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FRÉDÉRIC GAVA∗

Laboratory of Algorithms, Complexity and Logic, P2

University of Paris 12; 61, avenue du Général de Gaulle
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ABSTRACT
A functional data-parallel language called BSML has been designed for programming

Bulk-Synchronous Parallel algorithms. Many sequential algorithms do not have parallel
counterparts and many non-computer science researchers do not want to deal with par-
allel programming. In sequential programming environments, common data structures
are often provided through reusable libraries to simplify the development of applications.
A parallel representation of such data structures is thus a solution for writing parallel
programs without suffering from disadvantages of all the features of a parallel language.
In this paper we describe a modular implementation in BSML of some data structures
and show how those data types can address the needs of many potential users of parallel
machines who have so far been deterred by the complexity of parallelizing code.

Keywords: BSP; Parallel Functional language; Parallel Data Structures.

1. Introduction

Bulk-Synchronous Parallel ML or BSML is an extension of ML to code Bulk Syn-
chronous Parallel algorithms [18] as functional programs. Such algorithms offer
scalable performances and BSML expresses them with a small set of primitives
implemented as a parallel library (http://bsmllib.free.fr/) for the functional
programming language Objective Caml (OCaml).

The complexity of parallel computing hardware calls for software that eases the
development of programming models for researchers who do not have a deep knowl-
edge of parallel computation and who do not have the time to write efficient code
themselves. It has been known for a long time that well designed data structures
are as important as algorithms. Most scientific and engineering applications are
physical simulations in which at least one of the keys is the representation of the
physical domain using data structures. Many of these computational applications
involve solving problems with large data sets where using parallelism can reduce
the computation time and increase the available memory size.

In order to have parallel programs, researchers often use automatic parallelizing
compilers such as High Performance Fortran. But these languages do not provide
powerful features such as polymorphism or algebraic data types needed for symbolic
applications. Furthermore cost prediction is impossible. Researchers can also use
the paradigm of algorithmic skeleton languages [5] in order to write algorithms as
combinations of skeletons. But the set of needed skeletons often depends on the
domain of application and it is often hard to increase this set. Moreover the execu-
tion cost cannot easily be determined from the source code and some combinations
imply too many communications that decrease the performance.
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Each application contains a small number of data structures that could be re-
placed when developing a parallel version. The main problem is to replace the
primary data structures with their parallel versions and load balance these data
structures without destroying locality properties (a too aggressive load balancing
can lead to poor locality) or violating dependencies among the data that lead to
incorrect semantics or unnecessary work.

This paper reports on several case studies of parallel implementations of data
structures in BSML that make such scientific applications easier to develop using
the high-level features of a functional language. These implementations employ
the module system of OCaml so that one can freely specify a new parallel data
structure from the sequential ones. The complexity of parallelism is hidden behind
an interface that tries to stay as close as possible to the sequential one, thus making
the code easy to learn. The parallel data structures are provided in source code
form as independent pieces of software, resulting in comparatively straightforward
maintenance. Another important part is formed by the computation of a histogram
to perform load-balancing if needed — or at least, users specify when load-balancing
is needed. In this paper, we also report on our experience with a scientific parallel
application on a distributed memory multiprocessor machines.

This paper describes our first step in this direction. First, we briefly present in
Section 2 the BSML language and some useful functions in Section 3. In Section 4
we describe parallel implementations of some classical data structures. Section 5 is
devoted to some benchmarks. Related work is discussed in Section 6.

2. Functional Bulk-Synchronous Parallel ML

BSML does not rely on SPMD programming. Programs are identical to ordi-
nary sequential OCaml programs but work on parallel data structures. Some of the
advantages are simpler semantics and a better readability.

