
Parallel Processing Letters
fc World Scientific Publishing Company

A FUNCTIONAL LANGUAGE FOR

DEPARTMENTAL METACOMPUTING

FRÉDÉRIC GAVA and FRÉDÉRIC LOULERGUE

Laboratory of Algorithms, Complexity and Logic

Créteil, France; {gava,loulergue}@univ-paris12.fr

Received 16 September 2004
Revised 31 october 2004

Communicated by Sergei Gorlatch

ABSTRACT
We have designed a functional data-parallel language called BSML for programming

bulk synchronous parallel (BSP) algorithms. Deadlocks and indeterminism are avoided
and the execution time can be then estimated. For very large scale applications more
than one parallel machine could be needed. One speaks about metacomputing. A major
problem in programming application for such architectures is their hierarchical network
structures: latency and bandwidth of the network between parallel nodes could be orders
of magnitude worse than those inside a parallel node. Here we consider how to extend
both the BSP model and BSML, well-suited for parallel computing, in order to obtain a
model and a functional language suitable for metacomputing.

Keywords: Functional Programming, Bulk Synchronous Parallelism, Metacomputing.

1. Introduction

Some problems require performance that can only be provided by massively parallel
computers. For very large scale applications more than one parallel machine could
be needed. One speaks about metacomputing [18]. In recent years there has been a
trend towards using a set of parallel machine for these kinds of problems. Metacom-
puting infrastructures couple multiple clusters or parallel machines via a wide-area
network. Research on global computational infrastructures has raised considerable
interest in running parallel applications on distributed systems. Programming this
kind of metacomputers is still difficult due to the presence of different networks,
local and wide-area ones. High-level language and cost models are needed to ease
the programming of hierarchical architectures such as clusters of clusters.

Bulk-Synchronous Parallel ML or BSML is an extension of ML for programming
direct-mode Bulk Synchronous Parallel (BSP) algorithms as functional programs.
BSP computing is a parallel programming model introduced by Valiant [19] to
offer a high degree of abstraction like PRAM models and, yet, allow portable and
predictable performance on a wide variety of architectures. BSML expresses them
with a small set of primitives taken from the confluent BSλ-calculus [13].

But metacomputing programs need a more detailed model, including latency
and bandwidth of the local and wide-area (or intranet) networks, the number of

Parallel Processing Letters

clusters or parallel machines and the number of processors in each parallel machine.
We currently make some simplifying assumptions about the networks: we use stable
topologies, latencies and bandwidth. When the parallel machines are still in the
same organization, university or building, this kind of programming is usually called
departmental metacomputing [1]. In this way, regular network performances are
certainly realistic for the duration of a part of a program and are still less sensitive
to security measures. Assuming a metacomputer with stable network performances
allows us to focus on the impact of network performance to design a cost model
for this kind of architecture and a functional language for a high-level programming
point of view. Our ultimate goal is to develop a functional language which could
go beyond these limitations.

In [8] a previous version of the DMM cost model and the primitives of DMML
were presented, but without a parallel implementation, a formal semantics, exam-
ples and experiments. A formal semantics is the most precise specification one could
give for a new programming language. In our case it was a necessary very valuable
guide for the parallel implementation. We also proved that the DMML language is
deterministic.

Such a semantics is also a requirement for proving the correctness of programs.
As usual in functional languages, we could prove the correctness of the DMML im-
plementations of DMM algorithms with a proof assistant as done in [7] for BSP
algorithms implemented in BSML. Using the extraction capability of proof assis-
tants, we could generate a certified implementation of these algorithms. Never-
theless proofs of correctness of parallel programs (and also of the compilers and
runtimes systems) go far beyond the scope of this paper and constitute the Propac
project (wwwpropac.free.fr).

In section 2 we briefly review the BSP model and how to extend it for depart-
mental metacomputing by adding a new level of communication. Then, we present
informally our new functional parallel language, called Deparmental Metacomputing
ML or DMML (Section 3), a formal semantics (Section 4) for a core sub-language.
Section 5 is devoted to two examples of collective communication operations and to
the implementation. We discuss related work (Section 6) and conclude (Section 7).

2. A Model for Departmental Metacomputing

We assume throughout this paper that a metacomputer is a set of multiple clusters
or parallel machines, i.e. a cluster of clusters, with fully connected local networks
(LAN) and a fully connected intranet network, here excessively called WAN or
departmental WAN. Each parallel machine has a gateway that connects its private
LAN to the WAN. Here we give the name of departmental metacomputing system
because the parallel machines are within the same organization. In this way, we use
regular topologies, constant latencies and bandwidths.

2.1. Bulk Synchronous Parallelism

A BSP computer contains a set of uniform processor-memory pairs, a communication
network allowing inter-processor delivery of messages and a global synchronization
unit which executes collective requests for a synchronization barrier. For the sake of

A Functional Language for Departmental Metacomputing

Time

Phase of
local computing

Phase of
communication

Figure 1: The MPM model of computation

conciseness, we refer to [17] for more details. In this model, a parallel computation is
divided in super-steps, at the end of which exchanges of data and a synchronization
barrier are performed. Hereafter all requests for data which have been posted during
a preceding super-step are fulfilled.

The performance of the machine is characterized by 3 parameters: p is the num-
ber of processor-memory pairs, l is the time required for a global synchronization
and g is the time for collectively delivering a 1-relation (communication phase where
every processor receives/sends at most one word). g and l are expressed as multiples
of the local processing speed s. The network can deliver an h-relation in time g×h
for any arity h. The execution time of a super-step is thus the sum of the maximal
local processing time, of the data delivery time and of the synchronization time.

