
Future Generation Computer Systems xxx (2004) xxx–xxx

A static analysis for Bulk Synchronous Parallel ML
to avoid parallel nesting�

F. Gava∗, F. Loulergue

Laboratory of Algorithms, Complexity and Logic, University Paris Val de Marne, Complexity and Logic,
61, Avenue du G´enéral de Gaulle, 94010 Cr´eteil Cedex, France

Abstract

The BSMLlib library is a library for Bulk Synchronous Parallel (BSP) programming with the functional language Objective
Caml. It is based on an extension of theλ-calculus by parallel operations on a data structure named parallel vector, which is
given by intention. In order to have an execution that follows the BSP model, and to have a simple cost model, nesting of parallel
vectors is not allowed. The novelty of this paper is a type system which prevents such nesting. This system is correct w.r.t. the
dynamic semantics.
© 2004 Published by Elsevier B.V.

Keywords:Bulk Synchronous Parallelism; Functional programming; Polymorphic type system

1

e
m
c
B
a
o

S
g

l

nce
ses
en
f
ap-
d a
ry

i-
t
the

-
nvi-

L
cer-

0
d

. Introduction

Bulk Synchronous Parallel ML or BSML is an
xtension of the ML family of functional program-
ing languages for programming parallel Bulk Syn-

hronous Parallel algorithms as functional programs.
ulk-Synchronous Parallel (BSP) computing is a par-
llel programming model introduced by Valiant[7] to
ffer a high degree of abstraction like PRAM mod-

� This paper is a revised version of a paper presented at the
eventh International Conference on Parallel Computing Technolo-
ies (PaCT 2003).

∗ Corresponding author.
E-mail address:gava@univ-paris12.fr (F. Gava);

oulergue@univ-paris12.fr (F. Loulergue).

els and yet allow portable and predictable performa
on a wide variety of architectures. BSML expres
BSP algorithms with a small set of primitives tak
from theconfluentBSλ-calculus[3]: a constructor o
parallel vectors, asynchronous parallel function
plication, synchronous global communications an
synchronous global conditional. The BSMLlib libra
(http://bsmllib.free.fr) implements the BSML prim
tives using Objective Caml[2] and MPI. It is efficien
and its performance follows curves predicted by
BSP cost model.

Our goal is to provide acertifiedprogramming envi
ronment for bulk synchronous parallelism. This e
ronment will contain a byte-code compiler for BSM
and a library for the Coq Proof Assistant used to

167-739X/$ – see front matter © 2004 Published by Elsevier B.V.
oi:10.1016/j.future.2004.05.006

http://bsmllib.free.fr

2 F. Gava and F. Loulergue / Future Generation Computer Systems xxx (2004) xxx–xxx

tify BSML programs. One of the advantages of the
Objective Caml language (and more generally of the
ML family of languages) is itsstatic polymorphic type
inference. In order to have both simple implementation
and cost model that follows the BSP model, nesting of
parallel vectors is not allowed. BSMLlib being a li-
brary, the programmer is responsible for this absence
of nesting. This breaks thesafetyof our environment.

The novelty of this paper is a type system which
prevents such nesting. This system is correct w.r.t. the
dynamic semantics. We first present the BSP model,
give an informal presentation of BSML (Section 2),
explain in detail why nesting of parallel vectors must be
avoided (Section 3), give our static analysis (Section 4)
and conclude (Section 5).

2. Functional Bulk Synchronous Parallelism

A Bulk Synchronous Parallel[6] computer contains
a set of processor-memory pairs, a communication net-
work allowing inter-processor delivery of messages
and a global synchronization unit which executes col-
lective requests for a synchronization barrier. Its per-
formance is characterized by 3 parameters expressed
as multiples of the local processing speed: the number
of processor-memory pairsp, the timel required for a
global synchronization and the timeg for collectively
delivering a 1-relation (communication phase where
e . The
n
a

s es-
s ase
e form
s sfers
t work
d third
p king
t step.
T f
t ery
t

T

wherew(s)
i = local processing time on processori dur-

ing super-steps andh(s)
i = max{h(s)

i+, h
(s)
i−} whereh(s)

i+
(resp.h(s)

i−) is the number of words transmitted (resp.
received) by processori during super-steps. The execu-
tion time of a BSP program composed ofSsuper-steps
is thus

∑
s Time(s). In general this execution time is a

function ofpand of the size of datan, or of more com-
plex parameters like data skew and histogram sizes.