2.1. Asynchronous Primitives

The BSMLlib library is based on the elements given in Figure 1. It gives access
to the BSP parameters of the underlying architecture. For example, bsp p() is p,
the static number of processes. There is an abstract polymorphic type α par which
represents the type of p-wide parallel vectors of objects of type α one per processor.
Those parallel vectors are created by mkpar so that (mkpar f) stores (f i) on process
i for i between 0 and p − 1: mkpar f = (f 0) (f 1) · · · (f i) · · · (f (p−1))

We usually write f as fun pid→e to show that the expression e may be different
on each processor. This expression e is said to be local, i.e. an ordinary ML ex-
pression. The expression (mkpar f) is a parallel object and it is said to be global.
An ordinary ML expression that is not within a parallel vector is called replicate,
i.e. identical on each processor. Asynchronous phases are programmed with mkpar

and with apply such that (apply (mkpar f) (mkpar e)) stores ((f i)(e i)) on process i:

apply · · · fi · · · · · · vi · · · = · · · (fi vi) · · ·

2.2. Synchronous Primitives

The put primitive expresses communication and synchronization phases. Con-
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bsp p: unit→int bsp l: unit→float bsp g: unit→float
mkpar: (int→α )→α par apply: (α →β )par→α par→β par

put: (int→α option)par→(int→α option)par proj: α option par→int→α option
type α option = None | Some of α super: (unit →α ) →(unit →β ) →α ∗ β

Figure 1: The core BSMLlib library

sider the expression: put(mkpar(fun i→fsi)) (∗). To send a value v (resp. no value)
from process j to process i, the function fsj at process j must be such that (fsj i)
evaluates to Some v (resp. None). The expression (∗) evaluates to a parallel vector
containing functions fdi of delivered messages. At process i, (fdi j) evaluates to
Some v (resp. None) if process j sent the value v (resp. no value) to the process i.

The proj primitive also expresses communication and synchronization phases.
The expression (proj vec) returns a function f such that (f n) returns the nth value
of the parallel vector vec. If this value is the empty value None then process n sends
no message to the other processes. Otherwise this value is broadcast. Without this
primitive, the global control cannot take into account data computed locally.

The nesting of par types is prohibited and the projection should not be evaluated
inside the scope of a mkpar. Our type system enforces these restrictions [9].

2.3. Divide-and-conquer Primitive

The divide-and-conquer paradigm fits naturally into the BSP model, without
any need for subset synchronization. The method is based on sequentially inter-
leaved threads of BSP computations, called super-threads [20]: communication and
synchronization phases are merged. The primitive super effects parallel superposi-
tion, which allows the evaluation of two BSML expressions in this way.

From the programmer’s point of view, the functional semantics of the expression
superE1 E2 is the same as pairing but of course the evaluation is different from the
evaluation of (E1, E2) [10]. The first phases of asynchronous computation of E1 and
E2 are run ; then the communication phase of E1 is merged with that of of E2 (the
messages are obtained by concatenation of the messages) ; only one barrier occurs
and bis repetita. If the evaluation of E1 needs more supersteps than that of E2 then
the evaluation of E1 continues as if there were no superposition (and vice versa).

3. Examples of Useful Functions

The primitives described in the previous section constitute the core of the
BSMLlib. In this section, we define some useful functions for BSP computing.

3.1. Often Used Asynchronous Functions

Asynchronous function replicate creates a parallel vector which contains the same
value everywhere. The primitive apply can be used only for a parallel vector of
functions that take one argument. To deal with functions that take two arguments
we need to define the apply2 function.

(∗ replicate: α →α par and apply2: (α →β →γ )→α par→β par→γ par ∗)
let replicate x = mkpar(fun pid→x) and apply2 vf v1 v2 = apply (apply vf v1) v2

It is also common to apply the same sequential function at each process. We use
the parfun functions where only the number of arguments to apply differs:
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(∗ parfun: (α →β )→α par→β par and parfun2: (α →β →γ )→α par→β par→γ par ∗)
let parfun f v = apply (replicate f) v and parfun2 f v1 v2 = apply (parfun f v1) v2

It is also common to apply a different function at a specific process. applyat n f1 f2 v
applies function f1 at process n and function f2 at other processes:

(∗ applyat: int→(α →β )→(α →β )→α par→β par ∗)
let applyat n f1 f2 v = apply (mkpar (fun i→if i=n then f1 else f2)) v

3.2. Often Used Communication Functions

Our example is a replicated total exchange. Each processor contains a value (rep-
resented as a parallel vector of values) and the result of (rpl total v0 · · · vp−1 )
is [v0, . . . , vp−1] — a replicated list of these values on each processor:

(∗ rpl total: α par→α list ∗)
let rpl total vec =
let rpl totex vec = compose noSome (proj (parfun (fun v →Some v) vec)) in

List.map (rpl totex vec) (procs())

where

8

>

>

<

>

>

:

compose f g x = (f (g x))
noSome (Some v) = v

List.map f [v0; . . . ; vn] = [(f v0); . . . ; (f vn)]
procs() = [0; 1;. . . ; bsp p()-1].

