
cSPRINGER VERLAG – Lecture Notes in Computer Science

A Parallel Virtual Machine for
Bulk Synchronous Parallel ML

Frédéric Gava and Frédéric Loulergue

Laboratory of Algorithms, Complexity and Logic
University Paris Val-de-Marne

61, avenue du général de Gaulle – 94010 Créteil cedex – France
fgava,loulergueg@univ-paris12.fr

Abstract. We have designed a functional data-parallel language called BSML
for programming bulk-synchronous parallel (BSP) algorithms. The execution time
can be estimated and dead-locks and indeterminism are avoided. The BSML-
lib library has been implemented for the Objective Caml language. But there is
currently no full implementation of such a language and an abstract machine is
needed to validate such an implementation. Our approach is based on a bytecode
compilation to a parallel abstract machine performing exchange of data and syn-
chronous requests derived from the ZAM, the efficient abstract machine of the
Objective Caml language.

1 Introduction

Bulk Synchronous Parallel ML or BSML is an extension of ML for programming
direct-mode parallel Bulk Synchronous Parallel algorithms as functional programs.
Bulk-Synchronous Parallel (BSP) computing is a parallel programming model intro-
duced by Valiant [18] to offer a high degree of abstraction like PRAM models and
yet allow portable and predictable performance on a wide variety of architectures. A
BSP algorithm is said to be in direct mode when its physical process structure is made
explicit. Such algorithms offer predictable and scalable performances and BSML ex-
presses them with a small set of primitives taken from the confluent BSλ calculus [11]: a
constructor of parallel vectors, asynchronous parallel function application, synchronous
global communications and a synchronous global conditional.

Our BSMLlib library implements the BSML primitives using Objective Caml [9]
and MPI [17]. It is efficient [10] and its performance follows curves predicted by the
BSP cost model (the cost model estimates parallel execution times).

This library is used as the basis for the CARAML project, which aims to use Ob-
jective Caml for Grid computing with, for example, applications to parallel databases
and molecular simulation. In such a context, security is an important issue, but in or-
der to obtain security, safety must be first achieved. An abstract machine is used for
the implementation of Caml and is particular easy to prove correct w.r.t. the dynamic
semantics [5]. In order to have both simple implementation and cost model that follows
the BSP model, nesting of parallel vectors is not allowed. BSMLlib being a library, the

programmer is responsible for this absence of nesting. This breaks the safety of our
environment. A polymorphic type system and a type inference has been designed and
proved correct w.r.t. a small-steps semantics.

A parallel abstract machine [13] for the execution of BSML programs has been de-
signed and proved correct w.r.t. the BSλ-calculus [11], using an intermediate semantics.
Another abstract machine [12] has been designed but those machines are not adapted
for grid computing and security because the compilation schemes need the static num-
ber of processes (this is not possible for Grid computing) and some instructions are not
realistic for real code and a real implementation. The novelty of this paper is the pre-
sentation of an abstract machine without this drawbacks. This machine is an extension
of the Zinc Abstract Machine [7] (ZAM) which is the virtual machine used in the im-
plementations of the Objective Caml [9] and Caml-light languages and which is very
efficient.

We first present the BSP model and give an informal presentation of BSML through
the BSMLlib programming library (section 2). Then we present the ZAM (section 3), we
extend it to a bulk synchronous parallel abstract machine and we define the compilation
of BSML to this machine (section 4).

2 Functional Bulk Synchronous Parallelism

Bulk Synchronous Parallelism The Bulk Synchronous Parallel (BSP) model [18]
describes: an abstract parallel computer, a model of execution and a cost model.

A BSP computer has three components: a set of processor-memory pairs, a com-
munication network allowing inter processor delivery of messages and a global syn-
chronization unit which executes collective requests for a synchronization barrier. The
performance of the BSP computer is characterized by three parameters (often expressed
as multiples of the local processing speed): the number of processor-memory pairs p,
the time l required for a global synchronization and the time g for collectively deliver-
ing a 1-relation (communication phase where every processor receives/sends one word
at most).

