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The Bulk Synchronous Parallel ML (BSML) is a functional language for Bulk Synchronous Parallel
(BSP) programming, on top of the sequential functional language Objective Caml. It is based on an
extension of the λ-calculus by parallel operations on a parallel data structure named parallel vector,
which is given by intention. The Objective Caml language is a functional language but it also offers
imperative features. This paper presents formal semantics of BSML with references, assignment and
dereferencing.

1. Introduction

Declarative parallel languages are needed to ease the programming of massively parallel architec-
tures. We are exploring thoroughly the intermediate position of the paradigm of algorithmic skele-
tons [1,7] in order to obtain universal parallel languages whose execution costs can be easily determined
from the source code (in this context, cost means the estimate of parallel execution time). This last
requirement forces the use of explicit processes corresponding to the parallel machine’s processors.
Bulk Synchronous Parallel (BSP) computing [11] is a parallel programming model which uses explicit
processes, offers a high degree of abstraction and yet allows portable and predictable performance on a
wide variety of architectures. Our BSML [6] can be seen as an algorithmic skeletons language, because
only a finite set of operations are parallel, but is different by two main points: (a) our operations
are universal for BSP programming and thus allow the implementation of more classical algorithmic
skeletons. It is also possible for the programmer to implement additional skeletons. Moreover perfor-
mance prediction is possible and the associated cost model is the BSP cost model. Those operations
are implemented as a library [5] for the functional programming language Objective Caml [8]; (b) the
parallel semantics of BSML are formal ones. We have a confluent calculus, a distributed semantics
and a parallel abstract machine, each semantics has been proved correct with respect to the previous
one.

Our semantics are based on extension of the λ-calculus, but our BSMLlib library (a partial im-
plementation of the complete BSML language) is for the Objective Caml language which contains
imperative features. Imperative features can be useful to write (sequential) programs in Objective
Caml (for example, many interpreters of λ-calculus written in Objective Caml use a imperative counter
in order to generate fresh variable names). Sometimes imperative features are also needed to improve
efficiency. Thus to offer such expressivity in BSML we have to add imperative features to BSML. In
the current version of the BSMLlib library the use of imperative features is unsafe and may lead to
runtime errors. This paper explores formal semantics of BSML with imperative features.

We first describe functional bulk synchronous parallel programming and the problems that appear
with the use of imperative features (section 2). We then give two formal semantics of BSML with
imperative features whose parallel executions are different (section 3) and conclude (section 4).

2. Preliminaries

We assume here some knowledge of Bulk Synchronous Parallelism (BSP) [9]. There is currently no
implementation of a full Bulk Synchronous Parallel ML language but rather a partial implementation:
a library for Objective Caml. The so-called BSMLlib library is based on the following elements.
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It gives access to the BSP parameters of the underling architecture. In particular, it offers the
function bsp p:unit->int such that the value of bsp p() is p, the static number of processes of the
parallel machine. The value of this variable does not change during execution.

There is also an abstract polymorphic type ’a par which represents the type of p-wide parallel
vectors of objects of type ’a, one per process. The nesting of par types is prohibited. Our type
system enforces this restriction [4]. In our framework, indeterminism and deadlocks are avoided and
it is possible to easily prove programs using the Coq proof assistant [2].

The BSML parallel constructs operate on parallel vectors. Those parallel vectors are created by
mkpar:(int->’a)->’a par so that (mkpar f) stores (f i) on process i for i between 0 and (p− 1).
We usually write f as fun pid->e to show that the expression e may be different on each processor.
This expression e is said to be local. The expression (mkpar f) is a parallel object and it is said to
be global.

A BSP algorithm is expressed as a combination of asynchronous local computations (first phase
of a super-step) and phases of global communication (second phase of a super-step) with global
synchronization (third phase of a super-step). Asynchronous phases are programmed with mkpar and
with apply:(’a->’b)par->’a par->’b par. The expression apply (mkpar f) (mkpar e) stores
(f i) (e i) on process i. Neither the implementation of BSMLlib, nor its semantics prescribe a
synchronization barrier between two successive uses of apply.
put:(int->’a option)par->(int->’a option)par allows to express communications and syn-

chronizations, where ’a option is defined by: type ’a option=None|Some of ’a.
Consider the expression: put(mkpar(fun i->fsi)) (*)
To send a value v from process j to process i, the function fsj at process j must be such as (fsj i)

evaluates to Some v. To send no value from process j to process i, (fsj i) must evaluate to None.
Expression (*) evaluates to a parallel vector containing a function fdi of delivered messages on every
process. At process i, (fdi j) evaluates to None if process j sent no message to process i or evaluates
to Some v if process j sent the value v to the process i.

