Parallel Processing Letters
© World Scientific Publishing Company

FORMAL PROOFS OF FUNCTIONAL BSP PROGRAMS

FREDERIC GAVA

Laboratory of Algorithms, Complexity and Logic, 61, avenue du Général de Gaulle
94010 Créteil Cedez, France

Received April 2003
Revised July 2003
Communicated by Gaétan Hains and Frédéric Loulergue

ABSTRACT

The Bulk Synchronous Parallel ML (BSML) is a functional language for BSP pro-
gramming, a model of computing which allows parallel programs to be ported to a wide
range of architectures. It is based on an extension of the ML language by parallel op-
erations on a parallel data structure called parallel vector, which is given by intention.
‘We present a new approach to certifying BSML programs in the context of type theory.
Given a specification and a program, an incomplete proof of the specification (of which
algorithmic contents corresponds to the given program) is built in the type theory, in
which gaps would correspond to the proof obligation. This development demonstrates
the usefulness of higher-order logic in the process of software certification of parallel
applications. It also shows that the proof of rather complex parallel algorithms may be
done with inductive types without great difficulty by using existing certified programs.
This work has been implemented in the Coq Proof Assistant, applied on non-trivial
examples and is the basis of a certified library of BSML programs.

Keywords: Formal proofs; BSP; Functional language; Coq.

1. Introduction

Some problems require performance that can be provided only by massively parallel
computers. Programming this kind of computer is still difficult. Bulk-Synchronous
Parallel ML or BSML is an extension of ML for programming direct-mode Bulk-
Synchronous Parallel algorithms as functional programs. Bulk-Synchronous Parallel
(BSP) computing is a parallel programming model introduced by Valiant [23], de-
signed to offer a high degree of abstraction as in PRAM models, yet to allow portable
and predictable performance on a wide variety of architectures (for the sake of con-
ciseness, we refer to [19] for more details). Such algorithms offer predictable and
scalable performance and, in addition, BSML expresses them with a small set of
primitives taken from the confluent BSA calculus [15]: a constructor of parallel
vectors, asynchronous parallel function application, synchronous global communi-
cations and a synchronous global conditional. This framework is a good tradeoff for
parallel programming and proofs because we can design purely functional parallel
languages. Without side-effects, programs are easier to prove, and to re-use for
their formal properties (the semantics is compositional). We can also choose any

Parallel Processing Letters

evaluation strategy for the proof of their obligations. Based on BSP operations,
programs are easy to port and their costs can be predicted (they are parametrized
by the BSP parameters of the target architecture).

The BSML1ib library implements the BSML primitives using Objective Caml
and MPI. This library is used as the basis for the CARAML project, which aims to
use Objective Caml for grid computing. In such a context, security is an important
issue, but in order to obtain security, safety must be first achieved. A polymorphic
type system [9] which prohibits nesting of parallelism has been designed, for which
type inference is possible. But it is not sufficient for critical programs which need
formal proofs of the algorithms or for the libraries which need to be certified, i.e.,
programs must be shown to compute what is expected from them. A large part of
the programming task is devoted to verifying that a program execution satisfies the
programmer’s intentions. Testing the programs on various inputs can help detect
errors and increase our confidence, whereas only formal mathematical methods can
guarantee correctness. A program is then documented and more easily portable.

The Coq System [1] is an environment for proof development based on the
Calculus of Inductive Construction [6], a typed A-calculus, extended with induc-
tive definitions. Type theory is a particular framework for program development,
well-suited for the proof of correctness of purely functional programs [17] and also
provides expressive logics. Thus, the Coq Proof Assistant is a language of terms
and types where terms can be seen as representing proofs or programs and types as
representing specifications or data types.

Indeed, there is a constructive interpretation of proofs, i.e. proving a formula
implies explicitly constructing a typed A-term. This suggests a uniform framework
for representing formulas, proving programs and identifying those notions [17]. Via
the Curry-Howard isomorphism, a proof of a logical formula Vz.P(z) = Jy.Q(z,y)
(called a specification) needs to be derived in order to produce a correct program
in such a formalism. A proof of a specification gives a method to transform an
object ¢ and a proof P() into an object o and a proof of (i,0). The program p,
as y = (p z), is obtained by extraction from the proof of the formula by forgetting
everything concerning the logical correctness of the program [18].