2.2. Discussion about the BSP model

There are two main arguments against using BSP for metacomputing. First the
global synchronization barrier is claimed to be expensive especially for a set of
parallel machines. Second, this model does not take into account the different
capacities of the parallel machines and different networks: it is not a heterogeneous
and hierarchical model of computation. Our proposal attempts to give a solution
to the aforementioned problems. Starting from BSP, we address the problem of
enlarging the number of parameters without introducing an unbearable complexity.

To remedy the first problem, [3] introduces the MPM model of computation
which is a model directly inspired by the BSP model. It offers to replace the notion
of super-step by the notion of m-step defined as: at each m-step, each process
performs a sequential computation phase, then a communication phase (Figure 1),
black boxes are phases of communication. During these communication phases, the
processes exchange the data they need for the next m-step.

To remedy the second problem, [14] investigated a two-level hierarchical BSP
model for a cluster of SMP machines and two-levels of communications. A BSP2

computer consists of a number of uniformly BSP units, connected by a communica-
tion network. Execution of a BSP2 program proceeds in hyper-steps separated by
global synchronizations. On each hyper-step each BSP unit performs a complete
BSP computation and then communicates with other BSP units. However, the au-
thors noted that none of the algorithms they have analyzed shows any significant
benefit from this approach and the experiments do not follow the model. The fail-
ure of the BSP2 model to provide any major performance comes from three main
reasons: first the BSP units are generally different in practice, second the synchro-

Parallel Processing Letters

nization time for all the BSP units is too expensive and third, the only algorithms
that have been considered are classical BSP algorithms without any irregularity.

2.3. A Departmental Metacomputing Cost Model

However, the BSP2 model introduces an interesting idea: using the BSP model on
each parallel computer and using an additional cost model for metacomputing. To
reuse the work done on BSP algorithms and to deal with the different architectures
of each parallel computer and with the asynchronous nature of some programs, we
propose a two-tiered model: using the BSP model on each parallel units and the
MPM model for coordinating these heterogeneous set of BSP units. The result
model of computation called DMM is introduced in this section.

A metacomputer in this model is thus characterized by the following parameters:
P the number of parallel computers, L the latency of the departmental WAN, G
the time needed to exchange one word between two units, P = {p

0
, . . . , p

P−1
} the

list of the number of processes for each BSP unit: pj for 0 ≤ j < P − 1 the number
of processes of the jnth BSP units. In the same way L = {l

0
, . . . , l

P−1
} is the

list of the times needed for one synchronization barrier in each of the BSP unit;
S = {s

0
, . . . , s

P−1
} the processors speed of each BSP unit; G = {g

0
, . . . , g

P−1
} the

time for collectively delivering a 1-relation on each BSP unit. We recall that any
network of a BSP unit j can deliver an h-relation in time gj × h for any arity h.

We suggest replacing the notion of hyper-step by the notion of d-step, for de-
partmental step, defined as: at each d-step, each BSP unit performs a parallel
computation phase as a sequence of super-steps then a communication phase to
exchange values between BSP units. A message sent from a processor within a par-
allel unit to another parallel unit first goes to the gateway using the local network,
travels through the wide-area network to the destination gateway and is then routed
to the destination processor through the local network of the destination unit.

During this communication phase the processes exchange the needed data for
the next d-step. The model uses the set Ωd,i of incoming partners for a BSP unit i
and a d-step d which is the set of BSP units j which sent messages to BSP unit i
during d-step d.

The execution time at the end of a d-step d at BSP unit i is written Φd,i and is
inductively defined as:

Φ1,i = max
j∈Ω1,i

(W(1,j), W(1,i)) +
∑

j∈Ω1,i

((gi + G + gj)× hj
1,i + lj) + (gi×h1

i + li)+L)

Φd,i = max
j∈Ωd,i

(Φd−1,j + W(d,j), Φd−1,i + W(d,i)) +
∑

j∈Ωd,i

((gi + G + gj)× hj
d,i + lj)

+(gi × hd
i + li) + L)

for i ∈ {0, . . . , P − 1} where hj
d,i denotes the number of words received by the BSP

unit i from the BSP unit j during the d-step d and hd
i is the maximum number of

words communicated by a processor of the BSP unit i (incoming or outgoing bytes)
during the d-step d and W(d,j) is the sum of the super-steps of a BSP units j:

W(d,j) =
s

j

d
∑

a=0
(

pj

max
b=0

(wa
b)) + (

s
j

d
∑

a=0
(

pj

max
b=0

(h
(a)
b)))× gj + (sj

d × lj)

A Functional Language for Departmental Metacomputing

bsp p: unit → int bsp g: unit → float bsp l: unit → float

mkpar: (int → α) → α par

apply: (α → β) par → α par → β par

type α option = None | Some of α

put: (int → α option) par → (int → α option) par at: α par → int → α

Figure 2: The core BSMLlib library

where sj
d is the number of super-steps of the BSP unit j during the d-step d and

wa
b the local processing time on processor b during each super-step a and h

(a)
b =

max{h
(a)
b+ , h

(a)
b−} where h

(a)
b+ (resp. h

(a)
b−) is the number of words transmitted (resp.

received) by processor b during each super-step a. The execution time for a program
is thus bounded by: Ψ = max{ΦR,j/j ∈ {0, 1, . . . , P − 1}}, where R is the number
of d-steps of the program. The DMM model takes into account that a BSP unit
only synchronizes with its incoming partner and is therefore more accurate than
the BSP2 one: more algorithms for irregular problems could be analyzed efficiently.

3. The DMML Language

There is currently no implementation of a full DMML language but rather a partial
implementation as a library for Objective Caml (OCaml) [11]. In this section we
describe the BSMLlib core and the new primitives added to obtain DMML.