There is currently no implementation of a full Bulk
Synchronous Parallel ML language but rather a partial
implementation as a library for Objective Caml. The
so-called BSMLlib library is based on the following
elements. It gives access to the BSP parameters of the
underling architecture. In particular, it offers the func-
tion bsp p: unit → int such that the value ofbsp p()
is p, thestaticnumber of processes of the parallel ma-
chine. There is also an abstract polymorphic typeα par
which represents the type ofp-wide parallel vectors of
objects of typeα, one per process. The nesting ofpar
types is prohibited.

The BSML parallel constructs operate on parallel
vectors. Those parallel vectors are created by:mkpar :
(int → α) → α par so that (mkpar f) stores (f i) on
processi for i between 0 and (p− 1). We usually writef
as (fun pid → e) to show that the expressionemay be
different on each processor. This expressione is said to
be local. The expression (mkpar f) is a parallel object
and it is said to beglobal.

A BSP algorithm is expressed as a combination of
a lobal
c n-
c
w

a

a s
i s are
e

p

w
S

p

very processor receives/sends at most one word)
etwork can deliver anh-relation in timegh for any
rity h.

A BSP program is executed as a sequence ofsuper-
tepseach one divided into (at most) three succ
ive and logically disjoint phases. In the first ph
ach processor uses its local data (only) to per
equential computations and to request data tran
o/from other nodes. In the second phase the net
elivers the requested data transfers and in the
hase a global synchronization barrier occurs, ma

he transferred data available for the next super-
he execution time of a super-steps is thus the sum o

he maximal local processing time, of the data deliv
ime and of the global synchronization time:

ime(s) = max
i:processor

w
(s)
i + max

i:processor
h

(s)
i ∗ g+ l
synchronous local computations and phases of g
ommunication with global synchronization. Asy
hronous phases are programmed withmkpar and
ith:

pply: (α → β) par → αpar → β par

pply (mkpar f) (mkpar e) stores ((f i)(e i)) on proces
. The communication and synchronization phase
xpressed by:

ut: (int → α option)par → (int → α option)par

hereα option is defined by:type α option = None|
ome ofα.
Consider the expression:

ut(mkpar (fun i → fi)) (1)

F. Gava and F. Loulergue / Future Generation Computer Systems xxx (2004) xxx–xxx 3

To send a valuev from processj to processi, the func-
tionfj at processj must be such that (fj i) evaluates to
(Somev). To send no value from processj to processi,
(fj i) must evaluate to None. Expression (1) evaluates
to a parallel vector containing a functiongi of delivered
messages on every processi. At processi, (gi j) eval-
uates to None if processj sent no message to processi
or evaluates to (Somev) if processj sent the valuev to
the processi.

The full language would also contain a synchronous
conditional operation, omitted here for the sake of con-
ciseness.

3. Motivations

In this section, we present why we want to avoid
nesting of parallel vectors in our language. Let consider
the following BSML program:

let bcastn vec =
let tosend =mkpar (fun i v d→
if i = n thenSomev elseNone)in

let recv =put(apply tosend vec)in
apply (replicate noSome)

(apply recv (replicaten))