The full BSML language would also contain a global synchronous conditional operation. This
ifat:(bool par)*in *’a*’a->’a operation is such that ifat(v,i,v1,v2) will evaluate to v1 or
v2 depending on the value of v at process i. But Objective Caml is an eager language and this
global synchronous conditional operation can not be defined as a function. That is why the core
BSMLlib library contains the function at:bool par->int->bool to be used only in the global expres-
sion: if (at vec pid) then ...~else ... where (vec:bool par) and (pid:int). if at expresses
communication and synchronization phases. Global conditional is necessary of express algorithms like:
Repeat Parallel Iteration Until Max of local errors < ε. Without it, the global control cannot take
into account data computed locally.

Objective Caml offers to the programmer an important extension of functional languages: impera-
tive features. They have been added to functional languages to offer more expressiveness. Classically,
this modification is added to functional languages by the possibility of assignment and allocation of a
variable or a data structure.

The idea is to add references. A reference is a cell of the memory which could be modified by
the program. One creates a reference with the allocation’s ref(e) construction which gives a new
reference in the memory initialized to the value of e. The value kept by the reference is called the
stored value. To use and read the stored value (dereferencing), we need an operation, written !, to
extract it. Finally, we can modify the content of our reference by replacing this value by another.
This operation is called assignment and written: e1 := e2. We use the same notations as Objective
Caml. A reference binding to an identifier in a functional language is like a variable in an imperative
language.

Imperative features are not a trivial extension of functional language. First, the value of an expres-
sion changes with the values of the free variables. If these variables have a known value, the evaluation
of the sub-expressions could be done independently. For imperative language, it is not the case (and
also for imperative extensions): the evaluation of a sub-expression could modify a reference by an
assignment and thus affects the evaluation of the other sub-expressions which used this reference. A
secondly difficulty came from the shared references which could not pass the well-known and classical
β-reduction of the functional languages. Take for example: let r=ref 2 in r:=!r*!r;(!r+1).



3

The instances of r are for the reference, allocated by the ref 2 sub-expression. If we make a natural
β-reduction to our expression, we would have: (ref 2):=!(ref 2)*!(ref 2);(!(ref 2)+1) which
allocates four different references and do not have the same behavior.

To extend the dynamic semantics of functional languages and keep out the problem of the shared
allocations, locations (written `) and store (written s) have been added. A store, is a partial function
from locations to values and a reference is evaluated to a location. In the following, we give the
reduction of expressions starting from an empty store.

First, the left sub-expression of the let construction is evaluated and a new location ` is created
in the store. Second, the β-reduction can be applied and finally the right sub-expression of the let

construction is evaluated with the classical rules of a functional language:

let r = ref(2) in r :=!r∗!r; (!r + 1) / ∅ ⇀ ` := 4; !(` + 1) / {` 7→ 2}
⇀ let r = ` in r :=!r∗!r; (!r + 1) / {` 7→ 2} ⇀ (!` + 1) / {` 7→ 4}
⇀ ` :=!`∗!`; (!` + 1) / {` 7→ 2} ⇀ (4 + 1) / {` 7→ 4}
⇀ ` := 2 ∗ 2; (!` + 1) / {` 7→ 2} ⇀ 5 / {` 7→ 4}

2.1. BSML with imperative features
BSML is a parallel functional language based on BSP whose architecture model contains a set of

processor-memory pairs and a network. Thus in the current implementation each processor can reach
its own memory, and it causes problems. Take for example, the expression:

let a = ref(0) in let danger = mkpar(fun pid -> a:=pid; pid mod 2=0) in

if (at danger !a) then e1 else e2
First, this expression creates a location a at each processor which is initialized at 0 everywhere. For

the BSMLlib library each processor has this value in its memory. Second, a boolean parallel vector
danger is created which is trivially true if the processor number is even or false otherwise. Thus,
from the BSMLlib point of view, the location a has now a different value at each processor. After
the ifat construct, some processor would execute E1 and some other E2. But, the ifat is a global
synchronous operation and all the processors need to execute the same branch of the conditional. If
this expression had been evaluated with the BSMLlib library, we would have obtained an incoherent
result and a crash of the BSP machine. The goal of our new semantics is to dynamically reject this
kind of problems (and to have an exception raised in the implementation).

