
cSPRINGER VERLAG – Lecture Notes in Computer Science

A Polymorphic Type System for Bulk Synchronous
Parallel ML

Frédéric Gava and Frédéric Loulergue

Laboratory of Algorithms, Complexity and Logic – University Paris XII
61, avenue du général de Gaulle – 94010 Créteil cedex – France

Tel: +33 1 45 17 16 50 – Fax: +33 1 45 17 66 01
fgava,loulergueg@univ-paris12.fr

Abstract. The BSMLlib library is a library for Bulk Synchronous Parallel (BSP)
programming with the functional language Objective Caml. It is based on an ex-
tension of the λ-calculus by parallel operations on a data structure named parallel
vector, which is given by intention. In order to have an execution that follows the
BSP model, and to have a simple cost model, nesting of parallel vectors is not
allowed. The novelty of this paper is a type system which prevents such nesting.
This system is correct w.r.t. the dynamic semantics which is also presented.

1 Introduction

Bulk Synchronous Parallel ML or BSML is an extension of the ML family of functional
programming languages for programming direct-mode parallel Bulk Synchronous Par-
allel algorithms as functional programs. Bulk-Synchronous Parallel (BSP) computing
is a parallel programming model introduced by Valiant [17] to offer a high degree of
abstraction like PRAM models and yet allow portable and predictable performance on
a wide variety of architectures. A BSP algorithm is said to be in direct mode [2] when
its physical process structure is made explicit. Such algorithms offer predictable and
scalable performance and BSML expresses them with a small set of primitives taken
from the confluent BSλ calculus [7]: a constructor of parallel vectors, asynchronous
parallel function application, synchronous global communications and a synchronous
global conditional.

The BSMLlib library implements the BSML primitives using Objective Caml [13]
and MPI [15]. It is efficient [6] and its performance follows curves predicted by the BSP
cost model.

Our goal is to provide a certified programming environment for bulk synchronous
parallelism. This environment will contain a byte-code compiler for BSML and an ex-
tension to the Coq Proof Assistant used to certify BSML programs. A first parallel ab-
stract machine for the execution of BSML programs has be designed and proved correct
w.r.t. the BSλ-calculus, using an intermediate semantics [5].

One of the advantages of the Objective Caml language (and more generally of the
ML family of languages, for e.g. [9]) is its static polymorphic type inference [10]. In
order to have both simple implementation and cost model that follows the BSP model,



nesting of parallel vectors is not allowed. BSMLlib being a library, the programmer is
responsible for this absence of nesting. This breaks the safety of our environment.

The novelty of this paper is a type system which prevents such nesting (section 4).
This system is correct w.r.t. the dynamic semantics which is presented in section 3. We
first present the BSP model, give an informal presentation of BSML (2), and explain in
detail why nesting of parallel vectors must be avoided (2.1).

2 Functional Bulk Synchronous Parallelism

Bulk-Synchronous Parallel (BSP) computing is a parallel programming model intro-
duced by Valiant [17, 14] to offer a high degree of abstraction like PRAM models and
yet allow portable and predictable performance on a wide variety of architectures. A
BSP computer contains a set of processor-memory pairs, a communication network al-
lowing inter-processor delivery of messages and a global synchronization unit which
executes collective requests for a synchronization barrier. Its performance is character-
ized by 3 parameters expressed as multiples of the local processing speed: the number
of processor-memory pairs p, the time l required for a global synchronization and the
time g for collectively delivering a 1-relation (communication phase where every pro-
cessor receives/sends at most one word). The network can deliver an h-relation in time
gh for any arity h.

A BSP program is executed as a sequence of super-steps, each one divided into
(at most) three successive and logically disjoint phases. In the first phase each proces-
sor uses its local data (only) to perform sequential computations and to request data
transfers to/from other nodes. In the second phase the network delivers the requested
data transfers and in the third phase a global synchronization barrier occurs, making
the transferred data available for the next super-step. The execution time of a super-step
s is thus the sum of the maximal local processing time, of the data delivery time and

of the global synchronization time:Time(s) = max
i:processor

w(s)
i + max

i:processor
h(s)

i �g+ l where

w(s)
i = local processing time on processor i during super-step s and h (s)

i =maxfh(s)
i+ ;h

(s)
i�g

where h(s)
i+ (resp. h(s)

i� ) is the number of words transmitted (resp. received) by processor
i during super-step s. The execution time ∑s Time(s) of a BSP program composed of S

super-steps is therefore a sum of 3 terms:W +H �g+S� l where W = ∑s maxi w(s)
i and

H = ∑s maxi h(s)
i . In general W;H and S are functions of p and of the size of data n, or

of more complex parameters like data skew and histogram sizes.
There is currently no implementation of a full Bulk Synchronous Parallel ML lan-

guage but rather a partial implementation as a library for Objective Caml. The so-called
BSMLlib library is based on the following elements.