This program uses the following functions:

l
l

(rallel
v The
B

p

w on-
s

l

I -
p
t
t hat

processi holds value (f i). In the case of this example, it
means that process 0 should hold the value of (bcast 0
vec). BSML being based on the confluent calculus[3],
it is possible to evaluate (bcast 0 vec) sequentially. But
in this case the execution time will not follow the for-
mula (2). The cost of an expression will then depend on
its context. The cost model will no more be composi-
tional. We could also choose that process 0 broadcasts
the expression (bcast 0 vec) and that all processes eval-
uate it. In this case the execution time will follow the
formula (2). But the broadcast of the expression will
need communications and synchronization. This pre-
liminary broadcast is not needed if (bcast 0 vec) is not
under amkpar . Thus, we have additional costs that
make the cost model still non compositional. Further-
more, this solution would imply the use of a sched-
uler and would make the cost formulas very difficult to
write.

To avoid those problems, nesting of parallel vectors
is not allowed. The typing ML programs is well-known
[5] but is not suited for our language. Moreover, it is
not sufficient to detect nesting of abstract typeα par
such as the previous example. Consider the following
program:

let example2 =
mkpar (fun pid →
let this =mkpar (fun i → i) in pid)

Its type is (int par) but its evaluation will lead to
t
o g of
p ype.
O he
m
(
p For
e

f

h But
t on of
a h as
i ac-
t s in
t ler
b er
et replicatex =mkpar (fun pid→ x)
et noSome (Somex) = x

bcast 2 vec) broadcasts the component of the pa
ectorvecheld at process 2 to all other processes.
SP cost for a call to this program is:

+ (p− 1) × s× g + l (2)

heres is the size of the value held at process 2. C
ider now the expression:

et example1 =
mkpar (fun pid → bcast pid vec)

ts type is (τ par par) whereτ is the type of the com
onents of the parallel vectorvec. A first problem is

he meaning of this expression. InSection 2, we said
hat (mkpar f) evaluates to a parallel vector such t
he evaluation of the parallel vectorthis inside the
utmost parallel vector. Thus, we have a nestin
arallel vectors which cannot be seen in the t
ther problems arise with polymorphic values. T
ost simple example is a projection:let fst = fun
a, b) → a. Its type is of courseα× β → α. The
roblem is that some instantiations are incorrect.
xample:

st (1,mkpar (fun i → i))

as type int given by the Objective Caml system.
he evaluation of the expression needs the evaluati
parallel vector. Thus, we may be in a situation suc

n example2. One solution would be to have a synt
ic distinction between global and local variables (a
he BSλ-calculus). The type system would be simp
ut it would be very inconvenient for the programm

4 F. Gava and F. Loulergue / Future Generation Computer Systems xxx (2004) xxx–xxx

since she or he would have to write three different ver-
sions of thefst function (the fourth possible version is
incorrect). The nesting can be even more difficult to
detect:

let c1 = (1,mkpar (fun i → i)
and c2 = (2,put(mkpar (fun i d→ None)))in
mkpar (fun i →
if i < (bsp p()/2) then fst(c1()) elsefst(c2()))

The evaluation of this expression would imply the eval-
uation ofc1() on the first half of the network andc2()
on the second. Butput implies a synchronization bar-
rier and notmkpar so this will lead to mismatched
barriers and the behavior of the program will be unpre-
dictable. The goal of our type system is to reject such
expressions.

4. A Polymorphic Type System

We begin by defining the term algebra for the basic
kinds of semantic objects: the simple types. Simple
types are defined by the following grammar:

τ ::= κ | α | τ1 → τ2 | τ1 × τ2 | (τ par)

whereκ denotes basic types (int, unit, etc.),α vari-
able types,τ1 → τ2 types of functions,τ1 × τ2 types
o

sim-
p al
O
m .
T

τ

t

τ

a

τ

Of course, we haveL ∩G = ∅ andV ∩G = ∅. But,
it is easy to see that not every instantiations from a
variable type are in one of these kinds of types. Take
for example, the simple type (αpar)→ int or the simple
type (α par) and the instantiationα =int par: it leads
to a nesting of parallel vectors.

