eah thread has a part of the data represented as a sequene of bytes and write it in parallel with other threads.To do this, we need to serialize our values, i.e., transform our values into a sequene of bytes to be written ona �le and deoded bak into a data struture. The module Marshal of OCaml provides this feature.In the ase of global shared disks, one of the proessors is seleted to really write the value, in our �rstimplementation, eah of them in turn. To ommuniate booleans, we used the primitives of ommuniation ofBSML. A total exhange of the booleans indiates if the proessors has well opened/losed the �le or not. Theglobal and the loal �le systems are in di�erent diretories that are parameters of the language. The globaldiretory is supposed to be mounted to aess to the shared disks or is in di�erent diretories in the ase of adistributed global �le system. Therefore, global operators aessed to the global diretory and loal operatorsaessed to the loal diretories. In the ase of shared disks without loal disks, for example, using the libraryin a sequential mahine as a PC, loal operators use the �pid� of the proessor to distinguish the loal �les ofthe di�erent proessors.7.2. Example of funtions using our library. Our example is the lassial omputation of the pre�xof a list. Here we make the hypothesis that the elements of the list are distributed on all the proesses as �leswhih ontain sub-parts of the initial list. Eah �le is ut out on sub-lists with Dl×Bl

s
elements where s isthe size of an element. We now desribe the algorithm. We �rst real the sequential OCaml ode part of ouralgorithm:let isn=funtion None→true | _→false(∗ seq_san_last:(α→α→α )→α→α list→α ∗α list∗)let seq_san_last op e l =let re seq_san' last l au = math l with[℄→(last,(List.rev au))| hd::tl→(let new_last = (op last hd)in seq_san' new_last tl (new_last::au))in seq_san' e l [℄where List.rev [v0; v1; . . . ; vn] = [vn; . . . ; v1; v0]. To ompute the pre�x of a list, we �rst loally ompute thepre�x of the loal lists loated on the loal �les. For this, we used the following ode:(∗ seq_san_list_io:(α→α→α )→α→lo_name→lo_name→α ∗)let seq_san_list_io op e name_in name_tmp=let ha_in =lo_open_in name_in in



62 F. Gavalet ha_tmp=lo_open_out name_tmp inlet re seq_san' last =let blok=(lo_input_value ha_in) inif (isn blok) then lastelse let blok2=(seq_san_last op last (noSome blok)) inlo_output_value ha_tmp (snd blok2);seq_san' (fst blok2) inlet res=seq_san' e inlo_lose_in ha_in;lo_lose_out ha_tmp;resThe loal �le is opened as well as another temporary �le. For all the sub-lists of the �le, we ompute the pre�xand the last elements of these pre�xes. Then, we write these pre�xes to the temporary �le and we lose the two�les. Seond, we ompute the parallel pre�x of the last elements of eah pre�x of that �le. Third, we add thosevalues to the temporary pre�xes.(∗ add_last:(α→α→α )−α→lo_name→lo_name→unit ∗)let add_last op e name_tmp name_out =let ha_tmp=lo_open_in name_tmp inlet ha_out=lo_open_out name_out inlet re seq_add () =let blok = (lo_input_value ha_tmp) inif (isn blok) then () elselo_output_value ha_out(List.map (op e)(noSome blok));seq_add () inseq_add ();lo_lose_in ha_tmp;lo_lose_out ha_out; lo_delete name_tmpThe operating of this funtion is similar to seq_san_list_io and the full funtion is thus the omposition ofthe above funtions.(∗san:(α→α→α )→α→lo_name→lo_name→lo_name→unit par∗)let san_list_diret_io op e name_in name_tmp name_out =let lasts=parfun (seq_san_list_io op e name_in)(repliate name_tmp) inlet tmp_values=san_diret op lasts inparfun3 (add_last op) tmp_values(repliate name_tmp) (repliate name_out)For example of the use of global �les, we give the ode of the distribution of the sub-lists to the proessors: foreah blok of the initial list, one proessor writes it to its loal �le.(∗ distribut:glo_name→lo_name→unit ∗)let distribut name_in name_out =let ha_in=glo_open_in name_in inlet ha_outs=parfun lo_open_in (repliate name_out) inlet re distri m =let blok=glo_input_value ha_in inif (isn blok) then () else(apply2 (mkpar (fun pid→if pid=m then lo_output_valueelse (fun a b→())))ha_outs (repliate (noSome blok)));distri ((m+1) mod (bsp_p())) indistri 0;parfun lo_lose_out ha_outs;glo_lose_in ha_inWe have the following ost formula for the I/O san-list version using a diret san algorithm:
(p− 1)× s× g + 4×N × (Bl ×Gl + Ol) + 2× r ×N × (Dl ×Bl) + T 1 + lif we read sub-lists of the �les by blok of size DlBl where s denotes the size in words of a element, N is the
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Fig. 7.1. Benhmarks of pre�x omputationsmaximal length of a �le on a proess and where T 1 the time to open and lose the �les. We have the time toread the loal �les, write the temporary results of the temporary �les, ompute the loal san, read the loaltempory �les and write the �nal result in the �nal �les. The ost formula of the distribution is:
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⌉ ×Og) + N × (Bl ×Gl + Ol) + 2× l + T 2If shared global �le system