It gives access to the BSP parameters of the underling architecture. In particular,
it offers the function bsp p:unit->int such that the value of bsp p() is p, the static
number of processes of the parallel machine. This value does not change during execu-
tion.

There is also an abstract polymorphic type ’a par which represents the type of p-
wide parallel vectors of objects of type ’a, one per process. The nesting of par types is
prohibited. Our type system enforces this restriction.



The BSML parallel constructs operates on parallel vectors. Those parallel vectors
are created by: mkpar: (int -> ’a) -> ’a par so that (mkpar f) stores (f i)

on process i for i between 0 and (p� 1). We usually write f as fun pid->e to show
that the expression e may be different on each processor. This expression e is said to be
local. The expression (mkpar f) is a parallel object and it is said to be global.

A BSP algorithm is expressed as a combination of asynchronous local computations
(first phase of a super-step) and phases of global communication (second phase of a
super-step) with global synchronization (third phase of a super-step).

Asynchronous phases are programmed with mkpar and with:

apply: (’a -> ’b) par -> ’a par -> ’b par

apply (mkpar f) (mkpar e) stores (f i) (e i) on process i. Neither the imple-
mentation of BSMLlib, nor its semantics prescribe a synchronization barrier between
two successive uses of apply.

Readers familiar with BSPlib will observe that we ignore the distinction between a
communication request and its realization at the barrier. The communication and syn-
chronization phases are expressed by:

put:(int->’a option) par -> (int->’a option) par

where ’a option is defined by: type ’a option = None | Some of ’a.
Consider the expression: put(mkpar(fun i->fsi)) (�)
To send a value v from process j to process i, the function fs j at process j must

be such that (fs j i) evaluates to Some v. To send no value from process j to process
i, (fs j i) must evaluate to None.

Expression (�) evaluates to a parallel vector containing a function fd i of delivered
messages on every process. At process i, (fd i j) evaluates to None if process j sent no
message to process i or evaluates to Some v if process j sent the value v to the process
i.

The full language would also contain a synchronous conditional operation:

ifat: (bool par) * int * ’a * ’a -> ’a

such that ifat(v,i,v1,v2) will evaluate to v1 or v2 depending on the value of v at
process i. But Objective Caml is an eager language and this synchronous conditional
operation can not be defined as a function. That is why the core BSMLlib contains
the function: at:bool par -> int -> bool to be used only in the construction: if
(at vec pid) then... else... where (vec:bool par) and (pid:int). if at
expresses communication and synchronization phases. Without it, the global control
cannot take into account data computed locally.

2.1 Motivations

In this section, we present why we want to avoid nesting of parallel vectors in our
language. Let consider the following BSML program:



(* bcast: int->’a par->’a par *)
let bcast n vec =
let tosend=mkpar(fun i v dst->if i=n then Some v else None) in
let recv=put(apply tosend vec) in
apply (replicate noSome) (apply recv (replicate n))

This program uses the following functions:

(* replicate: ’a -> ’a par *) let replicate x = mkpar(fun pid->x)
(* noSome: ’a option -> ’a *) let noSome (Some x) = x

bcast 2 vec broadcasts the value of the parallel vector vec held at process 2 to all
other processes. The BSP cost for a call to this program is:

p + (p�1)� s�g + l (1)

where s is the size of the value held at process 2. Consider now the expression:

let example1 = mkpar(fun pid->bcast pid vec)

Its type is (τ par) par where τ is the type of the components of the parallel vector
vec. A first problem is the meaning of this expression. In section 2, we said that (mkpar
f) evaluates to a parallel vector such that process i holds value (f i). In the case of
our example, it means that process 0 should hold the value of (bcast 0 vec). BSML
being based on the confluent calculus [7], it is possible to evaluate (bcast 0 vec)
sequentially. But in this case the execution time will not follow the formula (1). The
cost of an expression will then depend on its context. The cost model will no more be
compositional.

We could also choose that process 0 broadcasts the expression (bcast 0 vec) and
that all processes evaluate it. In this case the execution time will follow the formula (1).
But the broadcast of the expression will need communications and synchronization.
This preliminary broadcast is not needed if (bcast 0 vec) is not under a mkpar. Thus
we have additional costs that make the cost model still non compositional. Furthermore,
this solution would imply the use of a scheduler and would make the cost formulas very
difficult to write.