To remedy this problem, we will useconstraints
to say which variables are inL or not. For a poly-
morphic type system, with this kind of constraints,
we introduce atype schemewith constraints to gener-
ically represent the different types of an expression:
σ ::= ∀α1, . . . , αn.[τ/C], whereτ is a simple type and
C is a constraint of classical propositional calculus
given by the following grammar:

C ::= True | False | L(α) | C1 ∧ C2 | C1 ⇒ C2

When the set of variables is empty, we simply write
[τ/C] and do not write the constraints when they are
equal toTrue. We suppose that we work modulo some
usual equations (like associativity) about the∧ opera-
tor.

For a simple typeτ, L(τ) says that the simple type
is in L and we uses the following inductive rules to not
have the locality of a type but of its variables:

L(κ) = True
L(τ par) = False
L(τ1 → τ2) = L(τ1) ∧ L(τ2)

I ype
s rom
a
t e
t

I ints
a at are
n
t

f pairs and (τ par) types of parallel vectors.
We want to distinguish between three subsets of

le types. The set of local typesL, which represent usu
bjective Caml types, the variable typesV for poly-
orphic types and global typesG, for parallel objects
he local types (writteṅτ) are:

˙ ::= κ | τ̇1 → τ̇2 | τ̆ → τ̇ | τ̇1 ∗ τ̇2

he variable types are (written̆τ):

˘ ::= α | τ̇1 → τ̆2 | τ̆1 → τ̆2 | τ̆1 ∗ τ̆2 | τ̆1 ∗ τ̇2 | τ̇1 ∗ τ̆2

nd the global types (written̄τ) are:

¯ ::= (τ̆par) | (τ̇par) | τ̆1 → τ̄2 | τ̇1 → τ̄2 | τ̄1 → τ̄2

| τ̄1 ∗ τ̄2 | τ̆1 ∗ τ̄2 | τ̄1 ∗ τ̆2 | τ̇1 ∗ τ̄2 | τ̄1 ∗ τ̇2
L(τ1 ∗ τ2) = L(τ1) ∧ L(τ2)

n the type system and for the substitution of a t
cheme we will use rules to construct constraints f
simple type calledbasic constraints. We noteCτ for

he basic constraints from the simple typeτ and we us
he following inductive rules:

Cτ = True if τ atomic

C(τ1→τ2) = Cτ1 ∧ Cτ2 ∧ L(τ2) ⇒ L(τ1)

C(τ par) = L(τ) ∧ Cτ
C(τ1∗τ2) = Cτ1 ∧ Cτ2

n our type system, we will use basic constra
nd constraints associated to sub-expressions th
eeded in cases similar to the expressionexample2of

he previous section.

F. Gava and F. Loulergue / Future Generation Computer Systems xxx (2004) xxx–xxx 5

The set of free variables of a type scheme is defined
by:

F(∀α1, . . . , αn.[τ/C]) = (F(τ) ∪ F(C))\{α1, . . . , αn}

where the free variables of the type and the constraints
are defined by trivial structural induction. We note Dom
for the domain of asubstitution(i.e. a finite application
of variables of type to simple types). We can now define
the substitution on a type scheme.

Definition 1. If α1, . . . , αn are out of reach ofϕ,

ϕ(∀α1, . . . , αn.[τ/C]) = ∀α1, . . . , αn.

[ϕ(τ)/ϕ(C)
∧

βi∈Dom(ϕ)∩F([τ/C])

Cϕ(βi)] (3)

We say that a variableα is out of reachof a sub-
stitutionϕ if: ϕ(α) = α, i.e.ϕ don’t modifyα (or α is
not in the domain ofϕ) and if α is not free in [τ/C],
thenα is not free inϕ([τ/C]), i.e., ϕ do not introduce
α in its result. The condition thatα1, . . . , αn are out of
reach ofϕ can always be validated by renaming first
α1, . . . , αn with fresh variables (we suppose that we
have an infinite set of variables). The substitution on
the simple type and on the constraints are defined by
trivial structural induction.