3.1. The BSMLlib library

The core of so-called BSMLlib is based on the elements given in Figure 2. It gives
access to the BSP parameters of the underling architecture. In particular, bsp p()
is p, the static number of processes. There is an abstract polymorphic type α par

which represents the type of p-wide parallel vectors of objects of type α one per
process. The nesting of par types is prohibited. Our type system enforces this
restriction [9]. The BSML parallel constructs operate on parallel vectors. Those
parallel vectors are created by mkpar so that (mkpar f) stores (f i) on process i
for i between 0 and (p− 1). We usually write f as (fun pid → e) to show that the
expression e may be different on each processor. This expression e is said to be
local. The expression (mkpar f) is a parallel object and it is said to be global.

Asynchronous phases are programmed with mkpar and apply. The expres-
sion (apply (mkpar f) (mkpar e)) stores ((f i)(e i)) on process i. The communi-
cation and synchronization phases are expressed by put. Consider the expression:
put(mkpar(fun i → fsi)). To send a value v from process j to process i, the function
fsj at process j must be such that (fsj i) evaluates to Some v. To send no value
from process j to process i, (fsj i) must evaluate to None. This expression evaluates
to a parallel vector containing a function fdi of delivered messages on every process.
At process i, (fdi j) evaluates to None if process j sent no message to process i or
evaluates to Some v if process j sent the value v to the process i.

at is the synchronous projection primitive where (at vec n) returns the nth value
of the parallel vector vec. at expresses communication and synchronization phases.
Without it, the global control cannot take into account data computed locally.
Global conditional is necessary of express algorithms like:

Parallel Processing Letters

dm bsp p : int → int dm p: unit → int
dm bsp s : int → float dm g: unit → float
dm bsp g : int → float dm l: unit → float
dm bsp l : int → float

mkdep : (int → α) → α dep

applydep : (α → β) dep → α dep → β dep

get : (int → int → int option) par dep → (int → α option) par dep

→ (int → int → α option) par dep

atdep : α par dep → int → int → α

Figure 3: The added primitives

Repeat Parallel Iteration Until Max of local errors < ε
The projection should not be evaluated inside the scope of a mkpar. This is enforced
by our type system [9]. The following program is a small example of a direct
broadcast algorithm in BSML, where noSome is such as noSome (Some x)=x:

exception Bcast
let replicate x = mkpar (fun pid → x) and parfun f vv = apply (replicate f) vv
let bcast direct rt vv = if (root<0 || root>=bsp p()) then raise Bcast else

let msg = mkpar (fun pid v dst → if pid=root then Some v else None)
in parfun noSome (apply (put (apply msg vv)) (replicate root))

3.2. The DMML library

DMML extends BSMLlib by adding new primitives on a new level called depart-
mental. The core of this library adds the primitives given in Figure 3. DMML
offers functions to access to the parameters of the metacomputer, in particular, the
function dm p:unit → int (resp. dm g and dm l) is such that the value of dm p()
is P , the static number of BSP units (resp. G and L, bandwidth and latency of the
departmental WAN). Parameters of the BSP units are available through the func-
tions dm bsp p, dm bsp s, dm bsp g and dm bsp l. For example (dm bsp p a)
gives the number of processors of the ath parallel machine.

There is also a new polymorphic type α dep which represents the type of P -
wide departmental vectors of objects of type α one per BSP unit. The nesting of
dep into dep or into par types is prohibited. But the α of a dep type could be
either a usual OCaml value or a BSML value.

The DMML departmental constructs operate on departmental vectors. Those
vectors are created by mkdep so that (mkdep f) stores (f a) on the BSP unit a
for a between 0 and (P − 1). The BSML parallel values should not be evaluated
outside the scope of a mkdep. This could be enforced by a type system, but for the
moment, the programmer is responsible for respecting this rule. The BSML parallel
constructs operate on parallel vectors of size pa for the BSP unit a. For example
in the scope of a mkdep, (mkpar f) stores (f i) on process i for i between 0 and
(pa − 1) for the BSP unit a. The expression (mkdep f) is said to be departmental.

A DMM algorithm is expressed as a combination of asynchronous BSP compu-
tations (first phase of a d-step) and phases of communications (second phase of a
d-step). Asynchronous phases are programmed with mkdep and with applydep.
This primitives is such as on BSP unit a, (applydep (mkdep f) (mkdep e)) stores

A Functional Language for Departmental Metacomputing

((f a)(e a)). Communications are expressed by get. Consider the expression:

get (mkdep (fun a → mkpar (fun i → f
a,i

)))

(mkdep (fun b → mkpar (fun j → v
b,j

)))

For a process i of the BSP unit a, to receive the nth value from the process j of the
BSP unit b (it is an incoming partners), the function fa,i at process i of the BSP
unit a must be such that (fa,i b j) evaluates to Some n. To receive no value (fa,i b j)
must evaluate to None.

Our expression evaluates to a departmental vector containing parallel vectors of
functions f’a,i of delivered messages on every process of every BSP unit.