To avoid those problems, nesting of parallel vectors is not allowed. The typing ML
programs is well-known [10] but is not suited for our language. Moreover, it is not suf-
ficient to detect nesting of abstract type ’a par such as the previous example. Consider
the following program:

let example2=mkpar(fun pid->let this=mkpar(fun pid->pid) in pid)

Its type is int par but its evaluation will lead to the evaluation of the parallel vector
this inside the outmost parallel vector. Thus we have a nesting of parallel vectors
which cannot be seen in the type.

Other problems arise with polymorphic values. The most simple example is a pro-
jection: let fst = fun (a,b) -> a. Its type is of course ’a * ’b -> ’a. The prob-
lem is that some instantiations are incorrect. We give four cases of the application of fst
to different kinds of values:



1. two usual values: fst(1,2)
2. two parallel values: fst (mkpar(fun i -> i),mkpar(fun i -> i))
3. parallel and usual: fst (mkpar(fun i -> i),1)
4. usual and parallel: fst (1, mkpar(fun i -> i))

The problem arises with the fourth case. Its type given by the Objective Caml system
is int. But the evaluation of the expression needs the evaluation of a parallel vector.
Thus we may be in a situation such as in example2. One solution would be to have a
syntactic distinction between global and local variables (as in the BSλ-calculus). The
type system would be simpler but it would be very inconvenient for the programmer
since he would have for example to write three different versions of the fst function
(the fourth is incorrect).

The nesting can be more difficult to detect:

let vec1 = mkpar(fun pid -> pid)
and vec2 = put(mkpar(fun pid -> fun from -> 1+from)) in
let c1=(vec1,1) and c2=(vec2,2) in

mkpar(fun pid ->if pid<(nproc/2) then snd c1 else snd c2)

The evaluation of this expression would imply the evaluation of vec1 on the first half
of the network and vec2 on the second. But put implies a synchronization barrier and
not mkpar so this will lead to mismatched barriers and the behavior of the program will
be unpredictable. The goal of our type system is to reject such expressions. We are first
going to equip the language with a dynamic semantics, then we will give the inference
rules of the static semantics and some typing examples.

3 Dynamic Semantics of BSML

+(n1;n2)
ε
*
δ

n with n = n1 +n2 (δ+)

fst(ṽ1; ṽ2)
ε
*
δ

ṽ1 (δ f st)

fix(fun x! ẽ)
ε
*
δ

ẽ[x fix(fun x! ẽ)] (δ f ix)

if true then ẽ1 else ẽ2
ε
*
δ

ẽ1 (δi f thenelseT )

if false then ẽ1 else ẽ2
ε
*
δ

ẽ2 (δi f thenelseF )

isnc(v) ε
*
δ

false if v 6= nc() (δisnc)

isnc(nc()) ε
*
δ

true (δisnc)

Fig. 1. δ-rules for some primitives operators

Definition of mini-BSML Reasoning on the complete definition of a functional and
parallel language such as BSML, would have been complex and tedious. In order to



mkpar(fun x! e)
ε
*
δg

he[x 0]; : : : ;e[x (p�1)]i (δmkpar)

apply(hfun x! e0; : : : ; fun x! ep�1i;

hv0; : : : ;vp�1i)
ε
*
δg

he0[x v0]; : : : ;ep�1[x vp�1]i (δapply)

if h: : : ;

n
z}|{

true; : : :i at vg then eg1 else eg2
ε
*
δ

eg1 if vg = n (δi f atT )

if h: : : ;

n
z}|{

false; : : :i at vg then eg1 else eg2
ε
*
δ

eg2 if vg = n (δi f atF )

put(hfun dst! e0; : : : ; fun dst! ep�1i)
ε
*
δg

he00; : : : ;e
0

p�1i (δput)

where 8i e0j = let vi
0 = e0[dst i] in : : : let vi

p�1 = ep�1[dst i] in fi

where 8i8 j vi
j 62 F (e j)

and where fi = fun x! if x = 0 then vi
0 else : : : if x = (p�1) then vi

p�1 else nc()

Fig. 2. δ-rules for some parallel operators

e ::= x variable j c constant
j op primitive operation j fun x! e function abstraction
j (e e) application j let x = e in e local binding
j (e;e) pair j if e then e else e conditional
j if e at e then e else e global conditional

Fig. 3. mini-Bsml syntax

Local values: Global values:

v ::= fun x ! e functional value
j c constant
j op primitive
j (v;v) pair

vg ::= fun x ! eg functional value
j c constant
j op primitive
j (vg;vg) pair
j hv; : : : ;vi p-wide parallel vector

Fig. 4. Values



simplify the presentation and to ease the formal reasoning, this section introduces a
core language. It is an attempt to trade between integrating the principal features of
functional and BSP language, and being simple. The expressions of mini-BSML, writ-
ten e possibly with a prime or subscript, have the abstract syntax given in Figure 3. In
this grammar, x ranges over a countable set of identifiers. The form (e e 0) stands for the
application of a function or an operator e, to an argument e 0. The form fun x! e is the
so-called and well-known lambda-abstraction that defines the first-class function whose
parameter is x and whose result is the value of e. Constants c are the integers 1, 2, the
booleans and we assume having a unique value () that have the type unit.