We can then define some useful functions, such as parfun total which allows to apply
a function to all the components of a vector, then totally exchanges these values
and, finally, applies another function to the previous result, e.g.:

parfun total f1 f2 v0 · · · vp−1 ⇒ (f2 [v′0; . . . ; v
′
p−1]) where (f1 vi) = v′i.

4. Parallel Data Structure

The standard library of OCaml provides many data structures. Each of them is
defined by a module with a clear semantics of the operators and for some of them
the complexity of the operations. Modules of the parallel data structures may have
the same signatures as OCaml data structures together with some specific parallel
operators to provide a better use of these parallel data structures. In this way,
programmers may use these representations without suffering from disadvantages
of a parallel language while still taking advantage of a parallel machine. Implemen-
tations of our parallel data structures need thus to have the same interfaces and the
same high-level semantics as the sequential ones but with different costs. We give
the BSP cost of these operators. Using a modulare implementatation, these costs
are given independently of the complexity of the sequential data structures used.
We write Ct to denote the complexity of a function and S for the size of a datum.

Currently BSML implements five such modules: Set, Map, Hashtable, Queue
and Stack [10]. Let us consider the parallel implementation of Map (also known as
association tables or dictionaries) and Set in order to illustrate this section.

4.1. Parallel Dictionaries

The module of the parallel maps is a functor Make which builds a polymorphic
parallel dictionary given : a module with the type for the keys and a total ordering
function over them ; a hashing function ; a module that defines the load-balanced
strategy (Section 4.3) ; and another functor to build local (sequential) maps:
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module Make (Ord : OrderedType)(Bal:BALANCE)
(MakeLocMap:functor(Ord:OrderedType) →Map.S with type key=Ord.t)

: S with type key = Ord.t and type α seq t = α MakeLocMap(Ord).t

with the following input signature of the functor:

module type OrderedType =
sig

type t
val compare:t→t→int
val hash:t→int

end

module type S = sig

type key
type α t (∗ polymorphic parallel dictionary ∗)
type α seq t (∗ polymorphic sequential dictionary ∗)
(∗ classical operators ∗)
(∗ parallel operators ∗)

end

We define a parallel map as a pair comprising a parallel vector of sequential maps
(one local map per processor) and a pair of a boolean and an integer. The boolean
tells whether the parallel maps have been rebalanced or not. This integer will
be used for load-balancing described in Section 4.3. We ignore it in this section
and refer to Section 4.3 for more details about functions and mechanisms of load
balancing. In the following we write mi to denote the local map of the processor i.

A parallel dictionary thus puts its elements into one of its local (sequential)
maps. The parallel data structure uses a generic sequential data structure (given as
a module parameter) and are thus independent of the sequential implementation†:

module Make (Ord : OrderedType)(Bal:BALANCE)
(MakeLocMap:functor(Ord:OrderedType) →Map.S with type key=Ord.t) =

struct

(∗ LocMap is the sequential map data structure ∗)
module LocMap = MakeLocMap(Ord)
type key = Ord.t
type α t = ((α LocMap.t) Bsmllib.par) ∗ (int ∗ bool)
type α seq t = α LocMap.t
(∗ operators on α t, the parallel dictionary ∗)

end

Now we describe some simple and classical operators over the map structure. All
operations over parallel maps and sets are purely applicative (no side-effects). At
first, we need to create an empty parallel map:

(∗ empty: unit→t ∗)
let empty () = (replicate LocMap.empty,(0,true))

which fits the following sketch: {} · · · {} .
The first important operator to add is a binding. Operation add k e m returns

a map containing the same bindings as m, plus a binding of k to e. If k was already
bound in m, its previous binding disappears. We choose a processor in which k is
sequentially added (denoted m⊕{k → e}). For this, we use the hashing function hash
which is assumed to be deterministic, i.e. first of all it terminates, then returns the
same pid when applied to the same value. If the parallel map has been rebalanced
and thus elements are not in their original processors (defined by the hash function),
we remove k from the other processors in order not to duplicate it:

†The OCaml sequential implementation uses balanced binary trees which is reasonably efficient.
But we could also use a certified implementation as described in [7].
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(∗ add: key→α →α t→α t ∗)
let add k e pmap = let (vect map’,(step’,nbal’)) = rebalance if needed pmap in

((applyat (hash k) (LocMap.add k e) (if nbal’ then id
else LocMap.remove k) vect pmap’),(step’+1,nbal’))

which corresponds to the following sketch:

add k e m0 · · · mi · · · mp−1 ⇒
(

m0⊖{k} · · · mi ⊕ {k → e} · · · mp−1⊖{k} If rebalanced map

m0 · · · mi ⊕ {k → e} · · · mp−1 Otherwise

The second operator is to search for the value bound to a key. The expression
find k m returns the current binding of k in m, or raises an exception if no such
binding exists. Searching a binding value in a parallel map is done asynchronously
and the result is broadcast to every processor. The local searching (denoted k ∈? mi)
is done by only one processor if the map has not been rebalanced and by all the
processors otherwise — in this case, only one processor really stored the binding:

(∗ find: key→α t→α ∗)
let find k pmap = let (pmap’, ,nbal’) = rebalance if needed pmap in

if nbal’ then let root = (hash k) in

let loc find= (applyat root (fun t →try Some (LocMap.find k t) with Not found →None)
(fun →None) pmap’) in

let res = rpl bcast root loc find in match res with None →raise Not found | Some x →x
else parfun total(fun t→try Some(LocMap.find k t) with Not found→None)choose l pmap’

where choose l:α option list→α selects the first (Some x) from a list or raises Not
found. This code corresponds to the following sketch:

find k m0 · · · mp−1 ⇒
{

k ∈? m0 · · · k ∈? mp−1 ⇒ b? If rebalanced map

· · · k ∈? mi · · · ⇒ bi Otherwise

where ∀j bj = k ∈? mj . The cost of this function is thus the maximum cost of the

local search and of a direct broadcast of the result: maxp−1

i=0
(Ct(k ∈? mi)) + (p −

1) × S(vk) × g + l where vk is the size of the binding value.
Now we describe a new important iteration operator over parallel maps. This

operator has been added for the following reason: the high-level semantics of the
fold operator specifies that the elements of the map are computed in increasing
order with respect to the ordering over the type of the keys. In this way, no
parallel code could be used and the parallel map is first reduced to a sequential
one which incurs a high communication cost. For example, one could compute
the cardinality of a map (a function not present in the standard library) with
ParMap.fold (fun i→i+1) 0 pmap. This code first reduces the parallel map into
a sequential one to preserve the order and then computes the fold. We have thus
added an asynchronous iterator operator which reduces all the elements of the par-
allel map in an unspecified order:

(∗ async fold: (key→α →β →β )→α t→β →β par ∗)
let async fold f pmap e = let pmap’= rebalance if needed pmap in

parfun (fun s →LocMap.fold f s e) (fst pmap’)
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(∗ from sets to parset: LocSet.t par→LocSet.t par ∗)
let from sets to parset vect sets =
let sets to send = parfun (fun set→LocSet.fold (fun elt map→

let pid=(hash elt) in

let s add=(try MapSet.find pid map with Not found→LocSet.empty) in

MapSet.add pid (LocSet.add elt s add) map) set MapSet.empty) vect sets in

let to send = parfun (fun map pid→
try Some (MapSet.find pid map) with Not found→None) sets to send in

let delivery=put to send in

parfun (fun f→let list sets = map some split f (procs ())
in List.fold left LocSet.union LocSet.empty list sets) delivery

Figure 2: Reorganization of a vector of sequential sets

The BSP cost of the above function (assuming op has a constant cost cop) is cop ×

maxp−1

i=0
|mi|. In this way, the function of cardinality could be coded as:

let cardinal pmap=List.fold left (+) 0 (rpl total (ParMap.async fold (fun i→i+1) pmap 0))

which corresponds to the following sketch:

cardinal m0 · · · mp−1 ⇒ |m0| · · · |mp−1| ⇒
p−1
∑

i=0

|mi|

The BSP cost of this operation is maxp−1

i=0
|mi| + (p − 1) × g + l + p.