In this way, the specification of a program can be represented by a logical for-
mula and the program itself can be extracted from the constructive proof of the
specification. In this paper, we look at the possibility of developing certified func-
tional Bulk-Synchronous programs and we show that type theory is appropriate to
specify and prove these programs. The functional approach of the BSP model allows
the re-use of suitable techniques for formal proof from functional languages because
a small number of parallel operators is needed for an explicit parallel extension of
a functional language and it keeps the advantages of the BSP model: no deadlock,
static cost formula and cost predictions. We shall show how easy it is to extend
the Calculus of Inductive Construction (in our implementation, the Coq System)
with the parallel operators of the BSA-calculus, to make formal proofs and to have
a certified library of common functional BSP programs.

This paper describes our first work in this direction. Section 2 briefly presents
the Coq System. The presentation and the formalization of the BSML operators
in the Coq Proof Assistant is given in Section 3. It is used for developing several

Formal Proofs of Functional BSP Programs

[x:A1B Abstraction of B w.r.t. x of type A;

(A B) Application of A to B;

(x:A)B Product, or dependent type, of B w.r.t. x of type A;(= Va:A.B(x))
A ->B Type of function from A to B (= (x:A)B when x not in B);
Prop,Set Type of propositions; Type of specifications or data types.

Figure 1: Formations of terms and types in Coq

certificated BSML programs which are part of the standard library of BSML1ib
(Section 4). Section 5 presents a non-trivial application of this method. We end
with related work (Section 6), future work and conclusion (Section 7).

2. The Coq Proof Assistant

The system Coq is a proof assistant, an implementation of a particular type
theory called the Calculus of Construction enhanced with inductive definitions. It
provides mechanisms to write definitions, statements and to make formal proofs.
Following Curry-Howard isomorphism, types are seen as propositions and terms as
proofs. The proof engine builds terms by means of tactics given by the users. The
safety of the Coq System is a consequence of the consistence (confluence and strong
normalization) of the logical framework and of the type checker of completed proofs.
We shall briefly present the syntax and the principles of Coq, in order to explain
how we implemented the decision procedure for functional BSP programs.

Types can be defined by their arity. For example, the type of natural numbers
can be defined as nat:Set with the following inductive type:

Inductive nat : Set := 0 : nat | S : nat->nat.

Objects on these types can be defined. For example, the predecessor function can be
defined as pred:nat—nat. Then, predicates on these objects can be defined. The
predicate less-or-equal, for example, can be defined as an inductive predicate of type:
nat—nat—Prop which could be applied to natural numbers: (1e n (S n)):Prop
(n<n+1). Now, predicates and objects can be mixed in specifications. For example,
(n:nat) {m:nat | m=n*2} is a specification to express Vn = Im asm =n 2. A
proof of such a specification is inhabited by a pair consisting of a natural number
and a proof that this number satisfies the specification. The program extracted
from the proof of this specification is naturally the “double” function. In Figure 1,
we give the different possible formations of terms and types (with the exception of
inductive types; for sake of conciseness we refer to [1] for more details). All other
notations are syntactic sugar for these formations and special inductive types.

When a specification has been given, we must prove it. For this, the Coq Proof
Assistant enters a special and interactive mode where the user must prove the
different goals of the specification (in the context in which we make the proof) with
the help of tactics which apply one or more rules of the Calculus of Constructions
to the current goal. Thus, we are always ensured to stay in a coherent state, and
to have a sequence which can be derived from the initial one.

As we explained earlier, proofs of specifications can be developed and programs
can be extracted from these proofs. Such a program is called a realization of the

Parallel Processing Letters

specification. The extraction allows the elimination of non-computational parts of
proofs, including dependent types [18]. Some other systems such as HOL [10] or
PVS [3] offer similar possibilities. However, both of them use untyped theories and
the extracted terms are untyped or do not allow the termination (or provide a re-
dundance of hidden information). Coq is thus a good framework for our method
of building proofs from a specification and producing a certified library from the
extraction of the proofs. Extracted programs are given in two programming lan-
guages: Objective Caml and Haskell. Thus, in the first language, we could use the
BSML1ib library to compile extracted programs and the development of [16], in the
second.