The set of primitive operations op contains arithmetic operations, fix-point operator
fix, test function isnc of the nc constructor (which plays the role of the None constructor
in Objective Caml) and our parallel operations: mkpar, apply, put and ifat.

Before typing these expressions, we present the dynamic semantics of the language,
i.e., how the expressions of mini-BSML are computed to values. There is one seman-
tics per value of p, the number of processes of the parallel machine. In the following,
8i means 8i2 f0; : : : ; p�1g. There is two kinds of values: local and global values (Fig-
ure 4). eg are expressions extended with parallel vectors of expressions : he; : : : ;ei. We
noted ṽ (resp. ẽ) for a local or global value (resp. expressions or extended expressions).

Small-step semantics The dynamic semantics is defined by an evaluation mechanism
that relates expressions to values. To express this relation, we use a a small-step se-
mantics. It consists of a predicate between extended expressions and another extended
expression defined by a set of axioms and rules called steps. The small-step semantics
describes all the steps of the calculus from an extended expression to a global value and
has the following form:

eg * e0g for one step
eg0 * eg1 * ::: * vg for all the steps of the calculus

We note
�
*, for the transitive closure of * and note eg0

�
* vg for eg0 * eg1 * :::* vg.

To define the relation, *, we begin with some axioms for two relations, ε
* and ε

*
1

, of

the head reduction:

(fun x! e) v
ε
* e[x v]

(fun x! eg) vg
ε
*
1

eg[x vg]

(let x = v in e)
ε
* e[x v]

(let x = vg in eg)
ε
*
1

eg[x vg]

We write e[x v] (resp. eg[x vg]) the expression by substituting all the free oc-
currences of x in e by v (resp. extended expression). For the primitive operators we have
some axioms, the δ-rules, noted ε

*
δ

(Figure 1 for global and local values) and in the same
manner we noted ε

*
δg

for the δ-rules of the parallel operators (Figure 2).

We define two kinds of head reductions:

Local reduction:
ε
*

l
=

ε
* [

ε
*
δ

Global reduction:
ε
*
g
=

ε
*
1

[
ε
*
δ
[

ε
*
δg



It is easy to see that we cannot always make a head reduction. We have to reduce in
depth in the extended sub-expression. To define this deep reduction, we use the follow-
ing inference rules:

e
ε
*

l
e0

Γl(e)* Γl(e0)

eg
ε
*
g

e0g

Γ(eg)* Γ(e0g)

In this rule, Γ and Γl are evaluation contexts, i.e., an expression with a hole and has the
abstract syntax given in figure 5. With the evaluation context Γ l , we can remark that the
head reduction is always in a component of a parallel vector (and not for Γ), i.e, a local
evaluation. Thus our two kinds of contexts exclude each other by construction.

Γ ::= [] head evaluation
j (Γ ẽ) right application evaluation
j (ṽ Γ) left application evaluation
j (Γ; ẽ) left pair evaluation
j (ṽ;Γ) right pair evaluation
j let x = Γ in ẽ let evaluation
j if Γ then ẽ1 else ẽ2 conditional
j if Γ at eg1 then eg2 else eg3 global conditional
j if vg at Γ then eg2 else eg3 global conditional

Γl ::= (Γl eg)
j (vg Γl)
j (Γl ;eg)
j (vg;Γl)
j let x = Γl in eg

j if Γ then eg1 else eg2

j if Γ at eg1 then eg2 else eg3

j if vg at Γ then eg2 else eg3

j hΓ;e1; : : : ;ep�1i parallel vector, first component
...

j he0; : : : ;

i
z}|{

Γ ;ei+1; : : : ;ep�1i ith component
...
j he0; : : : ;ep�2;Γi last component

Fig. 5. Evaluation contexts



4 A Polymorphic Type System

Type algebra We begin by defining the term algebra for the basic kinds of semantic
objects: the simple types. Simple types are defined by the following grammar:

τ ::= κ base type (bool, int, unit etc.)
j α type variable
j τ1! τ2 type of function from τ1 to τ2

j τ1 � τ2 type for pair
j (τ par) parallel vector type

We want to distinguish between three subsets of simple types. The set of local types
L, which represent usual Objective Caml types, the variable types V for polymorphic
types and global types G, for parallel objects. The local types (written τ̇) are:

τ̇ ::= κ j τ̇1! τ̇2 j τ̆! τ̇ j τ̇1 � τ̇2

the variable types are (written τ̆):

τ̆ ::= α j τ̇1! τ̆2 j τ̆1! τ̆2 j τ̆1 � τ̆2 j τ̆1 � τ̇2 j τ̇1 � τ̆2

and the global types (written τ̄) are:

τ̄ ::= (τ̆ par) j (τ̇ par) j τ̆1! τ̄2 j τ̇1! τ̄2 j τ̄1! τ̄2

j τ̄1 � τ̄2 j τ̆1 � τ̄2 j τ̄1 � τ̆2 j τ̇1 � τ̄2 j τ̄1 � τ̇2

Of course, we have L\G = /0 and V \G = /0. But, it is easy to see that not every
instantiations from a variable type are in one of these kinds of types. Take for example,
the simple type (α par)! int or the simple type (α par) and the instantiation α =
(int par): it leads to a nesting of parallel vectors.

To remedy this problem, we will use constraints to say which variables are in L or
not. For a polymorphic type system, with this kind of constraints, we introduce a type
scheme with constraints to generically represent the different types of an expression:

σ ::= 8α1:::αn:[τ=C]

Where τ is a simple type and C is a constraint of classical propositional calculus given
by the following grammar:

C ::= True true constant constraints
j False false constant
j L(α) locality of variable of type
j C1^C2 conjonction of two constraints
j C1)C2 implication of two constraints

When the set of variables is empty, we simply write [τ=C] and do not write the con-
straints when they are equal to True. We suppose that we work modulo these following
equations that are natural for the ^ operators: True ^ C = C, C ^ C = C and the
commutativity of the ^ operator.



For a simple type τ, L(τ) says that the simple type is in L and we uses the following
inductive rules to not have the locality of a type but of its variables:

L(α) = True if α 2 κ L(τ par) = False
L(τ1! τ2) = L(τ1)^L(τ2) L(τ1 � τ2) = L(τ1)^L(τ2)

In the type system and for the substitution of a type scheme we will use rules to con-
struct constraints from a simple type called basic constraints. We note Cτ for the basic
constraints from the simple type τ and we use the following inductive rules:

Cτ = True if τ atomic C(τ1!τ2) = Cτ1 ^Cτ2 ^L(τ2)) L(τ1)
C(τ par) = L(τ)^Cτ C(τ1�τ2) = Cτ1 ^Cτ2

In our type system, we will use basic constraints and constraints associated to sub-
expressions that are needed in cases similar to example2.

The set of free variable of a type scheme is defined by:

F (8α1 : : :αn:[τ=C ]) = (F (τ)[F (C))nfα1; : : : ;αng

where the free variables of the type and the constraints are defined by trivial structural
induction. We note Dom for the domain of a substitution (i.e. a finite application of
variables of type to simple types). With these definitions we can define the substitution
on a type scheme:

Definition 1 The substitution on a type scheme is defined by:

ϕ(8α1 : : :αn:[τ=C]) = 8α1 : : :αn:[ϕ(τ)=ϕ(C)
V

βi2Dom(ϕ)\F ([τ=C])

Cϕ(βi)]

if α1 : : :αn are out of reach of ϕ.

We say that a variable α is out of reach of a substitution ϕ if: ϕ(α) = α, i.e ϕ don’t
modify α (or α is not in the domain of ϕ) and if α is not free in [τ=C], then α is not free
in ϕ([τ=C]), i.e, ϕ do not introduce α in its result. The condition that α 1 : : :αn are out of
reach of ϕ can always be validated by renaming first α1 : : :αn with fresh variables (we
suppose that we have an infinite set of variables). The substitution on the simple type
and of the constraints are defined by trivial structural induction.

Instantiation and Generalization A type scheme can be seen like the set of types
given by instantiation of the quantifier variables. We introduce the notion of instance of
a type scheme with constraints.

Definition 2 We note [τ=C]� 8α1:::αn:[τ0=C0] if and only if, there exists a substitution
ϕ of domain α1; : : : ;αn where [τ=C] = ϕ([τ0=C0]).