A BSP program is executed as a sequence of super-steps, each one divided into three
successive and logically disjoint phases (at most): (a) each processor uses its local data
(only) to perform sequential computations and to request data transfers to/from other
nodes, (b) the network delivers the requested data transfers, (c) a global synchronization
barrier occurs, making the transferred data available for the next super-step.

This structured parallelism allows accurate performance prediction through a cost
model, which motivates the BSP model. Nevertheless we will not present it here for the
sake of conciseness, but we refer to [16].

The BSMLlib library There is currently no implementation of a full Bulk Synchronous
Parallel ML language but rather a partial implementation as a library for Objective
Caml. The so-called BSMLlib library is based on the following elements. It gives access
to the BSP parameters of the underling architecture. In particular, it offers the function
bsp p:unit->int such that the value of bsp p() is p, the static number of processes
of the parallel machine. This value does not change during execution.

There is also an abstract polymorphic type ’a par which represents the type of p-
wide parallel vectors of objects of type ’a, one per process. The nesting of par types
is prohibited. A type system enforces this restriction [4]. The BSML parallel constructs
operates on parallel vectors which are created by:

mkpar: (int -> ’a) -> ’a par

so that (mkpar f) stores (f i) on process i for i between 0 and (p� 1). We usually
write f as fun pid->e to show that the expression e may be different on each processor.
This expression e is said to be local. The expression (mkpar f) is a parallel object and
it is said to be global.

A BSP algorithm is expressed as a combination of asynchronous local computations
(first phase of a super-step) and phases of global communication (second phase of a
super-step) with global synchronization (third phase of a super-step). Asynchronous
phases are programmed with mkpar and with:

apply: (’a -> ’b) par -> ’a par -> ’b par

apply (mkpar f) (mkpar e) stores (f i) (e i) on process i. Neither the imple-
mentation of BSMLlib, nor its semantics prescribe a synchronization barrier between
two successive uses of apply.

The distinction between a communication request and its realization at the barrier
is ignored. put expresses communication and synchronization phases:

put:(int->’a option) par -> (int->’a option) par

where ’a option is defined by: type ’a option = None | Some of ’a.
Consider the expression: put(mkpar(fun i->fsi)) (�)

To send a value v from process j to process i, the function fs j at process j must
be such that (fs j i) evaluates to Some v. To send no value from process j to process
i, (fs j i) must evaluate to None.

Expression (�) evaluates to a parallel vector containing a function fd i of delivered
messages on every process. At process i, (fd i j) evaluates to None if process j sent no
message to process i or evaluates to Some v if process j sent the value v to the process
i.

The full language would also contain a synchronous conditional operation:

ifat: (bool par) * int * ’a * ’a -> ’a

such that ifat (v,i,v1,v2) will evaluate to v1 or v2 depending on the value of v at
process i. But Objective Caml is an eager language and this synchronous conditional
operation can not be defined as a function. That is why the core BSMLlib contains
the function: at:bool par -> int -> bool to be used only in the construction: if
(at vec pid) then... else... where (vec:bool par) and (pid:int). Global
conditional is necessary of express algorithms like:

Repeat Parallel Iteration Until Max of local errors < epsilon

This framework is a good tradeoff for parallel programming because: we defined a
confluent calculus so we designed a purely functional parallel language from it. Without
side-effects, programs are easier to prove, and to re-use. An eager language allows good
performances ; this calculus is based on BSP operations, so programs are easy to port,
their costs can be predicted and are also portable because they are parametrized by the
BSP parameters of the target architecture.

3 The Zinc Abstract Machine

Abstract machines for the λ-calculus To calculate the values of the λ-calculus, a lot of
abstract machines have been designed. The first was the SECD machine [6] which was
used for the first implementation of the LISP language. It uses environment (a list of
values) for the closure and four stacks for the calculus. But it is an old and not optimized
machine. In the same spirit, [2] presented the functional abstract machine (FAM). The
FAM optimizes access to the environment by using arrays (constant cost access). The
G-machine was designed for functional languages with a call by name strategy [15].
But we have an eager language so those techniques are not suitable for us. An interesting
machines is the CAM, categorical abstract machine, which was introduced and used
by Curien to implement the CAML language [3] (a variant of Standard ML [14]). A
extension of this machine for BSP computing has been done by [12].