3. Dynamic Semantics of BSML with Imperative Features

This section introduces the syntax and dynamic semantics of a core langage, together with some
conventions, definitions and notations that are used in the paper.

3.1. Syntax
The expressions of mini-BSML, written e, have the following abstract syntax:

e ::= x | (e e) | fun x→ e | c | op | let x = e in e | (e, e) | `
| if e then e else e | if e at e then e else e

In this grammar, x ranges over a countable set of identifiers. The form (e e′) stands for the
application of a function or an operator e, to an argument e′. The form fun x → e is the lambda-
abstraction that defines the function whose parameter is x and whose result is the value of e. Constants
c are the integers, the booleans and we assume having a unique value: () that have the type unit.
This is the result type of assignment (like in Objective Caml). The set of primitive operations op
contains arithmetic operations, fix-point operator fix, test function isnc of nc (which plays the role
of Objective Caml’s None), our parallel operations (mkpar, apply, put) and our store operation ref,
! and :=. We note e1:=e2 for :=(e1, e2). Locations are written `, pairs (e, e). We also have two
conditional constructs: usual conditional if then else and global conditional if at then else.
We note F(e), the set of free variables of an expression e. let and fun are the binding operators and
the free variables of a location is the empty set. It is defined by trivial structural induction on e.

Before presenting the dynamic semantics of the language, i.e., how the expressions of mini-BSML
are computed to values, we present the values themselves. There is one semantics per value of p,
the number of processes of the parallel machine. In the following, ∀i means ∀i ∈ {0, . . . , p − 1} and
the expressions are extended with enumerated parallel vectors: 〈e, . . . , e〉 (nesting of parallel vectors
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is prohibited; our type system enforces this restriction [4]). The values of mini-BSML are defined by
the following grammar:
v ::= fun x → e functional value | c constant | op primitive

| 〈v, . . . , v〉 p-wide parallel vector value | (v, v) pair value | ` location

3.2. Rules
The dynamic semantics is defined by an evaluation mechanism that relates expressions to values. To

express this relation, we used a small-step semantics. It consists of a predicate between an expression
and another expression defined by a set of axioms and rules called steps. The small-step semantics
describes all the steps of the calculus from an expression to a value. We suppose that we evaluate
only expressions that have been type-checked [4].

Unlike in a sequential computer and a sequential language, an unique store is not sufficient. We
need to express the store of all our processors. We assume a finite set N = {0, . . . , p − 1} which
represents the set of processors names and we write i for these names and 1 for all the network.
Now, we can formalize the location and the store for each processor and for the network. We write
si for the store of processor i with i ∈ N . We assume that each processor has a store and a infinite
set of addresses which are different at each processor (we could distinguish them by the name of the
processor). We write S = [s0, . . . , sp−1] for the sequence of all the stores of our parallel machine. The
imperative version of the small-steps semantics has the following form: e/S ⇀ e′/S′. We will also
write e/s ⇀ e′/s′ when only one store of the parallel machine can be modified.

We note
∗

⇀, for the transitive closure of ⇀ and note e0/S0
∗

⇀ v/S for e0/S0 ⇀ e1/S1 ⇀ e2/S2 ⇀
. . . ⇀ v/S. We begin the reduction with a set of empty stores {∅0, . . . , ∅p−1} noted ∅1. To define the
relation ⇀, we begin with some axioms for two kinds of reductions:

1. e/si
i

⇀ e′/s′i which could be read as ”in the initial store si, at processor i, the expression e is
reduced to e′ in the store s′i”.

2. e/S
1

⇀ e′/S′ which could be read as ”in the initial network store S, the expression e is reduced
to e′ in the network store S ′”.

We write s + {` 7→ v} for the extension of s to the mapping of ` to v. If, before this operation,
we have ` ∈ Dom(s), we can replace the range by the new value for the location `. To define these
relations, we begin with some axioms for the relation of head reduction. We write e1[x ← e1] the
expression obtained by substituting all the free occurrences of x in e1 by e2.

For a single process: (fun x→ e) v / si
ε
⇀
i

e[x← v] / si (βi
fun) .