3. Formalization of BSML1ib in Coq

To represent our parallel language and to have a specification-extraction of func-
tional BSP programs, we have chosen a classical approach: an aziomatization of
the parallel operators. Thus, operations are given by parameters and do not de-
pend on the implementation (sequential or parallel). This formalization is based on
the BSA-calculus programming model and the BSML1ib elements. This model has
been used for testing the consistency of the axioms: in order to accept a judgment
as an axiom we have first informally verified that it is satisfied by a judgment of
this confluent (untyped) calculus [15]. We first give the informal description of the
elements of the BSML1ib library and, next, its axiomatization.

3.1. The BSML1ib library

There is an abstract polymorphic type ’a par which represents the type of p-
wide parallel vectors of objects of type ’a, one per process where bsp_p() is p, the
static number of processes of the parallel machine. The parallel constructs of BSML
operate on parallel vectors. Those parallel vectors are created by:

mkpar: (int -> ’a) -> ’a par
so that (mkpar f) stores (f i) on process i for i between 0 and (p — 1). Asyn-
chronous phases are programmed with mkpar and with:
apply: (’a -> ’b) par -> ’a par -> ’b par
apply (mkpar f) (mkpar e) stores (f i) (e i) on process ¢. The communica-
tion and synchronization phases are expressed by:
put: (int->’a option) par -> (int->’a option) par
Consider the expression: put(mkpar (fun i->fs;)) (*). To send a value v from
process j to process i, the function fs; at process j must be such as (fs; i)
evaluates to Some v. To send no value from process j to process i, (fs; i) must
evaluate to None. Expression (*) evaluates to a parallel vector containing a function
fd; of delivered messages on every process. At process i, (fd, j) evaluates to None
if process j sent no message to process i or evaluates to Some v if process j sent
the value v to the process i. The full language would also contain a synchronous
global conditional operation:
ifat: (bool par) * int * ’a * ’a -> ’a
such that ifat (v,i,v1,v2) will evaluate to v1 or v2 depending on the value of
v at process i. Without this, the global control cannot take into account locally

Formal Proofs of Functional BSP Programs

computed data. But this synchronous conditional operation cannot be defined as
a function. That is why the core BSML1ib contains the function: at:bool par
-> int -> bool to be used only in the construction: if (at vec pid) then...
else... . if at expresses communication and synchronization phases.

3.2. Aziomatization in Coq

The process number, bsp_p(), is naturally an integer given by the parameters.
An axiom indicates that it is greater than 0. Parallel vectors are indexed over type
Z (Coq’s integer), starting from 0 to the constant process number (in Coq, tt
correspond to the ML constant ()). They are represented in the logical world by an
abstract dependent type Vector T where T is the type of its elements. This abstract
type is manipulated only by one of the parameters. All the axiomatization of the
parallel operators is given in Figure 2 (we give for exemple, the mkpar parameter).
at is an abstract “access” function for the parallel vectors. It gives the local value
contained in a process and it would be used in the specification of programs to give
the values contained in the parallel vector result. It has a dependent type to verify
that the number i is a valid process number.

The asynchronous operators: the constructor mkpar of parallel vectors and the
global application are axiomatized with mkpar _def and apply_def. For a function
f, mkpar def stores (f i) on the process i by using the access function at and
in the same manner apply_def stores (V1 i) (V2 i). The parallel vector result
is described with an equality which has the type Prop. The result is given for a
parameter i which must be proved to be a valid process number. The communi-
cation of values, the put operator, is axiomatized with put_def. It transforms a
functional vector to another functional vector which guides communication using
the functional parameter j to read values from distant processes. The parameter j
is tested with the function within bound of type:

(i:2) {“0<=i<(bspp tt) ‘}+{"‘0<=i<(bspp tt)‘}
which tells whether an integer is a valid process number or not and which gives
the proof. If it is valid, the value on the process i is read on process j with the
access function (j is a valid process number; the proof is given by within bound).
Otherwise, an empty constant is returned. In a real implementation, the values to
emit are first calculated and then exchanged with an optimal algorithm.