A type scheme can be seen like the set of types
given by instantiation of the quantifier variables. We
introduce the notion of instance of a type scheme with
c

D
i
w

s
t n. It
i of
e
{ es
a dis-
t ith
x t
s i-
a all
t
n
t e

havex ∈ Dom(E), we can replace the range by the
new type scheme forx. To continue with the introduc-
tion of the type system, we define how to generalize a
type scheme. Yet, type schemes have universal quanti-
fied variables, but not all the variables of a type scheme
can.

Definition 3. Given an environmentE, a type
scheme [τ/C] without universal quantification, we
define an operatorGen to introduce universal
quantification: Gen([τ/C], E) = ∀α1, . . . , αn.[τ/C],
where{α1, . . . , αn} = F(τ) \ F(E)

With this definition, we have introduced polymor-
phism. The universal quantification gives the choice
for the system to take the good type from a type
scheme.

We noteTC the function which associates a type
scheme to the constants and to the primitive operations
(some cases):

TC(i) = int i = 0,1, . . .

TC(fst) = ∀αβ.[(α ∗ β) → α/L(α) ⇒ L(β)]

TC(mkpar) = ∀α.[(int → α) → (αpar)/L(α)]

TC(apply) = ∀αβ.[((α → β)par ∗ (αpar))

→ (β par)/L(α) ∧ L(β)]

TC(put) = ∀α.[(int → α)par

→ (int → α)par/L(α)]

oof
s lan-
g iated
w hich
m duce
c
t pe
e
T y us-
i tion
s ules
o

h -
t sion
i t of
t s is
d

onstraints.

efinition 2. We note [τ/C] ≤ ∀α1, . . . , αn.[τ′/C′]
ff there exists a substitutionϕ of domainα1, . . . , αn
here [τ/C] = ϕ([τ′/C′]).

We write E for an environmentwhich associate
ype schemes to free variables of an expressio
s an application from free variables (identifiers)
xpressions to type schemes. We note Dom(E) =
x1, . . . , xn} for its domain, i.e. the set of variabl
ssociated. We assume that all the identifiers are

inct. We noteE(x) for the type scheme associated w
in E. The substitutionϕ on E is a point to poin

ubstitution on the domain ofE. The set of free var
bles is naturally defined on the free variables on

he type scheme associated in the domain ofE. Fi-
ally, we writeE + {x : σ} for the extension ofE to

he mapping ofx to σ. If, before this operation, w
We formulate type inference by a deductive pr
ystem that assigns a type to an expression of the
uage. The context in which an expression is assoc
ith a type is represented by an environment w
aps identifiers to type schemes. Deductions pro

onclusions of the formE � e : [τ/C] which are called
yping judgments, they could be read as: “in the ty
nvironmentE, the expressione has the type [τ/C]”.
he static semantics manipulates type schemes b

ng the mechanism of generalization and instantia
pecified in the previous sections. The inductive r
f the type system are given in theFig. 1.

In all the inductive rules, if a constraintC of the
ypothesis can be solved toFalse then the induc

ive rule cannot be applied and then the expres
s not well typed. Our constraints are a sub par
he propositional calculus, so solving constraint
ecidable.

6 F. Gava and F. Loulergue / Future Generation Computer Systems xxx (2004) xxx–xxx

Fig. 1. The inductive rules.

Like traditional static type systems, the case (Op),
(Const) and (Var) used the definition of an instance
of a type scheme. The rule (Fun) introduces a new
type scheme in the environment with the basic con-
straints from the simple type of the argument. In the
rules (App), (Pair) and (Let) we make the conjunction
of the constraints to known if the two sub-cases are
coherent. Moreover, in (Let), we introduce the con-
straintL(τ2) ⇒ L(τ1) because an expression likelet
x = e1 in e2 can be seen like ((fun x → e2) e1).
So we have to protect our type system against func-
tional expression from global values to local values
like in the programexample2. The rule (ifthenelse)
makes also the conjunction of the constraints. Theif
then elseconstruction could return a global or a usual
value.