For the whole parallel machine: (fun x→ e) v / S
ε
⇀
1

e[x← v] / S (β1

fun) .

Rules (βi
let) and (β1

let) are the same but having let x = v in e instead of fun. For primitive
operators and constructs we have some axioms, the δ-rules. For each classical δ-rule, we have two
new reduction rules: e / si

ε
⇀
δi

e′ / s′i and e / S
ε
⇀
δ1

e′ / S′. Indeed, these reductions do not change

the stores and do not depend on the stores (we omit these rules for lack of space and we refer to [3]).
Naturally, for the parallel operators, we also have some δ-rules but we do not have those δ-rules on a
single processor but only for the network (figure 1).

A problem appears with the put operator. The put operator is used for the exchange of values,
in particular, locations. But a location could be seen as a pointer to the memory (a location is a
memory’s addresses). If we send a local allocation to a processor that does not have the location
in its store, there is no reduction rule to apply and the program stops with an error (the famous
segmentation fault of the C language) if it deferences this location (if it reads “out” of the memory).
A dynamic solution is to communicate the value contained by the location and to create a new location
for this value (as in the Marshal module of Objective Caml). This solution implies the renaming of
locations that are communicated to other processes. For this, we define Loc the set of location of a
value. It is defined by trivial structural induction on the value. We define how to add a sequence of
pair of location and value to a store with:

s + ∅ = s and s + [`0 7→ v0, . . . , `n 7→ vn] = (s + {`0 7→ v0}) + [`1 7→ v1, . . . , `n 7→ vn].
We note ϕ = {`0 7→ `′0, . . . `n 7→ `′n} for the substitution, i.e, a finite application from location `i to

another location `′i with {`0, . . . `n} is the domain of ϕ.
Now we complete our semantics by giving the δ-rules of the operators on the stores and the ref-



5

(mkpar v) / S
ε
⇀
δ1

〈(v 0), . . . , (v (p− 1))〉 / S (δ1

mkpar)

apply(〈v0, . . . , vp−1〉, 〈v′0, . . . , v
′

p−1〉) / S
ε
⇀
δ1

〈(v0 v′0), . . . , (vp−1 v′p−1)〉 / S (δ1

apply)

if 〈. . . ,

n
︷ ︸︸ ︷

true, . . .〉 at v then e1 else e2 / S
ε
⇀
δ1

e1 / S if v = n (δ1

ifatT )

if 〈. . . ,

n
︷ ︸︸ ︷

false, . . .〉 at v then e1 else e2 / S
ε
⇀
δ1

e2 / S if v = n (δ1

ifatF )

put(〈fun dst→ e0, . . . , fun dst→ ep−1〉) / S
ε
⇀
δ1

〈r0, . . . , rp−1〉 / S′ (δ1

put)

where S = [s0, . . . , sp−1] and S′ = [s′0, . . . , s
′

p−1] where ∀j . s′j = sj + h′

0 + . . . + h′

p−1

where h′

j = [`′0 7→ v0, . . . , `
′

n 7→ vn] and hj = {(`0, v0), . . . , (`n, vn)}
where `k ∈ Loc(ej) and {lk 7→ vk} ∈ sj and ϕj = {`0 7→ `′0, . . . , `n 7→ `′n} and e′j = ϕj(ej) and

∀i ri = (let vi
0 = e′0[dst← i] in . . . vi

p−1 = e′p−1[dst← i] infi) where

fi = fun x→ if x = 0 then vi
0 else . . . if x = (p− 1) then vi

p−1 else nc()

Figure 1. Parallel δ-rules

erences. We need two kinds of reductions. First for a single processor, δ-rules are (δi
ref ), (δi

!
) and

(δi
:=

) (given in figure 2). Those operations work on the store of the processor where this operation
is executed. The ref operation creates a new allocation in the store of the processor, the ! operation
gives the value contained in the location of the store and the := operation changes this value by
another one.

ref(v) / si
ε
⇀
δi

` / si + {` 7→ v} if ` 6∈ Dom(si) (δi
ref )

!(`) / si
ε
⇀
δi

si(`) / si if ` ∈ Dom(si) (δi
!)