At process i of the BSP unit a (f’a,i b j) evaluates to None if process i of the BSP
unit a receives no message from process j of the BSP unit b or if (vb,j n) evaluates
to None (the process j of the BSP unit b does not have a nth value and sends the
empty value). It also evaluates to Some vn

b,j if it received a value from the process
j of the BSP unit b and if (vb,j n) evaluates to (Some vn

b,j).
There is also a projection primitive atdep. It is used in the same way as the

at primitive but it takes as arguments a departmental vector of parallel vectors
and two integers being the number of the cluster and the number of the process
considered. This primitive should not be evaluated inside a mkdep. Using atdep
the departmental behavior of the program could depend on a local value. The
following program is a small example of a direct broadcast algorithm in DMML:

let replicate all x = mkdep (fun a → replicate x)
let apply all gf gv = applydep (applydep (mkdep (fun a f v → apply f v)) gf) gv
let parfun all f x = apply all (replicate all f) x

let get one all datas srcs =
let send=parfun all (fun v n → Some v) datas
and n srcs=parfun all (fun(a,i) → let ap = (natmod a (dm p())) in

(ap,(natmod i (dm bsp p ap)))) srcs in

let ask = parfun all (fun (a,i) cluster pid →
if (cluster=a)&&(pid=i) then Some 0 else None) n srcs in

parfun2 all(fun f (a,i) → (noSome (f a i)))(get ask send) n srcs

let bcast direct all rclus rpid vv =
if rclus<0||rpid<0||rclus>=dm p()||rpid>=(dm bsp p rclus)
then raise Bcast
else get one all vv (replicate all(rclus,rpid))

Note that in the above example, the four last lines only are specific to the direct
broadcast algorithm. The remaining functions are part of the DMML standard
library and they could and are used in many other cases.

Thus this example gives a taste of the DMML programming style. The com-
munications functions are purely functional – which is a high level feature, not so
common and a requirement to use the extraction capability of a proof assistant –
but the explicit handling of messages could make them difficult to use and could
seem not so high level. Nevertheless it is very easy, and concise, to build more
and more complex functions, in particular using the higher-order nature of func-
tions. The user of the DMML library is offered a complete set of functions (maps,

Parallel Processing Letters

broadcasts, folds, scans, etc.) implemented with the primitives only and can still
implement its own functions using the primitives. DMML programs can use the
DMM parameters to adapt themselves to the underlying architecture, which make
them portable (in the same way the BSP algorithms are portable).

4. Formal Semantics

Reasoning on the complete definition of a functional and parallel language such as
DMML, would have been complex and tedious. In order to simplify the presentation
and to ease the formal reasoning, this section introduces a core language.

4.1. Syntax of the DMML core-language

Expressions, written e and variants, have the following abstract syntax:

e ::= x | c | op | fun x→ e | (e e) | if e then e else e | let x = e in e

| mkpar e | apply e e | put e | at e e

| mkdep e | applydep e e | get e e | atdep e e e

In this grammar, x ranges over a countable set of identifiers. Constants c are ()
(the only value of type unit in OCaml), the integers, the booleans and the value nc

(which stands for no communication) which plays the role of the None constructor
in OCaml for the put communication primitive. The set of predefined operations
op contains arithmetic and boolean operations, the test function isnc of the nc

constant, the fix operator and the function of access to the parameters of the
metacomputer.

This syntax is the programmer’s syntax. Reduction can produce additional
expressions, enumerated parallel vectors and enumerated departmental vectors:

e ::= . . . | 〈 e , . . . , e , . . . , e 〉 | 〈‖e, . . . , e, . . . , e‖〉

There is one semantics per size of the DMM machine. We will note a,b and variants,
the BSP units, and i,j and variants the processors. By size we mean the number
of BSP units, and pa the number of processors of the BSP unit a, for each unit of
the metacomputer. The size of departmental vectors is P and the sizes of parallel
vectors can be any pa.

Before presenting the dynamic semantics of our core-language, i.e, how the ex-
presions are computed to values, we present the values themselves:

v ::= fun x → e | c | op | 〈 v , . . . , v , . . . , v 〉 | 〈‖v, . . . , v, . . . , v‖〉

4.2. Reduction rules

To express the DMML semantics, we use a small-step semantics. It consists of a
predicate between an expression and another expression. The small-step semantics
describes all the steps from an expression to a value. The small-steps semantics has
the following form: e ⇀ e′. We note

∗
⇀, for the reflexive transitive closure of ⇀,

e.g., we note e0
∗
⇀ v for e0 ⇀ e1 ⇀ e2 ⇀ . . . ⇀ v.

To define the relation ⇀, we begin to define three relations, one for each kind
of expression: local (usual OCaml expressions), parallel (BSML expressions) and
departmental (DMML expressions).

A Functional Language for Departmental Metacomputing

(fun x→ e) v
ε
⇀ e[x← v] (let x = v in e)

ε
⇀ e[x← v]

Figure 4: Head reductions

fix(fun x→ e)
ε
⇀
δ

e[x← fix(fun x→ e)]

(isnc v)
ε
⇀
δ

false if v 6= nc

if false then e1 else e2
ε
⇀
δ

e2

if true then e1 else e2
ε
⇀
δ

e1

access [v0, . . . , vn, . . . , vl] n
ε
⇀
δ

vn

fix(op)
ε
⇀
δ

op

(isnc nc)
ε
⇀
δ

true

(dm bsp p a)
ε
⇀
δ

pa

(dm p ())
ε
⇀
δ

P

init l f
ε
⇀
δ

[(f 0), . . . , (f (l − 1))]

Figure 5: Predefined operations

These three relations are :
e ⇀

i,a
e′: at process i of the BSP unit a the expression e is reduced to e′;

e ⇀
ona

e′: at parallel machine a, the expression e is reduced to e′;

e ⇀
m

e′: the expression e is reduced to e′ by the whole metacomputer.

Each kind of expression, local, parallel or departmental contains usual function
abstractions and applications. Thus all these relations contain the following relation
ε
⇀, called the relation of head reduction given in figure 4

We write e1[x ← e2] the expression obtained by substituting all the free oc-
curences of x in e1 by e2. Free occurrences of a variable is defined as a classical and
trivial inductive function on our expressions.

Some rules, the δ-rules, for predefined operations are given in figure 5. Rules for
parallel and departmental primitives and given respectively in figures 6 and 7.