The full axiomatization would also contain the synchronous conditional. Its
axiomatization is easy to express using the Bool libraries of the Coq system.
sumbool_of bool is a function that transforms a boolean to the proof that is true or
not. For proofs of programs, it is easier to directly manipulate proofs than primitive
constants. The parameter n needs to be a valid process number and this proof is
given to the “access” function by a dependent type. Since ifat is a function, in
this axiomatization, expressions using a global conditional would also be extracted
by the Coq System as a function. Thus, the extracted code needs to be parsed in
order to be transformed into a suitable conditional.

We have also axiomatized an extension of the BSML1ib library, the parallel su-
perposition [14] (super) which allows us to have in a pure functional setting a con-
structor that can be used to run two “BSP threads” and to express directly parallel
divide-and-conquer algorithms. Informally it means that a term (whose evaluation

Parallel Processing Letters

Parameters bsp_p: unit -> Z; Vector: Set -> Set;
mkpar: (T:Set) (Z -> T) -> (Vector T).

Axiom good_bsp_p:‘0 < (bsp_p tt)°.
Axiom at: (T:Set) (Vector T) -> (i:Z) ‘0<=i<(bsp_p tt)‘ -> T.

Axiom mkpar_def: (T:Set) (£:Z -> T)(i:Z) (H:‘0 <= i < (bsp_p tt)*)
(at T (mkpar T f) i H)=(f i).

Axiom apply_def: (T1,T2:Set) (V1i:(Vector (T1 -> T2)))
(V2: (Vector T1)) (i:Z) (H:‘0 <= i < (bsp_p tt)*)
(at T2 (apply T1 T2 V1 V2)i H)=((at (T1->T2) V1 i H)(at T1 V2 i H)).

Axiom put_def: (T:Set) (Vf:(Vector (Z -> (option T))))
(i:Z) (H:¢0 <= 1 < (bsp_p tt)*)
((at (Z->(option T)) (put T Vf) i H)=([j:Z]
if (within_bound j) then [H1]((at (Z-> (option T)) Vi j H1) i)
else [H2] (None T))).

Axiom ifat_def: (T:Set) (V:(Vector bool)) (n:Z)(R_IF,R_ELSE:T)
(Hyp_n: ‘0 <= n < (bsp_p tt) ‘) ((ifat T V n R_IF R_ELSE)=
(if (sumbool_of_bool (at bool V n Hyp_n)) then [H1] R_IF
else [H2] R_ELSE)).

Axiom super_def: (T1,T2:Set) (vl: unit -> (Vector T1))
(v2: unit -> (Vector T2)) (super T1 T2 vl v2)=((vl tt),(v2 tt)).

Figure 2: Axiomatization of the BSML language

has been first “frozen”) will be reduced concurrently to another one (also “freeze”)
and the result is the pair of the above two thread evaluations. It is a first step
towards the use of BSML for grid computing. Note that we define all our operators
with equalities. For the proofs of programs, this enables a proof of a specification
to recognize what the value contained on a process is. We will illustrate this and
use this set of axioms, to develop certified functional BSP programs and to verify
their formal properties.

4. Certification of BSML programs

We present here the proof of some parallel algorithms in the Coq system. In or-
der to simplify the presentation and to ease the formal reasoning, we limit our study
and formal proofs to the expressions that are very common in a BSP algorithm.
Some of them have been used in [15], to prove the capacity of the equational theory
of the BSA-calculus. But without a proof assistant, the authors have made some
mistakes in their proofs. Those case studies have demonstrated the relevance of the
use of the Coq System in the proof of parallel programs correctness. In particular,

Formal Proofs of Functional BSP Programs

we used defined predicates and the Coq libraries several times in the developments.
We also used higher lemmas to define new principles and to prove correctness of
programs [17] (in our case, BSML programs). The formal developments described
in this section are freely available [2].