4.2. Parallel Sets

The BSML implementation of parallel sets uses the same modular technique as
parallel maps, i.e. each processor contains a subset of the original set as a sequential
set. Operators such as add, remove, mem, is empty, async fold etc. are thus imple-
mented as in Map. However, the set data structure provides other kinds of binary
operators (∪,∩, \). We take for example in this section, the implementation of the
diff (\) operator — description of the other operators can be found in [10].

To begin, we need a function that reduces a parallel vector of sets into a parallel
set by eliminating duplicate elements from the sequential sets. A simple algorithm
would broadcast every local set so as to detect non-local duplicates. A better
algorithm minimizes communications by reorganizing the vector of sets by sending
every value to a processor indicated by the hashing function. Duplicates are then
eliminated at the destination by local unions of the sent sets. Figure 2 gives the
code of such a function where MapSet is a map of sets of elements where pids are the
keys and where map some split:(α →β option)→α list→β list applies a function f to
all elements of a list l and if (f x)=(Some a) then a is added to a list result. Using
the parallel superposition we could reorganize two parallel vectors in one superstep.
Note that twice the number of supersteps is otherwise needed:

(∗ distributed two sets: LocSet.t par→LocSet.t par→LocSet.t par ∗ LocSet.t par ∗)
let distributed two sets vect sets1 vect sets2 =
super(fun ()→from sets to parset vect sets1) (fun ()→from sets to parset vect sets2)

To compute the difference of two parallel sets, we have four cases: none, one (first
or second) or both of the parallel sets have been rebalanced. Therefore, elements
may not be in their original processors indicated by the hashing function. In the
first case, we just compute the differences of the local sets and the BSP cost is just
the maximum time to compute the local differences. The second and third cases
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(∗ diff: t→t→t ∗)
let diff (psets1,(step1,nbal1)) (psets2,(step2,nbal2)) = match (nbal1, nbal2) with

(true,true) (∗ two no re−balanced sets ∗) →(parfun2 LocSet.diff psets1 psets2,(step1+step2,true))
| (true,false) (∗ the second set was re−balanced ∗) →

let diff1 = parfun2 LocSet.diff psets1 psets2
and diff2 = parfun2 LocSet.diff psets2 psets1 in

let diff’ = from sets to parset diff2 in (parfun2 LocSet.diff diff1 diff2, (step1+step2,true))
| (false,true) (∗ the first set was re−balanced ∗) →

let diff1 = parfun2 LocSet.diff psets1 psets2 in

let distr = from sets to parsets diff1 in (parfun2 LocSet.diff distr psets2, (step1+step2,true))
| (false,false) (∗ two re−balanced sets ∗) →

let diff1 = parfun2 LocSet.diff psets1 psets2
and diff2 = parfun2 LocSet.diff psets2 psets1 in

let distr = distributed two sets diff1 diff2 in

let new set = parfun2 LocSet.diff (fst distr) (snd distr) in (new set, (step1+step2,true))

Figure 3: Difference of two parallel sets

are described in [10].
For the fourth case, we first compute the local differences of the local sets. In

this way we compute the possible duplicate elements, i.e. each element that is in
two different processors but needs to be eliminated by the difference. Those two
parallel vectors of sets are then reorganized to eliminate the duplicate elements:

diff s10 · · · s1p−1 s20 · · · s2p−1 ⇒

{

s10\s20 · · · s1p−1\s2p−1

s20\s10 · · · s2p−1\s1p−1

⇒











s′0 · · · s′p−1

s′′0 · · · s′′p−1

⇒ (
⋃p−1

i=0
s′i0)\(

⋃p−1

i=0
s′′i0) · · · (

⋃p−1

i=0
s′ip−1)\(

⋃p−1

i=0
s′′ip−1)

? ??? ?

? ??? ?

where ∀j s′j = s1j \ s2j and s′′j = s2j \ s1j and s′
i
j (respectively, s′′

i
j) is the set of the

elements sent by processor i to processor j from the set s′j (resp. s′′j ). The brace
corresponds to the computations of both super-threads. The BSP cost is:

maxp−1

j=0
(Ct(s

1
j \s2j) + Ct(s

2
j \s1j)) + maxp−1

j=0
(Ct(

⋃p−1

i=0
s′

i
j) + Ct(

⋃p−1

i=0
s′′

i
j)) +

(maxp−1

j=0
(S(

⋃p−1

i=0
s′

i
j) + S(

⋃p−1

i=0
s′′

i
j))) × g + l

The code of Figure 3 corresponds to the above sketches. Note that after one of
the binary operations the resulting parallel set has all its elements stored in their
original processors and thus could be considered as not rebalanced. Proofs of the
methods can be found in [10].