We give here the semantics of the BSML primitive put in two steps, correspond-
ing accurately to the current implementation of BSML. Firstly each processor cre-
ates a purely functional array of values by applying the function which it holds to
all the possible numbers of processor in the unit where the reduction takes place.
Then a lower level primitive send makes the exchanges and returns a parallel vector
of arrays. The value at index j of the array is sent to the processor j if it is not nc.
Processor j receives it and stores it at index i of result array. The function mkf

builds the parallel vector of result functions from the parallel vector of arrays.
To do that we introduce new expressions : arrays, written [e, . . . , e, . . . , e]. The

two predefined operations init and access operates on arrays (figure 5).
Rules of primitives mkdep, applydep and atdep are similar to the rules for

BSML primitives but differ by the number of arguments and by kinds of vectors.
get needs, like put, two lower level primitives: senddep and mkanswer.
The first primitive (rule 10) adapts at the departmental level the send of the

global level. The argument is a departmental vector of parallel vectors of arrays of
arrays of values. The results is a value which has the “same type”. The argument
of this operation is such as at a given processor i of a unit a the array of arrays
indicates for each pair (b, j) of unit and processor, the value to send to processor
j of unit b. The result is such as each processor i of a unit a the array of arrays

Parallel Processing Letters

mkpar v
ε
⇀
ona

〈(v 0), . . . , (v (pa − 1))〉 (1)

apply 〈v0, . . . , vpa−1〉 〈v
′

0, . . . , v
′

pa−1〉
ε
⇀
ona

〈(v0 v
′

0), . . . , (vpa−1 v
′

pa−1)〉 (2)

at 〈. . . , vn, . . .〉 n
ε
⇀
ona

vn (3)

put 〈v0, . . . , vi, . . . , vpa−1〉
ε
⇀
ona

(mkf (send 〈. . . , (init pa vi), . . .〉)) (4)

send 〈[v0
0 , .., v

pa−1
0], . . . , [v0

pa−1, .., v
pa−1
pa−1]〉

ε
⇀
ona

〈[v0
0 , .., v

0
pa−1], . . . , [v

pa−1
0 , .., v

pa−1
pa−1]〉 (5)

where mkf = apply (mkpar (fun a t i→
if (0 ≤ i)&(i < (dm bsp p a)) then (access t i) else nc))

Figure 6: Reduction
ε
⇀
ona

indicates for each pair (b, j) of unit and processor, the value the processor j of unit
b sent to processor i of unit a.

The second primitive (rule 11) takes as argument a departmental vector of par-
allel vectors of arrays of arrays of integers and value nc which indicates to the
processor i of unit a, at the index j in array with the index b in the arrays of arrays,
the number of the value requested by the processor j of the unit b to the processor
i of the unit a. The values are given by the departmental vector of parallel vectors
of functions, second argument of this primitive. The result is a departmental vector
of parallel vectors of arrays of arrays of the values to be transmitted.

The rule 9 allows the following steps: 1) A departmental vector of parallel vectors
of arrays of arrays indicating which numbers of values must be requested is created
from the first argument of the get. It is the reduction of the expressions ta

i which
will create these arrays of arrays. 2) These numbers of values are transmitted to
the concerned processors: it is the primitive senddep applied to the departmental
vector describes at the preceding step which carries out this. 3) The values to be
sent are prepared using the mkanswer primitive. 4) The values are sent with the
second call to senddep. 5) Then the function mkf2 transforms the departmental
vector of parallel vectors of arrays of arrays into a departmental vector of parallel
vectors of functions, result of the get.

The three relations are then obtained as follows:

⇀
i,a

=
ε
⇀ ∪

ε
⇀
δ

and ⇀
ona

=
ε
⇀
ona

∪
ε
⇀
δ
∪

ε
⇀ and ⇀

m

=
ε
⇀
m

∪
ε
⇀
δ
∪

ε
⇀

4.3. Context rules

It is easy to see that we cannot always make a head reduction: we have to reduct
within an expression. To define this deep reduction, we define some kind of contexts,
i.e, an expression with a hole noted [] that have the abstract syntax given in Figure 8.
The hole gives where expressions could be reduced. In this way, the contexts give
the order of evaluation of the arguments of the constructions of the language, i.e,
the strategie. We note op is a parallel or departmental primitive. The Γ context
is used to define a departmental reduction of the metacomputer, i.e, a reduction

A Functional Language for Departmental Metacomputing

mkdep v
ε
⇀
m

〈‖(v 0), . . . , (v (P − 1))‖〉 (6)

applydep 〈‖v0, . . . , vP−1
‖〉

〈‖v′

0, . . . , v
′

P−1
‖〉

ε
⇀
m

〈‖(v0 v
′

0), . . . , (vP−1
v
′

P−1
)‖〉 (7)

atdep 〈‖ . . . , 〈. . . , va
i , . . .〉, . . . ‖〉 a i

ε
⇀
m

v
a
i (8)

get 〈‖ . . . , 〈. . . , fa
i . . .〉, . . . ‖〉

〈‖ . . . , 〈. . . , ga
i . . .〉, . . . ‖〉

ε
⇀
m

(mkf2 (senddep (mkanswer
(senddep〈‖ . . . , 〈. . . , ta

i . . .〉, . . . ‖〉)
〈‖ . . . , 〈. . . , ga

i . . .〉, . . . ‖〉))) where
ta
i = (initP (fun b→

(init (dm bsp p b) (fa
i b))))

(9)

senddep 〈‖ . . . , 〈. . . , ta
i , . . .〉, . . . ‖〉 where

ta
i =

2

6
4

[n
(a,0)
(i,0) , . . . , n

(a,0)
(i,p0−1)],

. . . ,

[n
(a,P−1)

(i,0) , . . . , n
(a,P−1)

(i,p
P−1

−1)]