4.1. Replicate

The first case study we present is one of the most simple functional BSP ex-
pressions: the replication of the same value on each process. It is often used at
the beginning of BSP algorithms to replicate all the parameters. As we explained
before, the specification of replicate could be read as the following formula:

VData Va : Data = Jres as Vi (0 <i < p) (res[i]] = a)
where res[i] is an abbreviation for the function access of local data (we do not write
the type of an element when it is intuitive). To prove this trivial specification, we
need only apply the mkpar_def axiom and the extracted program will fit the desired
one: let replicate a = mkpar (fun x -> a).

4.2. Broadcast

The second case is a classical example: the broadcast of an element held by a
process root. FExchange of values is the critical point of parallel algorithms and
needs to be certified. To limit its use and to avoid the failure of the program, root
needs to be a valid process number. If not, we model this exception by returning
the False proofs. Thus, the fully specified function should have the following type:

VData Yroot (0 <root< p) Yov = Jres as Vi(0<i< p) (res[i] = vv[root]).

To prove this specification, we can use the direct algorithms of broadcasting (see
[2] for the realization). For Data that is a 1ist, we can use the classical two-phase
algorithm. The certification of this algorithm needs the scatter certified function
(see next) for the first phase, the totex function (which makes a total exchange of
values) for the second and a function for the partition of the list (for the sake of
conciseness, we refer to [2] for the proof of the specification). The only difficulty
comes from the development of the partition function since properties of the division
are not automatically solved in Coq and technical lemmas are required.

4.8. Scatter a parallel vector

The scatter function is a useful program of exchange of values. For example,
as we saw before, it is used for the development of the two-phase broadcasting algo-
rithm. It uses a partition function for the data of the parallel vector. Informally,
(scatter partition root (zo,...,Zp_1)) scatters the value Z¢ron. For each num-
ber of process ¢, if (partition Zy.ot %)=y; then this value is held at processor i.
The formal specification of this function suggested by this description is:

VDatal,Data2 Vpartition Vroot (0 < root < p) Yvect = Jres as
Vi(0 <i < p) (Some res[i]) = (partition vect[root] i)

The proof of this specification has be made by case on the value root and the
equality between root and the number of the process. With the dependent type of
Coq, we can easily prove that the “access” function used a valid process number.

Parallel Processing Letters

Inductive k_first_R [T:Set][R:T->T->T] [v:(Vector T)]
(k:Z) ‘0<=k<(bsp_p tt)‘ -> (res:T) Prop:=
k_zero: (k_first RTR v ‘0°“ H.O (at T v ‘0°¢ H_0))

| k_rec : (k:Z) (H_r:‘0<=k<(bsp_p tt)‘) (a:T) (H_sub:‘k>0¢)
(k_first R TR v ‘k-1¢ (p_sub k H_r H_sub) a)
-> (k_first RTR v ‘k* H.r (Ra (at T v ‘k‘ H_1))).

Figure 3: Inductive type used in the specification of the parallel scan programs

4.4. Gather a parallel vector

The opposite of scattering a parallel vector is naturally to gather it. The spec-
ification and the development of this function is more complex than that of the
scatter function. (gather_list root (%o, ...,Z,_1)) evaluates to a parallel vector
whose value at processor root is the list [zo;...;2,-1]- For this, we used an in-
termediate function, gather, which gives a parallel vector of functions where the
function at process root gives the values from the process dest, if it is a valid process
number. Otherwise, it returns None. Or, the function at process 7 returns None for
each value of dest. Now, at processor root, we must apply this function to a list
containing the process number, or else to an empty list. Thus, we have our desired
parallel vector. The specification of gather_ 1ist is:

VData Vroot (0 < root < p) Yvect = Jres as
Al:list as l=res[root] and H:(length l)=p and Vj (0<j< p) (nth !l H j)=vv[j]
and Vi(0 <14 < p) (i # root) res[i] = nil

where nth is the function of the n® value of the list I (using the proof that j <
(length 1)). This specification could be proved using the property of gather, by
case on ¢ = root and using a technical lemma which gives the property that the
length of the list of processes is p.