4.3. Load Balancing

As shown in the above sections, the layout of the elements over the proces-
sors could be unpredictable after some unlucky sequence of operations. This phe-
nomenon can degrade performance by slowing a parallel program to the speed of
the most loaded processor. Owing to useless communications and synchronizations
a parallel program may thus execute more slowly than its sequential equivalent. In
[2] a general strategy has been introduced. It trades communications against better
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load-balancing with only two phases of communication. The first one is a total
exchange of the local sizes. Every processor then holds complete information about
the load balancing of the input parallel data structure. Once the size of all data
transfer has been decided, every processor selects the relevant information for its
part in the exchange. Some values are then removed from the local data structures
to produce new data structures and messages containing values to be sent. Finally
these messages are forwarded and are incorporated into the local data structures.

The generic code of this load-balancing algorithm can be found in [10] — taken
from [13] where the code works only with sets. The user could give to its data
structures some parameters with a module of the following signature:

module type BALANCE=sig val need balance: unit→bool
val unbalanced: unit→int val max op without balance: unit→int end

where max op without balance defines the maximum number of operations that
could modify the data structure before rebalancing it. It is used in a compari-
son with the integer mentioned in the above sections. This integer is used to define
the number of operations that have modified the data structure. The function
unbalance defines the maximum size difference among the local data structures.
In this way, parallel data structures could be automatically rebalanced (currently
Maps, Sets and Hashtables) and/or the user could rebalance itself in its code using
the rebalance function of the module’s signature. To rebalance, we use the following
polymorphic function:

val rebalance if needed: (α →β par)→(int→β →γ list ∗ β )→(β →β →β )→(γ list→β )
(β par→α )→(α →int par)→(α →bool)→int→α →α

where the parameters are (1) a function that transforms the parallel data structure
into a parallel vector of local data structures; (2) a function that takes n elements
from a local data structure and returns this data structure without those elements,
paired with messages to send; (3) a function that is able to unite two local data
structures; (4) a function that transforms messages to a local data structure; (5) a
function that reduces a parallel vector of local data structures into a parallel data
structure; (6) a function that computes histograms of a parallel data structure; (7)
a function that tests if the rebalancing is needed; (8) the maximum size difference
between the local data structures; (9) the parallel data structure to rebalance.

5. Example of a Scientific Application

Our example is the computation of finding the nth-nearest neighbors of the
ith vertex in an infinitely-repeated graph representing the topology of atoms in a
molecule. The edges represent chemical bonds between pairs of atoms‡.

Given an undirected graph, the task is to find the first, second, third · · · nth
neighbors of the vertex i in the graph, for given n and i. The 1st neighbors of a
vertex i refers to the set of vertices connected to i by an edge. The 2nd neighbors are
the neighbors of the neighbors of i (we thus used the union of these sets) excluding
the first neighbors (computed with a set difference). This can be generalized into
a recurrence relation to compute the nth neighbors in terms of set operations. To
make things more interesting, the graph is infinitely repeated. This rules out some

‡ Web page at http://www.ffconsultancy.com/products/ocaml_for_scientists/

http://www.ffconsultancy.com/products/ocaml_for_scientists/
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module AtomKey = struct type t = int ∗ int list let compare = compare end

module AtomSet = Set.Make(AtomKey)

(∗ nth nn : int →AtomSet.elt →AtomSet.t ∗)
let rec nth nn = let memory=Hashtbl.create 1 in

fun n (i, io)→ try Hashtbl.find memory (n,i) with Not found→match n with

0 →AtomSet.singleton (i,io)
| 1 →let nn=bonds.(i−1) in if io = zero then nn else

let aux (j,jo) s=AtomSet.add (j,add i io jo) s in

AtomSet.fold aux nn AtomSet.empty
| n →let pprev=nth nn (n−2) (i,io) and prev=nth nn (n−1) (i,io) in

let aux j t=AtomSet.union (nth nn 1 j) t in

let t=AtomSet.fold aux prev AtomSet.empty in

let t’=AtomSet.diff (AtomSet.diff t prev) pprev in

Hashtbl.add memory (n, i) t’; t’

Figure 4: Sequential Code

of the more common breadth-first search algorithms. Also, the number of vertices is
very large (e.g. 105) so we shall not have enough space to store the neighbor matrix.