3

7
5

ε
⇀
m

〈‖ . . . , 〈. . . , t′ai , . . .〉, . . . ‖〉 where

t′ai =

2

6
4

[n
(0,a)
(0,i) , . . . , n

(0,a)
(p0−1,i)],

. . . ,

[n
(P−1,a)

(0,i) , . . . , n
(P−1,a)

(p
P−1

−1,i)]

3

7
5
(10)

mkanswer 〈‖ . . . , 〈. . . , ta
i . . .〉, . . . ‖〉

〈‖ . . . , 〈. . . , ga
i . . .〉, . . . ‖〉

ε
⇀
m

〈‖ . . . , 〈. . . , t′ai . . .〉, . . . ‖〉 where

t′ai =

(initP (fun b→ (init(dm bsp p b)
(fun j → let v =
(access(access ta

i b) j) in
if (isnc v) then nc else (ga

i v)))))

(11)

where mkf2 =

8

>><

>>:

applydep (mkpdep (fun a→
apply (mkpar (fun i t b j →

if ((0 ≤ b)&(b < P)&(0 ≤ j)&(j < (dm bsp p b)))
then (access (access t b) j) else nc))))

Figure 7: Reduction
ε
⇀
m

outside a departmental vector. For example:
Γ = let x = [] in mkdep (fun clus→ . . .)

The reduction will occur at the hole to first compute the value of x. The Γa context
is used to define in which component of a departmental vector the reduction is
done, i.e., which BSP unit a reduces its global expression. This context uses the
Γg context which defines a global reduction on a BSP unit. Note that, in this
way, the hole is inside a departmental vector. For example, the following context:
Γa = applydep v 〈‖v0, e1, . . . , Γg‖〉 and Γg = mkpar [] is used to define that the
last BSP unit first computes the argument of the mkpar primitive.

The Γa
i context is used to define a local reduction at processor i on a parallel

machine a: first the context finds a hole in a departmental vector, next, a Γi context
finds a hole in a parallel vector, i.e., which processor makes the reduction, and to end
a Γl context finds the hole in a local expression, i.e., standard OCaml expression.
Note that this hole is inside a parallel vector which is inside a departmental vector.

Now we can reduce in-depth in the sub-expressions. To define this deep reduc-
tion, we use the inference rules of all the different kinds of context rules:

Parallel Processing Letters

Γa
i ::= Γa

i e

| v Γa
i

| let x = Γa
i in e

| if Γa
i then e else e

| op Γa
i e2 . . . en

| op v1 Γa
i . . . en

| . . .

| op v1 v2 . . . Γa
i

| 〈‖e, . . . ,

a
z}|{

Γi , e, . . . , e‖〉

Γa ::= Γa e

| v Γa

| let x = Γa in e

| if Γa then e else e

| op Γa e2 . . . en

| op v1 Γa . . . en

| . . .

| op v1 v2 . . . Γa

| 〈‖e, . . . ,

a
z}|{

Γg , e, . . . , e‖〉

Γ ::= []
| Γ e

| v Γ
| let x = Γ in e

| if Γ then e else e

| op Γ e2 . . . en

| op v1 Γ . . . en

| . . .

| op v1 v2 . . . Γ

Γi ::= Γi e

| v Γi

| let x = Γi in e

| if Γi then e else e

| op Γi e2 . . . en

| op v1 Γi . . . en

| . . .

| op v1 v2 . . . Γi

| 〈e, . . . ,

i
z}|{

Γl , e, . . . , e〉

Γg ::= []
| Γg e

| v Γg

| let x = Γg in e

| if Γg then e else e

| op Γg e2 . . . en

| op v1 Γg . . . en

| . . .

| op v1 v2 . . . Γg

Γl ::= []
| Γl e

| v Γl

| let x = Γl in e

| if Γl then e else e

| [Γl, e2, . . . , en]
| [v0, Γl, . . . , en]
| . . .

| [v0, v1, . . . , Γl]

Figure 8: Contexts

e ⇀
i,a

e′

Γa
i [e] ⇀ Γa

i [e′]

e ⇀
ona

e′

Γa[e] ⇀ Γa[e′]

e ⇀
m

e′

Γ[e] ⇀ Γ[e′]

Proposition 1 Let e be an expression. If e
∗
⇀ v1 and e

∗
⇀ v2 then v1 = v2.

Sketch of the Proof. All the δ-rules and head reductions, i.e., the axioms, are
deterministic (local, global and departmental ones). The rules are not always de-
terministic, i.e., several axioms can be applied at the same time, parallelism comes
from the context rules. But if a context gives two possible reductions in a parallel
or departmental vector, it is easy to see that these two reductions could be done in
any order and give the same result because a reduction does not affect the result of
the other one. In this way the DMML language is confluent.

5. Examples and Implementation

5.1. Broadcast

In the broadcast program, a single process of a BSP unit, called the root r, sends
a message to all other processes. It could be done in a direct way: each process of
each BSP unit asks the value of the root (see example of section 3) and the cost is:

max

{

a ∈ {0 . . . P − 1} \ {r} (S(v) × pa × (ga + G + gr) + lr + la + L
and

∑

i∈{0...P−1}

(gr × pi × S(v)) + lr)

where v is the sent value and S the size in bytes of the value. The cost of the
program is the maximum time for a BSP unit to receive the value and for the root
to send it to all the processes of all the BSP units.

Another way is that each process of each BSP unit receives from the root only
a subpart of the message. Each BSP unit contains all the parts needed to rebuild
the initial value. Then on each BSP unit there is a total exchange of these parts to

A Functional Language for Departmental Metacomputing

obtain the whole message. Thus we have the following cost:

max

a∈{0 . . . P−1}\{r} (S(v)×(ga+G+gr)+lr+la +L+(pa×ga×d
S(v)

pa

e+la)

and gr × P × S(v) + lr + (pa × gr × d
S(v)

pr

e+ lr)

The cost of the program is the maximum time for a BSP unit to receive the parts
of the value and to totally exchange them and for the root to send the parts and
to totally exchange them. Note that this program uses a program to scatter the
message from the root.