We write E for an environment which associates type schemes to free variables of
an expression. It is an application from free variables (identifiers) of expressions to
type scheme. We note Dom(E) = fx1; : : : ;xng for its domain, i.e the set of variables



TC(i) = int i = 0;1; : : :
TC(b) = bool b = true; false
TC(()) = unit
TC(+) = (int� int)! int
TC(nc) = 8α:unit! α

TC(fix) = 8α:(α! α)! α
TC(fst) = 8αβ:[(α�β)! α=L(α)) L(β)]
TC(snd) = 8αβ:[(α�β)! β=L(β)) L(α)]
TC(mkpar) = 8α:[(int! α)! (α par)=L(α)]
TC(isnc) = 8α:[α! bool=L(α)]

TC(apply) = 8αβ:[((α! β) par � (α par))! (β par)=L(α)^L(β)]
TC(put) = 8α:[(int! α) par! (int! α) par=L(α)]

Fig. 6. Definition of TC

associated. We assume that all the identifiers are distinct. The empty mapping is written
/0 and E(x) for the type scheme associated with x in E. The substitution ϕ on E is a point
to point substitution on the domain of E. The set of free variables is naturally defined
on the free variables on all the type scheme associated in the domain of E.

Finally, we write E + fx : σg for the extension of E to the mapping of x to σ. If,
before this operation, we have x 2 Dom(E), we can replace the range by the new type
scheme for x. To continue with the introduction of the type system, we define how to
generalize a type scheme. Yet, type schemes have universal quantified variables, but not
all the variables of a type scheme can.

Definition 3 Given an environment E, a type scheme [τ=C] without universal quantifi-
cation, we define an operator Gen to introduce universal quantification: Gen([τ=C];E)=
8α1:::αn:[τ=C] where fα1; :::;αng= F (τ)nF (E)

With this definition, we have introduced polymorphism. The universal quantifica-
tion gives the choice for the system to take the good type from a type scheme.

Inductive rules We note TC (Figure 6) the function which associates a type scheme
to the constants and to the primitive operations.

We formulate type inference by a deductive proof system that assigns a type to an
expression of the language. The context in which an expression is associated with a type
is represented by an environment which maps type scheme to identifiers. Deductions
produce conclusions of the form E ` e : [τ=C] which are called typing judgments, they
could be read as: ”in the type environment E, the expression e has the type [τ=C]”. The
static semantics manipulates type schemes by using the mechanism of generalization
and instantiation specified in the previous sections. Now the inductive rules of the type
system are given in the Figure 7.

In all the inductive rules, if a constraint C is such that Solve(C) = False then the
inductive rule cannot be applied and then the expression is not well typed. To Solve the
constraints we use the classical boolean reduct rules of propositional calculus and the
rules to transform the locality of type to constraints. Our constraints are a sub part of
the propositional calculus, so Solve is a decidable function.

Like traditional static type systems, the case (Op), (Const) and (Var) used the def-
inition of an instance of a type scheme. The rule (Fun), introduce a new type scheme
on the environment with the basic constraints from the simple type for carrying of well



[τ=C]� E(x)
E ` x : [τ=C]

(Var)
[τ=C]� TC(c)
E ` c : [τ=C]

(Const)
[τ=C]� TC(op)
E ` op : [τ=C]

(Op)

E +fx : [τ1=Cτ1 ]g ` e : [τ2=C2]

E ` (fun x! e) : [τ1! τ2=C(τ1!τ2)^C2]
(Fun)

E ` e1 : [τ0! τ=C1] E ` e2 : [τ0=C2]

E ` (e1 e2) : [τ=C1^C2]
(App)

E ` e1 : [τ1=C1] E +fx : Gen([τ1=C1];E)g ` e2 : [τ2=C2]

E ` let x = e1 in e2 : [τ2=C1^C2^L(τ2)) L(τ1)]
(Let)

E ` e1 : [τ1=C1] E ` e2 : [τ2=C2]

E ` (e1;e2) : [τ1 � τ2=C1^C2]
(Pair)

E ` e1 : [bool=Ce1 ] E ` e2 : [τ=Ce2 ] E ` e3 : [τ=Ce3 ]

E ` if e1 then e2 else e3 : [τ=Ce1 ^Ce2 ^Ce3 ]
(Ifthenelse)

E ` e1 : [bool par=Ce1 ] E ` e2 : [int=Ce2 ] E ` e3 : [τ=Ce3 ] E ` e4 : [τ=Ce4 ]

E ` if e1 at e2 then e3 else e4 : [τ=Ce1 ^Ce2 ^Ce3 ^Ce4 ^ (L(τ)) False)]
(Ifat)

Fig. 7. The inductive rules

parameters. In the rules (App), (Pair) and (Let) we make the conjunction of the con-
straints to known if the two sub-cases are correct each other. Moreover, in (Let), we
introduce the fact that L(τ2)) L(τ1) because an expression like let x = e1 in e2 can
be seen like (fun x! e2) e1. So we have to protect our type system against expression
from global values to local values like in example 2. The rule (i f thenelse) and (i f at)
make also the conjunction of the constraints. The if then else construction could return
global or usual value. But the if at is a synchronous construction which needs global
values so we add the fact that (L(τ)) False) to not allow a return usual value (i.e. τ in
L).