p×N × (Bl ×Gl + Og) + N × (Bl ×Gl + Ol) + T 2 Otherwisewhere T 2 the time to open and lose the �les. We have the time to read the data on the global �le (read byblok of size DlBl) and to write them on the loal �les. We also have two barriers of synhronization due toglo_open_in and glo_lose_in. The ost formula for a global distributed �le system is simpler than this



64 F. Gavawith shared disks but having a distributed �le system makes the hypothesis that the global �les are repliatedon all the proessors.7.3. Benhmarks. Preliminary experiments have been done on a luster with 6 Pentium IV nodes inter-onneted with a Gigabit Ethernet network to show a performane omparison between a BSP algorithm usingonly the BSMLlib and the orresponding EM2-BSP algorithm using our library. The BSP algorithm reads thedata from a global �le and keeps them in the main memories. The EM2-BSP algorithm distributed the data asin the above setion. Figure 7.1 summarizes the timings. These programs were run 100 times and the averagewas taken. Only the loal omputation has been taken into aount beause the luster do not have a trueshared disk but a simulated shared disk using NFS. Therefore, the distribution of the data is very slow: Ggdepends on g and the distribution of the two di�erent algorithms takes approximately the same time.The luster has the following EM2-BSP parameters:
p = 6 nodes
r = 469 M�ops/s
g = 28 �ops
l = 22751 �ops Dl = 1 bytes

Bl = 4096 bytes
Gl = 1.2 �ops
Ol = 100 �ops Dg = 1 bytes

Bg = 4096 bytes
Gg = 33.33 �ops
Og = 120 �opsusing the MPI implementation of the BSMLlib and with 256 Mbytes of main memory per node. The BSPparameters have been obtained by using the bsmlprobe desribed in [5℄ and the I/O parameters have beenobtained by using benhmarks as those of the Figure 4.2. The predited performanes using those parametersare also given. We have used �oats as elements with e = 0, op = + and we have approximately 140 �oats inone blok and thus the lists are ut out on sub-lists with 140 elements.For small lists and thus for a small number of data the overhead for the external memory mapping makesthe BSML program outperform the EM2-BSML one. However, one the main memory is all utilized, theperformane of the BSML program degenerates (ost of the paging mehanism to have a virtual memory). TheEM2-BSML program ontinues �smoothly� and learly outperforms the BSML ode. Note that there is a stepbetween the preditions of the performanes and the true performanes. This is due to the garbage olletor ofthe OCaml language. In the ML family, the abstrat mahine manages the resoures and the memory, unlike inC or C++ where the programmer has to alloate and de-alloate the data of the memory. Using I/O operatorsand thus a less naive algorithm ahieved a salability improvement for a big number of data.8. Related Work. With few exeptions, previous authors foused on a uniproessor EM model. TheParallel Disk Model (PDM) introdued by Vitter and Shriver [54℄ is used to model a two-level memory hierarhyonsisting of D parallel disks onneted to v ≥ 1 proessors via a shared memory or a network. The PDMost measure is the number of I/O operations required by an algorithm where items an be transferred betweeninternal memory and disks in a single I/O operation. While the PDM aptures omputation and I/O osts,it is designed for a spei� type of ommuniation network where a ommuniation operation is expeted totake a single unit of time, omparable to a single CPU instrution. BSP and similar parallel models aptureommuniation and omputational osts for a more general lass of interonnetion networks, but do not aptureI/O osts. [8℄ presents an out-of-ore parallel algorithm for inversions of big matries. The algorithm only usedbroadasts as primitive of ommuniation with a ost as the BSP ost of a diret broadast. The I/O osts aresimilar to ours: linear ost (and not onstant ost) to read/write from/to the parallel disks.Some other parallel funtional languages like SAC [25℄, Eden [31℄ or GpH [49℄ o�er some I/O features butwithout any ost model [30℄. Parallel EM algorithms need to be arefully hand-rafted to work optimally andorretly in EM environments. I/O operators in SAC have been written for shared disks without formal seman-tis and the programmer is responsible for underterministi results of suh operations. In parallel extensionsof the Haskell language (web page http://haskell.org) like Eden and Gph, the safety and the on�uene ofI/O operators are ensured by the use of monads [56℄ and loal external memories. Using shared disks is notspei�ed in the semantis of these languages. These parallel languages also authorize proessor to exhangedhannels and give the possibility to read/write to/from them. It inreases the expressiveness of the languagesbut dereases the ost predition of the programs. Too many ommuniations are hidden. It also makes thesemantis di�ult to write [3℄. [24℄ presents a dynami semantis of a mini funtional language with a all-by-value strategy but I/O operators do not work on �les. The semantis used a unique input entry (standardinput) and a unique output. [18℄ develops a language for reasoning about onurrent pure funtional I/O. Theyprove that under ertain onditions the evaluation of this language is deterministi. But the �les are only loal�les and no formal ost model is given.