5.2. Departmental Reduction

Our second example is the classical parallel reduction: each process of each BSP
unit contains a value and we want to obtain the sum of these values. For this, a naive
algorithm could exchange all the needed values and then each process performs a
local reduction. In this way, the cost of this program is close to the BSP cost of the
direct algorithm.

As an example of a formal cost analysis (we refer to a report available at
dmmllib.free.fr for more details about how to formally give costs to DMML pro-
grams) of a less naive algorithm, we choose the multiplication-reduction of poly-
nomials: each process contains a polynomial and we want to compute their global
multiplication. We make the following hypotheses: 1) The clusters are sorted by
their efficiency to perform a BSP reduction 2) the coefficients of the polynomials
(
∑m

i=0 ciX
i) are stored in an array of floats such that ci is located at position i. We

write S(n) for the size of a polynomial of degree n. In this way, we have the follow-
ing property: S(poly1 × poly2) = S(poly1) + S(poly2) if we make the hypothesis
that the size of a float does not depend of its value.

The algorithm runs as follow. First each BSP unit a performs a direct BSP
reduction. The cost for each of them is thus:

Aa = (n× pa)2 × ra + (pa − 1)× S(n)× g + la
where n is the maximal degree of the polynomials and ra the time to perform a float
multiplication. Second the root process of each BSP units receives the polynomials
of the previous BSP unit. In this way, the cost to receive the polynomials is:

Ba =
∑

∀b<a(lb + (gb + G + ga)× S(pa × n) + la + L)
and to send them is: Ca = la + S(pa × n)× ga × (P − a).
With these received polynomials, the BSP unit is able to finish its reduction and
the cost is Da = (pa − 1) × (

∑

∀b<a S(pb × n) × ga + lb + (
∑

∀b<a S(pb × n) × ra.
The execution time for the program is thus: max

a∈{0...P−1}
(Aa + Ba + Ca + Da).

5.3. Implementation of the DMML library

There are two main versions of the DMML library: a sequential version and a
parallel one. Based on a confluent semantics, the evaluation of a pure functional
parallel program will lead to the same value with both versions. In the sequential
version, parallel and departmental vectors are implemented with OCaml arrays.

In the parallel version, our primitives are implemented as SPMD programs. A
parallel (resp. departmental) vector is supposed to contain one value per process

http://dmmllib.free.fr

Parallel Processing Letters

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 20 30 40 50 60 70 80 90 100

n: Size of the sended lists (in K)

Broadcast in DMML (t in s.)

Naive algorithm
Totex algorithm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10 20 30 40 50 60 70 80 90 100

n: Size of the polynomials (in K)

Parallel Prefix in DMML (t in s.)

Totex algorithm
Lists in BSML

Naive algorithm

(a) (b)

Figure 9: Benchmarks of collective operations

(resp. per BSP unit). The non-communicating primitives are thus very simple to
implement using the “pid” of each BSP unit and each process.

Currently for the BSP part of our language, any MPI library can be used. In
fact we only use a very small subpart of MPI: functions given the process identifier
and the number of processes of the BSP unit and the all-to-all collective functions.

For the departmental part of our language, we use the thread facilities of the
OCaml language: communication environments [12] of each process are needed to
save the functional value of its d-steps (each process as a variable which count
the d-step) and is thus implemented as a thread. The asynchronous request and
return of the get primitive are also implemented as threads and use the TCP/IP
facilities of the OCaml language to communicate the values. The examples and a
first implementation of DMML are available at dmmllib.free.fr.

5.4. Benchmarks

Preliminary experiments have been done on a metacomputer with 6 Pentium IV
nodes cluster interconnected with a Gigabit Ethernet network and with 3 Celeron
III nodes cluster interconnected with a Fast Ethernet network. The two clusters
are interconnected with a slow Ethernet network. Figure 8 summarizes the timings.
These programs were run 10 times and the average was taken. The naive broadcast
algorithm is clearly slower than the second algorithm. Preliminary experiments
of parallel reduction of multiplication of polynomials have been done to show a
performance comparison between a BSP algorithm on the metacomputer and DMM
algorithms. The BSML program has been only run on the first cluster and contain
the same number of polynomials: 3 processes contains 2 polynomials. Using a
second cluster and a less naive algorithm achieved a scalability improvement.

6. Related Work

The asynchronous nature of some parallel patterns like farms and pipelines or divide-
and-conquer parallel algorithms hampers their efficient implementation with flat
data parallel languages with global barriers. To overcome these limitations, the
BSP PUB library [4] provides the capacity to partition the current BSP machine
into several subsets. Several models [6] allowing subset synchronization have been
proposed. The authors of the BSP Worldwide Standard Library report claims that
an unwanted consequence of group partitioning is a loss of accuracy of the associated

http://dmmllib.free.fr

A Functional Language for Departmental Metacomputing

performance model.
Another feature of PUB is the oblivious synchronization. It implies that different

processors can be in different super-steps at the same time and thus the MPM model
of [3] seems to be more adequate for a cost analysis of this kinds of programs.
In our computation model, the two-tiered parallel levels are not based on subset
synchronizations: it is a flat two-tiered level model and our cost model benefits of
the advantages of BSP and MPM ones.