The basic constraints are important in our type system but are not suitable. For the
following example, a parallel identity:

fun x -> if (mkpar (fun i -> true) at 0 then x else x

the basic constraints are not sufficient. Indeed, the simple type given by Objective Caml
is α! α and the basic constraints (L(α)) L(α)) are always solved to True. But it is
easy to see that the variable x (of type α) could not be a usual value. Our type system,
with constraints from the sub-expression (here ifat) would give the type scheme: [α!
α=L(α)) False] (i.e, α could not be a usual value and the instantiation are in G).

Afterwards, we need to know when a constraint is Solved to True, i.e. it is always
a valid constraint. It will be important, notably for the correction of the type system:

Definition 4 We write ϕ j=C, if the substitution ϕ on the free variables of C is such that
F (ϕ(C)) = /0 and Solve(ϕ(C)) = True.

We also write φC = fϕ j ϕ j= Cg for the set of all the substitutions that have these
properties.



Safety To ensure safety, the type system has been proved correct with respect to the
small-step semantics. We say that an extended expression eg is in normal form if and
only if eg 6*, i.e., there is no rule which could be applicate to eg.

Theorem 1 (Typing safety) If /0 ` e : [τ=C] and e
�
* e0g and e0g is in normal form, then

e0g is a value vg and there exists C0 such that 8ϕ 2 φC then ϕ j=C0 and /0 ` vg : [τ=C0].

Proof: see [1].
Why C0 and not C ? Because with our type system, the constraints of a typing

judgment for e contains constraints of the sub-expression of e. After evaluation, some
of this sub-expression could be reduced. Example: let f = (fun a! fun b! a) in 1
have the type [int=L(α)) L(β)]. This expression reduced to 1 has the type int. Thus
we have C0 is less constrained than C and we do not have problem with compositionality.

Examples For the example 2 given at the beginning of this text, the type scheme
given for this is (int par) and the type for pid is the usual int. So after a (Let) rule,
the constraints for this let binding construction are C = L(int) ) L(int par) with
Solve(C) = False. So the expression is not well-typed (Figure 8 gives a part of the
typing judgment).

: : :

fpid : intg `mkpar(fun i! i) : (int par)
int� int

fpid : intg ` pid : int
fpid : intg ` let this = mkpar(fun i! i) in pid) : ?

/0 ` (fun pid! let this = mkpar(fun i! i) in pid) : ?

Fig. 8. Typing judgment of a part of example 2

In the parallel and usual projection (see Figure 9), the expression is well-typed like
we want in the previous section. In Figure 10, we present the typing judgment of an-
other example, accepted by the type system of Objective Caml, but not by ours. For the
usual and parallel projection, the projection fst has the simple type (int � (int par))!
int. But, with our type scheme substitution, the constraints of this operator are : C =
L(int)) L(int par). Effectively, we have Solve(C) = False and the expression is re-
jected by our type system. In the typing judgments given in the figures, we noted : ?
when the type derivation is impossible for our type system.

: : :

/0 ` fst : (int � int par)! int : ?

: : :

/0 `: (mkpar (fun i! i)) : int par
int� int
` 1 : int

/0 ` (mkpar (fun i! i);1) : (int par � int)
/0 ` fst (mkpar (fun i! i);1) : int par

Fig. 9. Typing judgment of the third projection example



: : :

/0 ` fst : (int � int par)! int : ?

int� int
` 1 : int

: : :

/0 `: (mkpar (fun i! i)) : int par
/0 ` (1;mkpar (fun i! i)) : (int � int par)

/0 ` fst (1;mkpar (fun i! i)) : ?

Fig. 10. Typing judgment of the fourth projection example

5 Related Works

In previous work on Caml Flight [3], another parallel ML, the global parallel control
structure was prevented dynamically from nesting. A static analysis [16] have been
designed but for some kinds of nesting only and in Caml Flight, the parallelism is a side
effect while is is purely functional in BSML.