4.5. A certified scan

The scan function is also a classical parallel algorithm. It uses an operator R
and (scan R (zo,...,z, 1)) evaluates to (so,...,sp_1) where s; = Rp<;zr. The
specification of this function is:

VData Vvect VR : Data — Data — Data =
Jres as Vi H : (0<i <p) (k_-first_RT R res i H resli])

using the inductive type describe in Figure 3 which gives the application of the
operator R to the first k& values of the parallel vector (p_sub is the a technical
lemma which transforms a proof of 0 < k < pand k> 0to 0 < k—1 < p). Because
it is a logical inductive, it does not appear in the program at the extraction time. It
is used only to verify formal properties. So we can use the “access” function without
problem of nested parallelism. There are different proofs (with its computational
part) of this specification: direct algorithm, divide-and-conquer algorithm and one

Formal Proofs of Functional BSP Programs

with a logarithmic number of super-steps. The direct algorithm is naturally the
most simple to prove. For the other two, we used a “well-founded relation” [1] on
the number which increases from 0 to p and for the divide-and-conquer algorithm,
we used the super operator [2] [14].

All the above parallel algorithms (and some others such as the parallel shift,
fold_left or the proof of the implementation of the dual put operator: get [15] [2])
are the main elements of the BSML1ib library and are the basis for more complex
algorithms. Now, we present how a certified parallel sort could be developed using
these basic programs and our axiomatization.

5. Development of a parallel sorting algorithm

Sorting is a classical problem of parallel algorithms which is complex and covers
a huge range of program constructions. It is not so easy to write a correct im-
plementation of parallel sorting algorithms, even without any optimization, since a
small mistake in such complex algorithms immediately has some catastrophic con-
sequences. To validate our study, we give here our final example, the sampling sort
algorithm (PSRS) of Schaeffer in its BSP version [22]. The PSRS algorithm pro-
ceeds as follows. First, the lists of the parallel vector (we assume that their lengths
are > p?) are sorted independently with a sequential sort algorithm. The problem
now consists of merging the p sorted list. Each process selects from its list p + 1
elements for the primary sample and there is a total exchange of these values. In
the second super-step, each process reads the p x (p + 1) primary samples, sorts
them and selects p secondary samples. In the third super-step, a processor picks
a secondary block, collects its elements, merges the primary blocks, and discards
the values that do not belong to the assigned secondary block. In order to do this,
a processor, at the second super-step, sends all primary blocks that may intersect
with the assigned primary blocks.

As in a sequential sort, the PSRS algorithm needs a relation (inf) which is
decidable, transitive and anti-symetric. Its also needs a sequential sort and the
“merge” of two lists (treesort and merge which could be done using Coq [1] [17]).
When specifying functional parallel sorting programs, one must express two facts:
first, obviously, the lists of the parallel vector are sorted after the evaluation of
the programs, but, also that the values contained in the initial parallel vector are
preserved by the programs, which possibly permute them but do not modify any of
them. This expresses a list by sorted and permutation as described in [1]. Thus,
we must also express it for our parallel vectors (Figure 4): PSRS_sorted (inf_list
is a logical predicate of inferiority: each element of the first list is inferior to the
elements of the second list) which could be read as “every list of the vector is
sorted and the maximum of the i*® list is inferior to the minimum of the i+1%"”
(trivial property of inf 1list) and, PSRS_exchange which express that every list
of elements in the first parallel vector appears in the second (list_in list is a
logical predicate of inclusion). Now, we can define PSRS_permut as the smallest
equivalence relation which contains transpositions, i.e. exchange of elements. In
the second super-step, the algorithm does not change the vector of lists and so the
reflexivity of the permutation is needed. In the same manner, the transitivity keeps
this logical predicate for the sequence of super-steps.

Parallel Processing Letters

Inductive PSRS_sorted [T:Set; v:(Vector (list T))] : Prop :=
PSRS_sor: (i:Z) (H:‘0<=i<(bsp_p tt) ‘) ((sorted T inf (at 7 v i H)) /\
((H?:¢i<>(bsp_p tt)-1¢) (inf_list T inf (at T v i H)
(at T v “i+1¢ H’?)))) -> (PSRS_sorted T v).

Inductive PSRS_exchange [T:Set; v1,v2:(Vector (list T))] : Prop :=
PSRS_exch : (i:Z) (H_i:“0<=i<(bsp_p tt)*) (1:(1list T))
(1ist_in_1ist T 1 (at T vl i H_i))->(Ex [j:Z](H_j: “0<=j<(bsp_p tt) ‘)
(1ist_in_list T 1 (at T vl j H_j))) -> (PSRS_exchange T vl v2).