Figure 4 gives the sequential code where expression bonds:AtomSet.t array is the
initial set of atoms, add i: int list→int list→int list computes a new neighbor from
two coordinates and zero:int list is the initial atom. Figure 5 gives the parallel code of
this algorithm with straightforward modifications from the sequential code (replace
fold by async fold) where from list of parlist:elt list par list→t gives a parallel set from
a list of vectors of lists of elements and list of set:AtomSet.t→AtomSet.elt list returns
a list of all the elements of a parallel set. The complexity of the sequential algorithm
(where m is the number of atoms) is:

n × (n − 1)

2
× (2 × m log(m) + m2 log(m))

i.e. time to compute the difference of two sets (standard library’s implementation
assumed a logarithmic time to compute the difference of two sets), time to compute
the union of the neighbors of the selected atom and this by the number of inductive
steps — we have a logarithmic time to access to the previous neighbors. It is thus
a quadratic algorithm.

For simplicity, we make the hypothesis that the hashing function is “perfect”
(perfect distribution of the data) and that we do not need to use load balancing.
We have thus n/p elements on each processor. In the parallel code, there is one
communication phase (total exchange of the local neighbors elements) per compu-
tation of n. Therefore, we have the following BSP cost:

n × (n − 1)

2
× (2 ×

m

p
log(

m

p
) + (

m

p
)2 log(

m

p
)) + (nm) × g + (

n × (n − 1)

2
) × l

i.e. time to compute the local neighbors, time to globally exchange them and a
synchronization for each inductive step.

Some experiments have been done on a cluster with 5 or 10 Pentium IV nodes
(with 1GB of main memory per node) interconnected with a Gigabit Ethernet net-
work to show a performance comparison between the theoretical predictions, the
sequential and parallel codes. Using a BSML implementation of the method de-
scribed in [3], we have computed the following BSP parameters for the 5 nodes
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module Balance = struct

let need balance ()=true and unbalanced ()=1000 and max op without balance ()=10 end

module AtomSet = ParSet.Make(AtomKey)(Balance)

(∗ async nth: int∗int list →(int∗int list) list par ∗)
let async nth (i,io) = let nn = bonds.(i − 1) in

if io = zero then (set to parlist nn) else

let aux (j, jo) l = (j, add i io jo)::l in (AtomSet.async fold aux nn [])

let rec nth nn = let memory = Hashtbl.create 1 in

fun n (i, io) →try Hashtbl.find memory (n, i) with Not found →match n with

0 →AtomSet.singleton (i, io)
| 1 →let nn = bonds.(i − 1) in if io = zero then nn else

let aux (j, jo) l = (j, add i io jo)::l in

from list of parlist [(AtomSet.async fold aux nn [])]
| n →let pprev = nth nn (n−2) (i, io) and prev = nth nn (n−1) (i, io) in

let lt = List.map (fun j →(async nth j)) (list of set prev) in

let t = from list of parlist lt in

let t’ = AtomSet.diff (AtomSet.diff t prev) pprev in

Hashtbl.add memory (n, i) t’; t’

Figure 5: Parallel Code

cluster: r = 469, g = 28 and l = 227512. The testing graph actually represents
a 100,000-atom model of an amorphous silicon. The MPI, PUB, TCP§ imple-
mentations of the BSMLlib are used. These programs ran 100 times consecutively.
Diagrams show the average of the results of 5 executions.

Figures 6 (a) and (b) summarize the results. For small n, owing to the overhead
of synchronization barriers, the parallel version is equivalent to the sequential one.
However parallel program clearly outperforms the sequential ones when n increases.
Note that there is a step between the predictions of the performances and the true
performances. This is due to the safe garbage collector of the OCaml language¶.

Figures 6 (c) and (d) summarize a performance comparison between parallel
computations with load balancing of the sets and those without. We use the pa-
rameters of load balancing defined in Figure 5. Thanks to the parallel superposition,
reorganizing two sets costs only one superstep and thus parallel set differences are
efficient: performances are scalable and close to the predicted ones allowing a better
distribution of the data without to much synchronization and communication.