[7] introduced a powerful abstract machine, the ZAM (Zinc abstract machine, Zinc
= Zinc Is Not CAM) which underlies the bytecode interpreter of Objective Caml (and
Caml-light). This machine was derived from the Krivine’s abstract machine and from
the λ-calculus with explicit substitution [5]. This machine is interesting because its
instructions could be “easily” translated to efficient bytecode (with some optimizations
like “threaded code”) and also to native code [8].

In the terminology of Peyton-Jones [15], the ZAM is an environment and closure
based abstract machine following the push-enter model (unlike the CAM and the SECD
which used a eval-apply models) and a call-by-value evaluation strategy i.e. arguments
are evaluated and pushed before the function and then according to the number of argu-
ments, return a closure or the evaluation of the code of the function with its arguments.
This method optimizes allocation of the arguments and the evaluation of our expres-
sions.

The ZAM The machine state has four components: (1) a code pointer c representing
the code being executed as a sequence of instruction; (2) an environment e: a sequence
of machine value v1 : : :vn associating the value vi to the variable having de Bruijn in-
dices i (they transform an identifier to the number of λ-abstraction which are included
between the identifier and the λ-abstraction that binds it; this method was used to solve
the problem of binding variables); (3) a stack s (a sequence of machine values and
return contexts) holding function arguments, intermediate results, and function return
contexts; (4) an integer n counting the number of function arguments available on the
stack.

The manipulated machine-level values v are pointer to heap blocks written [T:v 1 : : :vn]
where T is a tag attached to the block (an integer) and v 1 : : :vn are the values contained

in the block. We use tags 1 : : :n to encode the constructorC of inductive types (supposed
to be declared) and a distinct tag Tλ for function closures. The values of the BSML lan-
guage are represented by: (a) a primitive constant or (b) a heap blocks, a function value,
by a closure [Tλ:c,e] of the compiled code c for the function body, and an environment e
associating to the variables free in the body or (c) an inductive type C(�!v), by the heap
block [#C,(�!v)] where �!v are the representations of the values of the tuple �!v and #C is
the tag number associated with the constructor C.
The transition of the abstract machine and the halting configurations are show in Fig-
ure 1 (two lines for before and after the execution of the instruction).

4 The BSP-Zinc Abstract Machine

Abstract machines for the BSλ-calculus For BSλ-calculus, [13] modified the SECD.
But this new machine still has the same problems as the original one: slowness, dif-
ficulty to have real instruction machine and optimize it, notably for the exchange of
closures. To remedy to these problems, [12] introduced a modification of the CAM for
BSλ-calculus. But this machine has two problems: the number of processors of the ma-
chine which will execute the program has to be known at the compilation phase (it is not
at all adapted for eases portability, in Grid computing for example) and the instruction
for the exchange of values is difficult to translate to real code because this instruction
adds instructions to the code during execution. The first problem is specific to [12] but
the second problem is shared with the BSP SECD machine. We give here an abstract
machine which is an extension of the ZAM, suitable for BSP computing and which has
not those drawbacks. Furthermore, this abstract machine will be the basis of a complete
implementation of the BSML language.

The BSP ZAM The BSP ZAM has two kinds of instructions: sequential and parallel
ones. Its corresponds to the two structures of the original calculus: BSλ-calculus [11].
The BSP ZAM is obtained by duplicating the sequential ZAM on each process. This
allows the machine to execute asynchronous computations phases of BSP super-steps.
To express the other phases of BSP super-steps we need another set of instructions:
synchronous ones. For the first phase of the BSP model (asynchronous computations),
we also need an instruction for the number of processes: Nprocs and in the spirit of
SMPD programming, the names of each process: Pid. The last instruction is needed
for the construction of the parallel vectors by giving the name of the process (i). Then,
to express the synchronization and communication phases of the BSP super-step, we
need to add two special instructions to the BSP ZAM: At and Send. They are the only
instructions which need BSP synchronization between the sequential ZAM on each
process. At (with a Branch instruction) is used for the global conditional. Send is an
instruction for the primitive synchronous put operator, used for the exchange of values
between the processes and here the ZAM machines. The instructions of the BSP ZAM
are given in Figure 2 for a p processors machine and only for the codes and the stacks
(environment and number of arguments do not change).