The basic constraints are important in our type sys-
tem but are not sufficient. For example, for a parallel
identity:

fun x→ let y = put(mkpar (fun i d→ None))in x

the simple type given by Objective Caml isα → α and
the basic constraints (L(α) ⇒ L(α)) are always solved
toTrue. But it is easy to see that the variablex (of type
α) could not be a usual value. Our type system, with
constraints from the sub-expression (hereput) would
give the type scheme: [α → α/L(α) ⇒ False] (i.e., α
could not be a usual value and the instantiation are in
G and
e tem
w

5. Conclusions and future work

BSML allows direct mode Bulk Synchronous Par-
allel (BSP) programming. To preserve a compositional
cost model derived form the BSP cost model, the nest-
ing of parallel vectors is forbidden. The type system
presented in this paper allows a static avoidance of nest-
ing. Thus, the pure functional subset of BSML is safe.
We have also designed an algorithm for type inference
and implemented it.

A general framework for type inference with con-
strained types[4] also exists and could be used for
a type system with only basic constraints. We do not
used this system mainly because it has been proved for
λ-calculus and not for the BSλ-calculus with its two
level structure (local and global), and also because in
this system, there are no constraints depending on sub-
expressions.

A further work will concern imperative features.
Dynamic semantics of the interaction of impera-
tive features with parallel operations have been de-
signed. To ensure statically the safety of this inter-
action, we are currently working on the typing of
effects.

Acknowledgements

The authors wish to thank the anonymous referees
for their comments. This work is supported by the ACI
G
b Re-
s ant.
). [1] presents the dynamic semantics of BSML
lements of the proof of correctness of the type sys
ith respect to this semantics.
rid program (projectCaraml, www.caraml.org) and
y a research grant from the French Ministry of
earch. French Foreign Office provided a travel gr

http://www.caraml.org

F. Gava and F. Loulergue / Future Generation Computer Systems xxx (2004) xxx–xxx 7

References

[1] F. Gava, F. Loulergue, A polymorphic type system for
Bulk Synchronous Parallel ML, in: V. Malyshkin (Ed.),
PaCT 2003, No. 2763 in LNCS, Springer, 2003, pp. 215–
229.

[2] X. Leroy, The Objective Caml System 3.07, 2003.
http://www.ocaml.org.

[3] F. Loulergue, G. Hains, C. Foisy, A calculus of functional BSP
programs, Sci. Comp. Progr. 37 (1–3) (2000) 253–277.

[4] M. Odersky, M. Sulzmann, M. Wehr, Type inference with con-
strained types, Theory Pract. Object Syst. 5 (1) (1999) 35–
55.

[5] R. Milner, A theory of type polymorphism in programming, J.
Comp. Syst. Sci. 17 (3) (1978) 348–375.

[6] D.B. Skillicorn, J.M.D. Hill, W.F. McColl, Questions and
answers about BSP, Scientific Progr. 6 (3) (1997) 249–
274.

[7] L.G. Valiant, A bridging model for parallel computation, Com-
mun. ACM 33 (8) (1990) 103.

Frederic Gava obtained his MS Degree in
Computer Science from the University Paris
7 in 2002. He is currently a PhD Student in
the University of Paris Val de Marne. His
research interests are parallel and grid com-
puting systems, particularly their design and
proofs of their properties.

Frederic Loulergue obtained his PhD De-
gree in Computer Science from the Univer-
sity Orleans in 2000. He is currently an as-
sociate professor in the University of Paris
Val de Marne. His research interests are high
level languages for parallel and grid com-
puting systems.

	A static analysis for Bulk Synchronous Parallel ML to avoid parallel nesting
	Introduction
	Functional Bulk Synchronous Parallelism
	Motivations
	A Polymorphic Type System
	Conclusions and future work
	Acknowledgements
	References