External Memory in Bulk-synhronous Parallel ML 65In [12℄ the authors foused on optimization of some parallel EM sort algorithms using ahe performanesand the several layers of memories of the parallel mahines. But they used low level languages and the largenumber of parameters in this model introdue a hardly tratable omplexity. In [15℄ the authors have imple-mented some I/O operations to test their models but in a low level language and low level data. In the samemanner, [26℄ desribes an I/O library of an EM extension of its ost model whih is a speial ase of the BSPmodel but also for a low level language. To our knowledge, our library is the �rst for an extension of the BSPmodel with I/O features alled EM2-BSP and for a parallel funtional language with a formal semantis anda formal ost model. This ost model and our library ould be used for large and parallel Data Base as in [2℄where the authors used the BSP ost model to balane the ommuniations and the loal omputations.9. Conlusions and Future Works. The Bulk-Synhronous Parallel ML allows diret mode BSP pro-gramming and the urrent implementation of BSML is the BSMLlib library. But for some appliations wherethe size of the problem is very signi�ant, external memories are needed. In this paper we have presented anexternal memory extension of BSP model named EM2-BSP and a way to extend the BSMLlib for I/O aesses inthese external memories. The ost model of these new primitives and a formal semantis as persistent featureshave been investigated and some benhmarks have been done. This library is the follow-up to our work onimperative features of our funtional data-parallel language [22℄.There are several possible diretions for future works. The �rst diretion is the implementation of persistentprimitives using speial parallel I/O libraries as desribed in [29℄. For example, low level libraries for sharedRAID disks ould be used for a fault tolerane implementation of the global I/O primitives.A omplementary diretion is the implementation of BSP algorithms [13, 38, 45℄ and their transformationsinto EM2-BSP algorithms as desribed in [16℄. We will design a new library of lassial programs as in theBSMLlib library to be used with large omputational problems. We also have extended the model to inludeshared disks. To validate the ost model of these programs, we need a benhmark suite in order to automatiallydetermine the EM parameters. This is ongoing work. We are also working on a result of simulation of a sharedexternal memory as those of the main memory in the BS-PRAM of [48℄.A semanti investigation of this framework is another diretion of researh. To ensure safety and a om-positional ost model whih allow ost analysis of the programs, two kinds of persistent primitives are needed,global and loal ones. Suh operators need our in their ontext (loal or global) and not in another one. Weare urrently working on a �ow analysis [43℄ of BSML to avoid this problem statially and to forbid nesting ofparallel vetors. Stati ost analysis as in [51℄ is also another diretion of researh.Aknowledgments The author wishes to thanks the anonymous referees of the Pratial Aspets of High-Level Parallel Programming workshop (PAPP 2004), Frédéri Loulergue, Anne Benoï¿½ and Myztzu Modardfor their omments. REFERENCES[1℄ The Coq Proof Assistant (version 8.0). Web pages at oq.inria.fr, 2004.[2℄ M. Bamha and M. Exbrayat, Pipelining a Skew-Insensitive Parallel Join Algorithm, Parallel Proessing Letters, 13 (2003),pp. 317�328.[3℄ J. Berthold and R. Loogen, Analysing dynami hannels for topology skeletons in eden, Teh. Rep. 0408, Institut fürInformatik, Lübek, September 2004. (IFL'04 workshop), C. Grelk and F. Huh eds.[4℄ Y. Bertot and P. Castéran, Interative Theorem Proving and Program Development, Springer, 2004.[5℄ R. Bisseling, Parallel Sienti� Computation. A strutured approah using BSP and MPI, Oxford University Press, 2004.[6℄ G.-H. Botorog and H. Kuhen, E�ient high-level parallel programming, Theoretial Computer Siene, 196 (1998),pp. 71�107.[7℄ E. Caron, O. Cozette, D. Lazure, and G. Utard, Virtual memory management in data parallel appliations, in HPCNEurope, 1999, pp. 1107�1116.[8℄ E. Caron and G. Utard, On the performane of parallel fatorization of out-of-ore matries, Parallel Computing, 30(2004), pp. 357�375.[9℄ Y.-J. Chiang, M. T. Goodrih, E. F. Grove, D. E. Vengroff, and J. S. Vitter, External-memory Graphs Algorithms,in ACM-SIAM Symp on Disrete Algorithms, 1995, pp. 139�149.[10℄ J. Clinkemaillie, B. Elsner, G. Lonsdale, S. Meliiani, S. Vlahoutsis, F. de Bruyne, and M. Holzner,Performane issues of the parallel pam-rash ode, Superomputer Appliations and High Performane Computing, 11(1997), pp. 3�11.[11℄ A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. Ramos, Randomized External Memory Algorithms forGeometri Problems, in ACM Annual Conf on Computational Geometry, 1998, pp. 259�268.[12℄ C. Cérin and J. Hai, eds., Parallel I/O for Cluster Computing (Hardbak), Kojan Page Siene, hermes spenton ed., 2002.[13℄ F. Dehne, Speial issue on oarse-grained parallel algorithms, Algorithmia, 14 (1999), pp. 173�421.
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68 F. GavaAppendix A. Proof of the on�uene.Lemma A.1. If e/{fi}
i