Code Environment Stack Number of arguments
Access(i);c e s n
c e e(i).s n
Quote(i);c e s n
c e i.s n
Closure(c’);c e s n
c e [Tλ:c’,e].s n
Push(c’);c e s n
c e h c’,e,n i.s n
Apply(i) e [T:c’,e’].s n
c’ e’ s i
Grab;c e v.s n+1
c v.e s n
c0=Grab;c e hc’,e’,n’i.s 0
c’ e’ [Tλ:c0,e].s n’
Return e v.hc’,e’,n’ i.s 0
c’ e’ v.s n’
Return e [T:c’,e’].s n if n > 0
c’ e’ s n
Cons(m);c e v1: : : : :vm.s n
c e (v1; : : : ;vm).s n
Makeblock(T,m);c e v1: : : : :vm.s n
c e [T:v1 : : :vm].s n
Switch(c1; : : : ;cm) e [T:v1; : : : ;vp].s n if 1� T � m
cT vp: : : : :v1.e s 0
Branch(c1,c2) e true.s n
c1 e s n
Branch(c1,c2) e false.s n
c2 e s n
CloseR(c’);c e s n
c e v.s n where v=[Tλ:c’,v.e]
Add;c e n1.n2.s n
c e n.s n where n = n1 +n2

Equal;c e v1.v2.s n where v=true
c e v.s n if v1 = v2 false else
Proj(i,j);c e (v1; : : : ;vi; : : : ;v j).s e
c e vi.s e

and the halting configuration:

Code environment stack number of arguments result value
Return e v 0 v
c0=Grab;c e ε 0 [Tλ : c0,e]

Fig. 1. Sequential ZAM instructions

Codes Stacks
h At;c0, . . . , At;cp�1 i h n.t0.s0, . . . , n.tp�1.sp�1 i
h c0, . . . , cp�1 i h tn.s0, . . . ,tn.sp�1 i

h . . . , Nprocs;c, . . . i h . . . , s, . . . i
h . . . , c, . . . i h . . . , p.s, . . . i

h . . . ,

i
z }| {

Pid;c, . . . i h . . . ,

i
z}|{

s , . . . i

h . . . ,

i
z}|{

c , . . . i h . . . ,

i
z}|{

i.s , . . . i

h Send;c0, . . . , Send;cp�1 i h t0
0 :: t1

0 :: : : : :: t p�1
0 .s0, . . . , t0

p�1 :: : : : :: t p�1
p�1 .sp�1 i

h c0, . . . , cp�1 i h t0
0 :: t0

1 :: : : : :: t0
p�1.s0, . . . , t p�1

0 :: : : : :: t p�1
p�1).sp�1 i

and where i is the name of the process and p the number of processes.

Fig. 2. BSP ZAM instructions

Compilation of BSML In order to be concrete, we shall consider the problem of com-
piling our core language to the machine. The BSML language uses real identifiers and
here we used De Bruijn indices codings for these. An index of the variable is thus
needed. The compilation scheme for the ZAM is presented as a function [[e]] c, where
e is an expression and c an instruction sequence representing the continuation of e. It
returns an instruction sequence that evaluates e, leaves its value at the top of the stack,
and continues in sequence by executing the code c. We suppose that the expressions are
well-typed and the nested of parallel vectors is rejected by the type checker [4] of the
BSML language.

Sequential mini-BSML expressions A variable x is compiled to an Access instruction
carrying the de Bruijn index of the variable. The execution of Access looks up the i th

entry in the machine environment and pushes it on the stack. In the same spirit, constants
are trivially compiled to a Quote and Nprocs instruction. For the primitive operators
we use an extra-function Inst which gives the instruction of each operator; for example:
Inst(op) = Add or Equal where op = + or =.