Inductive PSRS_permut: (Vector (list T))->(Vector (list T))->Prop :=
PSRS_exch_is_permut : (v,v’:(Vector(list T))) (PSRS_exchange T v v’)
->(PSRS_permut T v v’)
| PSRS_permut_refl : (v:(Vector (list T))) (PSRS_permut T v v)
| PSRS_permut_sym : (v,v’:(Vector (list T)))(PSRS_permut T v v’)
-> (PSRS_permut T v’ v)
| PSRS_permut_trans: (v,v’,v’’:(Vector(list T)))(PSRS_permut T v v’)
-> (PSRS_permut T v’ v’’) -> (PSRS_permut T v v’?).

Figure 4: Inductive specification of the parallel sampling sort

Thus, the specification of a parallel sort is naturally the existence of a parallel
vector of lists which is sorted and which is a permutation of the initial one. To
certify the PSRS algorithm, we must first develop a certified sampling function (it
is the main difficulty). Then we must prove technical lemmas which say that the
first super-step keeps the PSRS permut predicate, that the third super-step keeps
the PSRS_permut and permits the PSRS_sorted predicate. Those demonstrations
are made with the use of the above property of our certified programs and by case
on the length of the exchanged lists. Using the arithmetic operators of the Coq
librairies, the extracted program is slower than an handmade one. But the parallel
parts are the same.

6. Related work

The first formal semantics of BSP was an axiomatic logic and parallel explicit
semantics of the BSP model for a shared-memory programming implementation
[12]. Programs are given together with their formal specifications where each step
is fully justified by mathematical reasoning. They are based on mapping each pro-
cess to a trace sequence which may be combined to determine composite behavior.
Unfortunately, no program has been certified with this set of algebraic laws and
no implementation of the mathematical model of the specifications has been made.
But the idea suggested the possibility of proving parallel algorithms with the BSP
models while preserving the cost model. In another approach [21], the reasoning is
made by using a sequence of global (parallel) state transformations. It makes the
reasoning easy because whole parallel operations can be described as global state
transformations. This paper shows the refinement of a sequential version of the

Formal Proofs of Functional BSP Programs

Floyd’s shortest path algorithm to a BSP version. [20] presents an extention of the
Refinement Calculus (weakest precondition calculus) to permit the derivation of
programs in the BSP style. All those approaches are based on imperative languages
with handmade proofs mechanically unassisted.

Our approach has the following advantages. It is based on a functional language
so it eases the reasoning. Using the Coq Proof Assistant our proofs are partially
automated which is not the case in other approaches. Moreover we can generate
programs using the Coq System and benefit from prior developments which have
been made in Coq (the users’ contributions [1]).

7. Conclusion and Future Work

This article has demonstrated the adequacy of the Coq Proof Assistant (and
the type theory) in the process of certifying parallel programs. We have formalized
the parallel operations of the BSML language and, using this formalization, we
have developed certified often used BSML programs which constitute an important
subset of the BSML1ib library. This allows us to validate these programs and even
to find mistakes in the hand-written proofs. Our axioms are informally related to
the BSA-calculus. A model which realizes our set axioms seems not easy to find
since our axioms interact with A-calculus but this will be a future work.

Several directions can be followed for future work: validation of more complex
BSP programs for scientific computing [5] [22] etc. Our goal is to have a certi-
fied BSML1ib library (including its standard library), to make an extension of this
framework including imperative features (as in [12]), using work done on sequential
programs [7] and to have a software for certification of BSML programs (as in [4])
as well as to study the possibility of proving cost formulas.

We also continue our work on the certification of the environment. In particular,
the parallel abstract machine [8] must be proved correct with respect to a version of
the BSA-calculus with explicit substitutions in order to follow the methodology pre-
sented in [11]. Thus, the certified BSML1ib library could be used together with this
abstract machine and our type system for programming functional BSP algorithms
in a safe and certified environment.