Note that the parallel program is faster with 5 processors owing to the large
number of barriers: they are less costly with 5 processors than with 10 proces-
sors. We recall that this program does not use a true parallel algorithm but uses a
sequential one that heavily uses a parallel data structure.

6. Related Work

There are many data structure libraries in many programming languages such as
Leda [17] for C++. Unfortunately, all these libraries are fully-sequential. Paper [21]
presents a library of different parallel implementations of classical data-structures
such as sets and priority queues applied to some symbolic computations. Neverthe-

§primitives implemented with the MPI or PUB libraries or only with the TCP features of OCaml.
¶unlike in C where the programmer has to allocate and de-allocate the data of the memory.
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Figure 6: Benchmarks of nth nearest neighbors

less no cost model has been used and costs of the operations are thus unpredictable.
In the same manner, paper [15] describes the implementation in C++ with MPI
of two collections of data structures that are designed to support the modeling of
particle systems in Lagrangian formulation and partial differential equations.

For high-level languages, there are many libraries based on the algorithmic skele-
tons framework and used for computations and scientific problems. OcamlP3L is
one of them and has been used for programming numerical applications [4]. However
this library does not provide parallel data structures. Without an explicit distribu-
tion of data and the parallel parts of programs, it seems to be hard to implement
parallel data structures and to extend the set of skeletons in order to have “data
structure skeletons”. Gph and Eden [14] are parallel languages based on the func-
tional language Haskell. Gph uses explicit parallelism with two special constructors
“Par”and“Seq”while Eden uses processes exchanging data on communication chan-
nels which are visible to the programmer as lazy lists. This way, it seems possible to
implement parallel data structures. Nevertheless the system has to put the “parallel
threads” on the processors and thus performance predictions are difficult.

Since the advent of parallel computing, considerable work has been done towards
solving the problem of realizing distributed data structures and several results have
been obtained for particular network architectures [1]. PRAM algorithms for the
dictionary data structure has been presented in [16]. In [11], authors present dif-
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ferent efficient BSP algorithms for different designs of data structures as priority
queues or dictionaries. Some benchmarks have been done for the classical operations
but no scientific applications have been coded and benchmarked. The parallel data
structures have been coded in C+BSPlib resulting in a difficult maintenance. In
[6], authors present a CGM algorithm for the distance-bound smoothing (problem
which is similar to the nth neighbors) for particular molecular configurations.

Paper [13] describes a first implementation of parallel sets in BSML. Unfortu-
nately, the authors did not use the module feature of OCaml; they used their own
set implementation (unbalanced trees) and thus could not test their work with a
scientific application. Furthermore, most of the binary operations over the sets
transform a parallel set into a sequential one by a total exchange of the elements
that make these operations slower than sequential ones.

7. Conclusions and Future Works

The BSML language allows direct mode BSP programming. This paper shows
how to obtain a modular implementation of generic parallel data structures and how
it is possible to use them in order to get an efficient scientific application (which
makes extensive use of data structures) without suffering from disadvantages of the
complexity of a parallel algorithm. The cost of these data structures is defined using
the BSP cost model and some benchmarks are done.

Several directions can be followed for future work. The first one is the design and
implementation of other parallel data structures such as parallel lists with optimized
algorithms as in [12] — for parallel priority queues. Ocamlgraph‖ is a generic graph
library for OCaml. At the moment, Ocamlgraph uses Maps or Hashtables of Sets
for the representation of graphs. Sets are used for the edges of the graphs whereas
Maps or Hashtables are used for vertices. In this way, it seems possible to use the
BSML’s parallel data structures instead of the OCaml ones and thus get a parallel
representation of the graphs.

Another direction is a semantic investigation is another direction. We have cer-
tified BSML programs [8] with the Coq proof assistant. In paper [7], the authors
have certified the OCaml’s set and map implementation in Coq (and other imple-
mentations such as red-black trees). An interesting result would be the certification
of the above parallel implementation which massively and independently used the
sequential ones. Yet another direction is performance comparisons with low level
languages such as C/Fortran with parallel implementations of data structures [19]
is another direction∗∗.
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