A curried function compiles to a Closure instruction, which at run-time builds a
closure of its arguments with the current environment, and pushes the closure on the
stack. The arguments of Closure is the code for the body e of the function, preceded
by m Grab instructions and followed by a Return instruction. The code for a multiple
application e e1 : : :em first pushes a return frame containing the code to be executed
when the applied function returns, as well as the current environment and argument
count (instruction Push). Then, the arguments and the function are evaluated right-to-
left, and their values pushed on the stack. Finally the Apply instruction branches to the
code of the closure obtained by evaluating e setting the argument count to m.

The conditional is compiled with a Branch instruction, according to whether the
top of the stack is true or false, executed a code. For inductive types, the compilation
and execution of constructor applications is straightforward: the arguments of the con-
structor are evaluated, and the Makeblock instruction creates the representation of the
constructed terms, tagged with the constructor number. For the case statement, a return
frame to the continuation c is pushed first. The Switch instruction then discriminates
on the tag of the matched value, and branches to the code of corresponding cases arm,

after adding the fields of the matched value to the environment, thus binding the pattern
variables. The Return instruction at the end of the code for each arm then restores the
original environment and branches back to the continuation c. For recursive function,
we used a CloseR instruction to constructs a recursive closure. In the simplified presen-
tation given in this paper, this is a cyclic closure v = [Tλ : c;v:e] where the first slot of the
environment, corresponding to the recursive variable f in the source term, point back
to the closure itself (usual implementation uses the scheme described in [1] instead of
cyclic closures). Now we give the compilation of the sequential ZAM (Figure 3).

[[x]]c = Access(i);c where i is the De Burijn index
[[const]]c = Quote(const);c
[[nproc]]c = Nprocs;c
[[op]]c = Closure(Grab;Access(1); Inst(op);Return;);c

[[fun x1 : : :xm ! e]]c = Closure(

m times
z }| {

Grab; : : :Grab;[[e]];Return);c
[[e e1 : : :em]]c = Push(c); [[em]] : : : [[e1]]; [[e]];Apply(m);
[[C(e1; : : : ;em)]]c = [[em]]; : : : [[e1]];Makeblock(n;#C);c
[[(e1; : : : ;en)]]c = [[en]]; : : : [[e1]];Cons(n);c
[[let x = e1 in e2]]c = Push(c); [[e1]];Closure(Grab; [[e2]];Return);Apply(1);
[[if e1 then e2 else e3]]c = Push(c); [[e1]];Branch([[e2]];Return; ; [[e3]];Return);

[[let rec f x1 : : : xn = e1 in e2]]c = Push(c);CloseR(

n times
z }| {

Grab; : : : ;Grab; [[e1]];Retun);
Closure(Grab; [[e2]];Return);Apply(1);

[[case e of (Ci(
�!x1)! b1; : : :)]]c = Push(c); [[e]];Switch([[b1]];Return; ; : : :);

Fig. 3. Compilation of the sequential ZAM

Parallel operators For the primitive operations, we used what the semantics suggests:
the parallel operator mkpar is compiled to the application of the expression to the “pid”
(or name) of the processes and apply is simply the application because the first value is
supposed to be a closure (or recursive) from an abstraction or an operator:

[[mkpar]] = Closure(Grab;Push(Return;);Pid;Access(1);Apply(1););c
[[apply]]c = Closure(Grab;Grab;Push(Return;);

Access(1);Access(2);Apply(1););c

The global conditional is compiled like the traditional conditional but with another
argument and by adding the At instructions before the Branch to make the synchronous
and communication running of the BSP model:

[[if e1 at e2 then e3 else e4]]c = Push(c); [[e1]]; [[e2]];at;
Branch([[e3]];Return; ; [[e4]];Return;);

The compilation of the put operator is the only real difficulty. To compile the put
operator, a first way presented by [12] used a compiling scheme with a static number of

processes and two special instructions was added: one adds codes at the running time
to calculate all the values to send and a second exchanges those values and generated
a code to read them. Clearly, in a real implementation with real machine codes this is
not easy to generate a lot of machine codes essentially when the number of processes
is large. To remedy to this problem, we can remark that to calculate the values to send
and read them, we always do the same things. The trick is to generate ZAM codes that
calculate and read the values by iteration. To do this, we can add a special closure name
put function to iterate the calculus. We can write it in our functional language in an
extended syntax to directly have the code generated by our compiler:

fun f->let rec create n = if n=0 then [f n] else (f n)::(create (n-1))
in let construct = (fun g -> fun i -> fun value -> fun n ->

if n=i then value else (g n)) in
let rec read liste_v n = match liste_v with

[] -> fun x -> None (* case not process !!! *)
| hd::tl -> if n=0 then (fun pid -> if pid=0 then hd else None)

else (construct (read tl (n-1)) n hd)
in read (create (bsp_p()-1)) (bsp_p()-1));;

create recursively computes the value to send. read and construct build recursively
the code of the return of the put operator. To completely compile the put primitive
operator, the compiling function has to add manually the Send instructions in the code
generated from the put function between the end of the construction and the call of the
read function: [[put]]c = Insere Send([[put f unction]]c)

5 Conclusions and Future Work

The Bulk Synchronous Parallel ZINC Abstract Machine presented here provides a de-
tailed and portable model of parallel environments management for Bulk Synchronous
Parallel ML. It has two advantages with respect to the BSP-SECD machine and the
BSP-CAM of [12] : the number of processes of the parallel machine has not to been
known at compilation, thus improving the portability ; the communication operation
does not add instructions at execution, making the implementation both simpler and
more classic. The next phases of the project will be: (a) the proof of correctness of
this machine with respect to BSML semantics, (b) the parallel implementation of this
abstract machine. This BSP ZAM implementation will be the basis of a parallel pro-
gramming environment developed from the Caml-light language and environment. It
will include our type inference [4] and will thus provide a very safe parallel program-
ming environment.
Acknowledgments. This work is supported by the ACI Grid program from the French
Ministry of Research, under the project CARAML (www.caraml.org). The authors wish
to thank the anonymous referees for their comments.

References

1. A.W. Appel. Compiling with continuations. Cambridge University Press, 1992.

2. L. Cardelli. Compiling a functional language. In Conference Record of the 1984 ACM
Symposium on Lisp and Functional Programming, pages 208–217, Austin, Texas, August
1984. ACM.

3. G. Cousineau and G. Huet. The caml primer. Technical Report 122, INRIA, 1990.
4. F. Gava and F. Loulergue. Synthèse de types pour Bulk Synchronous Parallel ML. In

Journées Francophones des Langages Applicatifs (JFLA 2003), january 2003.
5. T. Hardin, L. Maranget, and L. Pagano. Functional runtime systems within the lambda-sigma

calculus. Journal of Functional Programming, 8(2):131–176, 1998.
6. P. J. Landin. The mechanical evaluation of expressions. The Computer Journal, 4(6):308–

320, 1964.
7. X. Leroy. The ZINC experiment: An economical implementation of the ML language. Rap-

port Technique 117, 1991.
8. X. Leroy. The caml special light system: modules and efficient compilation for caml. Tech-

nical Report 2721, INRIA, Novembre 1995.
9. Xavier Leroy. The Objective Caml System 3.06, 2002. web pages at www.ocaml.org.

10. F. Loulergue. Implementation of a Functional Bulk Synchronous Parallel Programming Li-
brary. In 14th IASTED International Conference on Parallel and Distributed Computing
Systems, pages 452–457. ACTA Press, 2002.

11. F. Loulergue, G. Hains, and C. Foisy. A Calculus of Functional BSP Programs. Science of
Computer Programming, 37(1-3):253–277, 2000.

12. A. Merlin and G. Hains. La Machine Abstraite Catégorique BSP. In Journées Francophones
des Langages Applicatifs. INRIA, 2002.

13. A. Merlin, G. Hains, and F. Loulergue. A SPMD Environment Machine for Functional BSP
Programs. In Proceedings of the Third Scottish Functional Programming Workshop, august
2001.

14. R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.
15. S. L. Peyton Jones. The Implementation of Functional Programming Languages. Prentice-

Hall, 1987.
16. D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about BSP.

Scientific Programming, 6(3), 1997.
17. M. Snir and W. Gropp. MPI the Complete Reference. MIT Press, 1998.
18. Leslie G Valiant. A bridging model for parallel computation. Communications of the ACM,

33(8):103, August 1990.