Future work will also consider extensions of the BSML framework with parallel
juxtaposition [13] which allows us to divide the networks into subnetworks but
still follows the “flat” BSP model which forbids subset synchronisation. This new
construction allows to write parallel divide-and-conquer algorithms and thus is an
important step towards the use of BSML for grid computing. This extention of
our framework could be also axiomatized (the number of process would be directly
expressed in specification not as a constant, but as a propositional parameter).
Therefore, future “grid algorithms” could be developed and automatically generated
in a certified way.

Acknowledgements

This work is supported by a grant from the French Ministry of Research and
the ACI Grid program, under the project CARAML. The author wish to thank the
anonymous referees, Frédéric Loulergue and Mitzu Modard for their comments.

Parallel Processing Letters

References

[1]
[2]
[3]
[4]
[5]
[6]
[7]
(8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]
[16]

[17]

18]
[19]

[20]
[21]

[22]

23]

The Coq Proof Assistant. http://coq.inria.fr/, 2003.

Formal Proofs of BSML Programs. http://www.univ-paris12.fr/lacl/gava/, 2003.
The PVS Specification and Verification System. http://pvs.csl.sri.com, 2003.
Why: a software verification tool. http://why.lri.fr/, 2003.

R. H. Bisseling and W. F. McColl. Scientific computing on bulk synchronous parallel
architectures. In B. Pehrson and I. Simon, editors, Technology and Foundations:
Information Processing 94, Vol. I, volume 51, pages 509-514. Elsevier, 1994.

Th. Coquand and G. Huet. The Calculus of Constructions. Information and Com-
putation, 37(2-3), 1988.

J.-C. Filliatre. Verification of Non-Functional Programs using Interpretations in Type
Theory. Journal of Functional Programming, 13(4), 2003.

F. Gava and F. Loulergue. A Parallel Virtual Machine for BSML. In Peter M. A. Sloot
and al., editors, ICCS 2003, number 2657 LNCS, pages 155-164. Springer, 2003.

F. Gava and F. Loulergue. A Polymorphic Type System for BSML. In PaCT 2003,
LNCS. Springer, 2003. to appear.

M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

T. Hardin, L. Maranget, and L. Pagano. Functional runtime systems within the lambda-
sigma calculus. Journal of Functional Programming, 8(2):131-176, 1998.

He Jifeng, Quentin Miller, and Lei Chen. Algebraic Laws for BSP Programming. In
L. Bouge and Y. Robert, editors, Euro-Par’96, number 1124 in LNCS, pages 359-368,
Springer, 1996.

F. Loulergue. Parallel Juxtaposition for Bulk Synchronous Parallel ML. In Har-
ald Kosch.et. al, editor, Furo-Par 2003, LNCS. Springer, 2003.

F. Loulergue. Parallel Superposition for Bulk Synchronous Parallel ML. In Peter M. A.
Sloot and al., editors, ICCS 2003, number 2659 in LNCS, pages 223-232. Springer,
2003.

F. Loulergue, G. Hains, and C. Foisy. A Calculus of Functional BSP Programs. Science
of Computer Programming, 37(1-3):253-277, 2000.

Quentin Miller. BSP in a Lazy Functional Context. In S. Gilmore, editor, Trends in
Functional Programming, Volume 3, pages 1-13. Intellect Books, 2002.

C. Parent. Developing certified programs in the system coq: The program tactic. In
H. Barendregt and T. Nipkow, editors, Types for Proofs and Programs, pages 291
312. Springer, Berlin, Heidelberg, 1993.

C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq.
Journal of Symbolic Computation, 15:607—-640, 1993.

D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about BSP.
Scientific Programming, 6(3), 1997.

D.B. Skillicorn. Building BSP Progams Using the Refinement Calculus . In
Formal Methods for Parallel Programming and Applications workshop at
IPPS/SPDP’98, 1998.

A. Stewart, M. Clint, and J. Gabarro. Algebraic Rules for Reasoning about BSP Pro-
grams. In S. Gorlatch and C. Lengauer, editors, Constructive Methods for Parallel
Programming. Nova Science Publishers, august 2002.

A. Tiskin. The Design and Analysis of Bulk-Synchronous Parallel Algorithms.
PhD thesis, Oxford University Computing Laboratory, 1998.

Leslie G Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103, August 1990.