[20] presents an hierarchical extension of the BSP model with heterogeneous
processors. But in this model, the execution of a program also proceeds in hyper-
steps. Furthermore, the gateway is used for computation. The authors only analyze
two-tiered level programs and have the same problems as in the BSP2 model: the
time of the global barrier of synchronization of a hyper-step. [5] is another hier-
archical model with heterogeneous processors and asynchronous steps. The large
number of parameters in this model introduce a hardly tractable complexity. The
same problems occur in the model of [16]. Interesting work is the model of [2] for
hierarchical and heterogeneous computers. But the main problem in this model
is that the programs are difficult to analyze because the end-to-end bandwidth is
combined with the latency. Moreover, in all those frameworks an execution model
as in the BSP one lacks and deadlocks are possible.

Similar work to ours was conducted by [15], who performed an empirical study
of the benefits of using a two-tiered parallel programming model. Their approach
is based on data-duplication, all-to-all broadcasting and multicast message passing
whereby these data would only be sent once between BSP units and then copied
to all the BSP processors within the destination unit. In this way, they achieved a
considerable scalability improvement. Another similar model is the pLogP model,
parametrized Log-P of [10]. The authors introduce a two-tiered extension of the
Log-GP model to optimize with the help of a cost analysis the collective operations
of their own MPI library. But the authors do not present any formal semantics
nor formal cost model and they use a low level language. To our knowledge, the
DMML language is the first functional language for metacomputing with a formal
semantics and a cost model.

7. Conclusions and Future Work

Earlier research has shown that many parallel applications can be optimized to run
efficiently on hierarchical wide-area systems. The BSP model has proved to be a
trusty and worthy tool in the discipline of parallel programming for producing reli-
able and portable codes with predictable efficiency. However, additional complexity
introduced by metacomputing forces a review of the model. We have considered a
hierarchical extension of the BSP model, called the DMM model and we have also
described a new functional parallel language for this new model. This language is
based on a formal confluent semantics and allows programs cost analysis.

The first direction for future work is the design of algorithms for the DMM model
and their implementations using the DMML library. To validate the cost model, we
need a benchmark suite to determine the parameters of the metacomputer: this is an
ongoing work. A complementary direction is to implement versions of DMML with
adequate low level libraries for metacomputing [10,1]. Another direction of research

Parallel Processing Letters

is the design of a distributed semantics of DMML, closer to the implementation,
and the prove of its correctness with respect to the semantics presented here.

Acknowledgements This work is supported by a grant from the French Ministry
of Research and the ACI Grid program (project Caraml). The authors wish to
thank the anonymous referees for their comments. This paper is a revised version
of the paper presented at CMPP’04.

References

[1] O. Aumage and al. Madeleine II: A Portable and Efficient Communication Library for
High-Performance Cluster Computing. Parallel Computing, 28(4):607–626, 2002.

[2] P.B. Bhat and al. Adaptative communication algorithms for distributed heterogeneous
systems. Parallel and Distributed Computation, 59:252–279, 1999.

[3] V. Blanco, J. A. González, C. León, C. Rodŕıguez, and G. Rodŕıguez. Predicting the
performance of parallel programs. Parallel Computing, 30:337–356, 2004.

[4] O. Bonorder, B. Juurlink, I. von Otte, and I. Rieping. The Paderborn University BSP
(PUB) Library. Web pages at http://www.uni-paderborn.de/˜bsp/, 2004.

[5] F. Cappello, A.L. Rosenberg, and al. HiHCoHP toward a realistic communication
model for hierarchical hyperclusters of heterogeneous processors. In IPDPS’2001.
IEEE Press, 2001.

[6] H. Cha and D. Lee. H-BSP: a Hierarchical BSP Computation Model. Supercomputing,
18(1):179–200, 2001.

[7] F. Gava. Formal Proofs of Functional BSP Programs. PPL, 13(3):365–376, 2003.
[8] F. Gava. Design of Deparmental Metacomputing ML. In M. Bubak and al., editors,

ICCS 2004, number 3038 in LNCS, pages 50–53. Springer Verlag, 2004.
[9] F. Gava and F. Loulergue. A Static Analysis for Bulk Synchronous Parallel ML to

Avoid Parallel Nesting. FGCS, 2004.
[10] T. Kielmann, H. E. Bal, S. Gorlatch, K. Verstoep, and R. F. H. Hofman. Network

performance-aware collective communication for clustered wide-aera systems. Parallel
Computing, 27:1431–1456, 2001.

[11] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml
System release 3.08.1. Web pages at www.ocaml.org, 2004.

[12] F. Loulergue, F. Gava, M. Arapinis, and F. Dabrowski. Semantics and Implementation
of MSPML. Int. Journal of Computer and Information Science, 5(3), 2004.

[13] F. Loulergue, G. Hains, and C. Foisy. A Calculus of Functional BSP Programs. Science
of Computer Programming, 37(1-3):253–277, 2000.

[14] J. M. R. Martin and A. Tiskin. BSP modelling a two-tiered parallel architectures. In
B. M. Cook, editor, WoTUG’99, pages 47–55, 1999.

[15] A. Plaat, H. E. Bal, and al. Sensitivity of Parallel Applications to large differences in
bandwidth and latency in two-layer interconnects. FGCS, 2004.

[16] A.L. Rosenberg. Optimal sharing of partitionable workloads in heterogeneous networks
of workstations. In PDPTA’2000, pages 413–419. CSREA Press, 2000.

[17] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about BSP.
Scientific Programming, 6(3):249–274, 1997.

[18] L. Smarr and C. E. Catlett. Metacomputing. CACM, 35(6):44–52, 1992.
[19] L.G. Valiant. A bridging model for parallel computation. CACM, 33(8):103, 1990.
[20] T. L. Williams and R. J. Parsons. Exploiting hierarchy in heterogeneous environments.

In IEEE/ACM IPDPS’2001, pages 140–147. IEEE Press, 2001.