The libraries close to our framework based either on the functional language Haskell
[8] or on the object-oriented language Python [4] propose flat operations similar to ours.
In the latter, the programmer is responsible for the non nesting of parallel vectors. In
the former, the nesting is prohibited by the use of monads. But the distinction between
global and local expressions is syntactic thus less general than our framework. For ex-
ample, the programmer need to write three version of fst. Furthermore, Haskell is a
lazy language: it is less efficient and the cost prevision is difficult [12].

A general framework for type inference with constrained type called HM(X ) [11]
also exists and could be used for a type system with only basic constraints. We do
not used this system for three reasons: (1) this type system has been proved for λ-
calculus (and sequential languages whose types systems need constraints) and not for
our theoretical calculus, the BSλ-calculus with its two level structure (local and global);
(2) in the logical type system, the constraints depend of sub-expression are not present;
(3) in our type system, our abstraction could not be valid and generate constraints (not
in HM(X )). Nevertheless, the ideas (but not the framework itself) of HM(X ) could be
used for generalized our work for tuple, sum types and imperative features.

6 Conclusions and Future Work

The Bulk Synchronous Parallel ML allows direct mode Bulk Synchronous Parallel
(BSP) programming. To preserve a compositional cost model derived form the BSP
cost model, the nesting of parallel vectors is forbidden. The type system presented in
this paper allows a static avoidance of nesting. Thus the pure functional subset of BSML
is safe. We have also designed an algorithm for type inference and implemented it. It
can be used in conjunction with the BSMLlib programming library. The extension of the
type system to tuples and sum types have been investigated but not yet proved correct
w.r.t. the dynamic semantics nor included in the type inference algorithm.

A further work will concern imperative features. Dynamic semantics of the inter-
action of imperative features with parallel operations have been designed. To ensure
safety, communications may be needed in case of affectation or references may con-
tain additional information used dynamically to insure that dereferencing of references



pointing to local value will give the same value on all processes. We are currently work-
ing on the typing of effects to avoid this problem statically.

Acknowledgments This work is supported by the ACI Grid program from the French
Ministry of Research, under the project CARAML (www.caraml.org).

References

1. Frédéric Gava. A Polymorphic Type System for BSML. Technical Report 2002-12, Univer-
sity of Paris Val-de-Marne, LACL, 2002.

2. A. V. Gerbessiotis and L. G. Valiant. Direct Bulk-Synchronous Parallel Algorithms. Journal
of Parallel and Distributed Computing, 22:251–267, 1994.

3. G. Hains and C. Foisy. The Data-Parallel Categorical Abstract Machine. In A. Bode,
M. Reeve, and G. Wolf, editors, PARLE’93, number 694 in LNCS, pages 56–67. Springer,
1993.

4. K. Hinsen. Parallel Programming with BSP in Python. Technical report, Centre de Bio-
physique Moléculaire, 2000.

5. F. Loulergue. Distributed Evaluation of Functional BSP Programs. Parallel Processing
Letters, (4):423–437, 2001.

6. F. Loulergue. Implementation of a Functional BSP Programming Library. In 14th Iasted
PDCS Conference, pages 452–457. ACTA Press, 2002.

7. F. Loulergue, G. Hains, and C. Foisy. A Calculus of Functional BSP Programs. Science of
Computer Programming, 37(1-3):253–277, 2000.

8. Q. Miller. BSP in a Lazy Functional Context. In Trends in Functional Programming, vol-
ume 3. Intellect Books, may 2002.

9. R. Milner and al. The Definition of Standard ML. MIT Press, 1990.
10. Robin Milner. A theory of type polymorphism in programming. Journal of Computer and

System Sciences, 17(3):348–375, December 1978.
11. M. Odersky, M. Sulzmann, and M. Wehr. Type Inference with Constrained Types. Theory

and Practice of Object Systems, 5(1):35–55, 1999.
12. C. Paraja, R. Pena, F. Rubio, and C. Segura. A functional framework for the implementa-

tion of genetic algorithms: Comparing Haskell and Standard ML. In Trends in Functional
Programming, volume 2. Intellect Books, 2001.

13. D. Rémy. Using, Understanding, and Unravellling the OCaml Language. In G. Barthe,
P. Dyjber, L. Pinto, and J. Saraiva, editors, Applied Semantics, number 2395 in LNCS, pages
413–536. Springer, 2002.

14. D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about BSP.
Scientific Programming, 6(3), 1997.

15. M. Snir and W. Gropp. MPI the Complete Reference. MIT Press, 1998.
16. J. Vachon. Une analyse statique pour le contrôle des effets de bords en Caml-Flight beta. In

C. Queinnec et al., editors, JFLA, INRIA, Janvier 1995.
17. Leslie G Valiant. A bridging model for parallel computation. Communications of the ACM,

33(8):103, August 1990.