⇀ e1/{f1
i } and e/{fi}

i
⇀ e2/{f2

i } then e1= e2 and {f1
i }={f

2
i }. Proof. By ase ofthe rules of �gures 5.1, 5.3 and by onstrution of rules (1), (3) and (5).Lemma A.2. If {F}/e/{f}

⋊⋉

⇀ {F1}/e1/{f1} and {F}/e/{f}
⋊⋉

⇀ {F2}/e2/{f2} then e1 = e2, {f} =
{f1} = {f2} and {F1} = {F2}.Proof. By ase of the rules of �gures 5.2, 5.3 and by onstrution of rules (2), (4) and (6).Lemma A.3. If e = Γi

l(e1) then 6 ∃ e2 as e = Γ(e2); If e = Γ(e1) then 6 ∃ e2 as e = Γi
l(e2). Proof. Byde�nition, the hole [] is inside a parallel vetor in the ase of a Γi

l ontext and outside a parallel vetor in theother ase. By onstrution, ontexts exluded eah other.Definition A.4. We noted ⇒
⋊⋉

the redution ⇀ only using the rule (8) and ⇒
i
the redution ⇀ only usingthe rule (7).Lemma A.5. If {F}/Γi

l(e)/{f} ⇒
i
{F1}/Γi

l(e
1)/{f1} and {F}/Γi

l(e)/{f} ⇒
i
{F2} /Γi

l(e
2)/{f2} then

e1 = e2, {f1} = {f2} and {F} = {F1} = {F2}.Proof. By appliation of lemma A.1 and by de�nition of rule (7).Lemma A.6. If {F}/Γ(e)/{f} ⇒
⋊⋉