`:=v / si
ε
⇀
δi

() / si + {` 7→ v} if ` ∈ Dom(si) (δi
:=)

ref(v) / S
ε
⇀
δ1

`1 / S′ where



S′ = [s0 + {`1

0 7→ P0(v)}, . . . , sp−1 + {`1

p−1 7→ Pp−1(v)}]
∀i.`1

i 6∈ Dom(si)
(δ1

ref )

!(`1) / S
ε
⇀
δ1

v / S where ∃v ∀i si(`
1

i ) = v and `1

i ∈ Dom(si) or ∃v v = P−1(si(`
1

i )) (δ1

! )

`1
:=v / S

ε
⇀
δ1

() / S′ where



S′ = [s0 + {`1

0 7→ P0(v)}, . . . , sp−1 + {`1

p−1 7→ Pp−1(v)}]
∀i.`1

i ∈ Dom(si)
(δ1

:=)

`1 / si
ε
⇀
δi

`1

i / si (δ1

proj)

Figure 2. “Store” δ-rules

For the whole network, we have to distinguish between the name of a location created outside a
mkpar which is used in expressions and its “projections” in the stores of each process. We note l1 in
the first case and l1i for its projection in the store of process i. When an expression outside a mkpar
creates a new location, each process creates a new location (an address) on its store (rule (δ1

ref ),
figure 2) where Pi is a trivial function of projection for the parallel vectors of a value. With this
function, we assure that there is no data from another processes in a store. The assignment of location
l1 (rule (δ1

:=), figure 2) modifies the values of locations l1i using also the function of projection (which
have no effect if the value do no contain any parallel vectors).

This rule is only valid outside a mkpar. But a reference created outside a mkpar can be affected
and deferenced inside an mkpar. For assignment, the value can be different on each process. To allow
this, we need to introduce a rule (δ1

proj) (figure 2) which transforms (only inside an mkpar and at
process i) the common name l1 into its projection l1i . Notice that the affection or the deferencing of a
location l1 cannot be done inside a mkpar with rules (δi

:=
) and (δi

!
) since the condition l ∈ Dom(si)

does not hold. The use of the rule (δ1

proj) is first needed.
The deferencing of l1 outside a mkpar can only occur if the value held by its projections at each

process is the same or if this value is the projection of a value which contain a parallel vector (a value
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which cannot be modify by any process since nested of parallelism is forbidden [4]). This verification
is done by rule (δ1

!
) where P−1 is a trivial function of de-projection for the values stores one each

processes which contains the projection values. This de-projection do no need any communication.

The complete definitions of our reductions are:
i

⇀=
ε
⇀
i
∪

ε
⇀
δi

and
1

⇀=
ε
⇀
1

∪
ε
⇀
δ1

. It is easy to see that

we cannot always make a head reduction. We have to reduce in depth in the sub-expression. To define
this deep reduction, we need to define two kinds of contexts. We refer to [3] for such definitions.

3.3. Cost model preserving semantics
In order to avoid the comparison of the values held by projections of a l1 location in rule (δ1

!
)

we can forbid the assignment of such a location inside a mkpar. This can be done by suppressing
rule (δ1

proj). But in this case, deferencing inside a mkpar is no longer allowed. Thus, we need to

add a new rule: !(`1) / si
ε
⇀
δi

si(`
1

i ) / si if `1

i ∈ Dom(si) (δi1
!

) and modify the rule (δ1

!
) to

suppress the comparison: !(`1) / S
ε
⇀
δ1

P−1(si(l
1

i )) / S if `1

i ∈ Dom(si) (δ′
1

!
) .

This rule is not deterministic but since assignment of a l1 location is not allowed inside a mkpar
the projections of a l1 location always contain the same value. The cost model is now compositional
since the new (δ′

1

!
) does not need communications and synchronization.

4. Conclusions and Future Work

The Bulk Synchronous Parallel ML allows direct mode Bulk Synchronous Parallel programming.
The semantics of BSML were pure functional semantics. Nevertheless, the current implementation of
BSML is the BSMLlib library for Objective Caml which offers imperative features. We presented in this
paper semantics of the interaction of our bulk synchronous operations with imperative features. The
safe communication of references has been investigated, and for this particular point, the presented
semantics conforms to the implementation. To ensure safety, communications may be needed in case
of assignment (but in this case the cost model is no longer compositional) or references may contain
additional information used dynamically to ensure that dereferencing of references pointing to local
values will give the same value on all processes. We are currently working on the typing of effects [10]
to avoid this problem statically.
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