{F1}/Γ(e1)/{f1} and {F}/Γ(e)/{f} ⇒
⋊⋉

{F2}/ Γ(e2)/{f2} then e1 = e2,
{f} = {f1} = {f2} and {F1} = {F2}.Proof. By appliation of lemma A.2 and by de�nition of rule (8).Definition A.7. We noted {F}/e/{f} ⇒

l
{F}/e1/{f ′} the redution {F}/e/{f}

∗
⇒
i
{F}/e1/{f ′} ∀ i andwhere 6 ∃ e2 ∧ Γi

l as e1 = Γi
l(e2) and where e2 is not a value.Lemma A.8. If Γi

l(e1) = Γj
l (e2) and {F}/Γi

l(e1)/{f} ⇒
i
{F}/Γi

l(e3)/{f3} and {F}/Γj
l (e2)/{f} ⇒

j

{F}/Γj
l (e4)/{f

4} then ∃ Γ′j
l ∧ Γ′i

l as Γi
l(e3) = Γ′j

l (e2) and Γj
l (e4) = Γ′i

l(e1) where {F}/Γ′j
l (e

2)/{f3} ⇒
j

{F}/Γ′j
l (e5)/{f5} and {F}/Γ′i

l(e1)/{f4} ⇒
i
{F}/ Γ′i

l(e6)/{f6} and where Γ′j
l (e5) = Γ′i

l(e6) and {f5} = {f6}.Proof. It is easy to see that a ⇒
i
redution only modify an expression of the ith omponent of a parallel vetorand the ith �le system. Suh redution is determinist by lemma A.5 and thus we have that if two redutionsappear in two di�erent omponents of a parallel vetor then suh redutions ould be done in any order andgive the same �nal result.Lemma A.9. If {F}/e/{f} ⇒

l
{F}/e1/{f1} and {F}/e/{f} ⇒

l
{F}/e2/{f2} then e1 = e2 and {f1} =

{f2}.Proof. By indution on the two redution ⇒
l
and using lemma A.8 to �re-stik� together di�erent paths of thederivations: parallel redutions ould be done in any order.Definition A.10. ⇒ = ⇒

⋊⋉

∪ ⇒
lLemma A.11. If {F}/e/{f}
∗
⇒ {F1}/v1/{f1} and {F}/e/{f}

∗
⇒ {F2}/v2/{f2} then v1 = v2, {f1} =

{f2} and {F1} = {F2}.Proof. By indution of the derivation and by using lemma A.3: for the two indutive ases, we have thetwo following ases: if {F ′}/e′/{f ′} ⇒
⋊⋉

{F ′′}/e′′/{f ′} then the redution is deterministi by lemma A.6 else
{F ′}/e′/{f ′} ⇒

l
{F ′}/e′′/{f ′′} and then the redution is also deterministi by lemma A.9.Lemma A.12. If {F}/e/{f} ⇒

i
{F}/e1/{f1} then {F}/e1/{f1}

∗
⇒
i
{F}/e2/{f2} and where e2 is a value
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2} ⇒

⋊⋉

{F ′}/e3/{f
2}.Proof. By indution and using lemma A.3 for eah steps of the derivation.Lemma A.13. if {F}/e/{f}

∗
⇀ {F ′}/v/{f ′} then {F}/e/{f}

∗
⇒ {F ′}/v/{f ′}. Proof. By indution ofthe derivation. If the rule (8) is used, we are in the ase of a global redution and then we have a ⇒

⋊⋉

redution.Else if the rule (7) is used, we are in the ase of a loal redution and we have by lemma A.12 that we have a
⇒
l
redution.Theorem A.14. on�uene of the semantisProof. if {F}/e/{f}

∗
⇀ {F1}/v1/{f1} and {F}/e/{f}

∗
⇀ {F2}/v2/{f2} then {F}/e/{f}

∗
⇒ {F1}/v1/{f1} and

{F}/e/{f}
∗
⇒ {F2}/v2/{f2} by lemma A.13 and then v1 = v2, {f1} = {f2} and {F1} = {F2} by lemma A.11.Edited by: Frédéri LoulergueReeived: June 3, 2004Aepted: June 5, 2005


