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Abstract

The BSMLIib library is a library for Bulk Synchronous Parallel (BSP) programming with the functional language Objective
Caml. It is based on an extension of thealculus by parallel operations on a data structure named parallel vector, which is
given by intention. In order to have an execution that follows the BSP model, and to have a simple cost model, nesting of parallel
vectors is not allowed. The novelty of this paper is a type system which prevents such nesting. This system is correct w.r.t. the

dynamic semantics.
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1. Introduction

Bulk Synchronous Parallel ML or BSML is an
extension of the ML family of functional program-
ming languages for programming parallel Bulk Syn-
chronous Parallel algorithms as functional programs
Bulk-Synchronous Parallel (BSP) computing is a par-
allel programming model introduced by Valigif to
offer a high degree of abstraction like PRAM mod-
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els and yet allow portable and predictable performance

on a wide variety of architectures. BSML expresses

BSP algorithms with a small set of primitives taken

from the confluentBSx-calculus[3]: a constructor of

parallel vectors, asynchronous parallel function ap-
. plication, synchronous global communications and a
synchronous global conditional. The BSMLIib library
(http://bsmllib.free.fy implements the BSML primi-
tives using Objective Canj2] and MPI. It is efficient
and its performance follows curves predicted by the
BSP cost model.

Our goal is to provide aertifiedprogramming envi-
ronment for bulk synchronous parallelism. This envi-
ronment will contain a byte-code compiler for BSML
and a library for the Coq Proof Assistant used to cer-
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tify BSML programs. One of the advantages of the
Objective Caml language (and more generally of the
ML family of languages) is itstatic polymorphic type
inference. In order to have both simple implementation
and cost model that follows the BSP model, nesting of
parallel vectors is not allowed. BSMLIib being a li-
brary, the programmer is responsible for this absence
of nesting. This breaks trsafetyof our environment.
The novelty of this paper is a type system which
prevents such nesting. This system is correct w.r.t. the
dynamic semantics. We first present the BSP model,
give an informal presentation of BSMLSéction 2,
explain in detail why nesting of parallel vectors must be
avoided Gection 3, give our static analysisSgction 4
and conclude$ection 3.

2. Functional Bulk Synchronous Parallelism

A Bulk Synchronous Parall¢6] computer contains
a set of processor-memory pairs, a communication net-
work allowing inter-processor delivery of messages
and a global synchronization unit which executes col-
lective requests for a synchronization barrier. Its per-
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wherewl@ = local processing time on processaiur-
ing super-stes and ") = max(h", n} wheren(")
(resp.hfs_)) is the number of words transmitted (resp.
received) by processoduring super-steg The execu-
tion time of a BSP program composed3guper-steps
is thus) ", Time(s). In general this execution time is a
function ofp and of the size of data, or of more com-
plex parameters like data skew and histogram sizes.

There is currently no implementation of a full Bulk
Synchronous Parallel ML language but rather a partial
implementation as a library for Objective Caml. The
so-called BSMLIib library is based on the following
elements. It gives access to the BSP parameters of the
underling architecture. In particular, it offers the func-
tion bsp_p: unit — int such that the value disp_p()
is p, thestaticnumber of processes of the parallel ma-
chine. There is also an abstract polymorphic typar
which represents the type pfwide parallel vectors of
objects of typeax, one per process. The nestingpair
types is prohibited.

The BSML parallel constructs operate on parallel
vectors. Those parallel vectors are createchiypar:
(int > @) — « par so that (nkpar f) stores i) on
processforibetween 0 and( — 1). We usually writd

formance is characterized by 3 parameters expressedas fun pid — ¢) to show that the expressi@may be
as multiples of the local processing speed: the number different on each processor. This expressi@said to

of processor-memory paifs the timel required for a
global synchronization and the tinggfor collectively
delivering a 1-relation (communication phase where

belocal. The expressiomtkpar f) is a parallel object
and it is said to bglobal.
A BSP algorithm is expressed as a combination of

every processor receives/sends at most one word). Theasynchronous local computations and phases of global

network can deliver am-relation in timegh for any
arity h.

A BSP program is executed as a sequenciper-
stepseach one divided into (at most) three succes-
sive and logically disjoint phases. In the first phase
each processor uses its local data (only) to perform

sequential computations and to request data transfers,

to/from other nodes. In the second phase the network
delivers the requested data transfers and in the third
phase a global synchronization barrier occurs, making
the transferred data available for the next super-step.
The execution time of a super-stefs thus the sum of
the maximal local processing time, of the data delivery
time and of the global synchronization time:

Time(s) = max wl(S)Jr max hl@*g+l

L.processor i processor

communication with global synchronization. Asyn-
chronous phases are programmed witkpar and
with:

apply: (¢« — B) par —» apar — B par

apply (mkpar f) (mkpar €) stores ({i)(ei)) on process
i. The communication and synchronization phases are
expressed by:

put: (int — « option)par — (int — « option)par

wherea option is defined bytype « option = None|
Some ofw.
Consider the expression:

put(mkpar (funi — f7)) Q)



F. Gava and F. Loulergue / Future Generation Computer Systems xxx (2004) XXx—XXx

To send a valug from proces$ to process, the func-
tion f; at procesgmust be such thatf{; i) evaluates to
(Somev). To send no value from procejs® process,
(fj i) must evaluate to None. Expression (1) evaluates
to a parallel vector containing a functigpof delivered
messages on every procesét process, (g; j) eval-
uates to None if procegsent no message to process
or evaluates to (Soms if procesg sent the value to
the process.

The full language would also contain a synchronous
conditional operation, omitted here for the sake of con-
ciseness.

3. Motivations

In this section, we present why we want to avoid
nesting of parallel vectors in our language. Let consider
the following BSML program:

let bcastn vec =
let tosend =mkpar (funivd —
if i = nthen Somev elseNone)in
let recv =put(apply tosend vec)n
apply (replicate noSome)
(apply recv (replicaten))

This program uses the following functions:

let replicatex = mkpar (fun pid— x)
let noSome (Somg) = x

(bcast 2 vec) broadcasts the component of the parallel

vectorvecheld at process 2 to all other processes. The
BSP cost for a call to this program is:

&)

wheresis the size of the value held at process 2. Con-
sider now the expression:

ptp—1)xsxg+1

let examplel =
mkpar (fun pid — bcast pid vec)

Its type is ¢ par par) wherert is the type of the com-
ponents of the parallel vectmec A first problem is
the meaning of this expression. Section 2 we said
that (mkpar f) evaluates to a parallel vector such that

3

process holds valuef(i). In the case of this example, it
means that process 0 should hold the value of (bcast O
vec). BSML being based on the confluent calcyR]s

it is possible to evaluate (bcast 0 vec) sequentially. But
in this case the execution time will not follow the for-
mula (2). The cost of an expression will then depend on
its context. The cost model will no more be composi-
tional. We could also choose that process 0 broadcasts
the expression (bcast 0 vec) and that all processes eval-
uate it. In this case the execution time will follow the
formula (2). But the broadcast of the expression will
need communications and synchronization. This pre-
liminary broadcast is not needed if (bcast 0 vec) is not
under amkpar. Thus, we have additional costs that
make the cost model still non compositional. Further-
more, this solution would imply the use of a sched-
uler and would make the cost formulas very difficult to
write.

To avoid those problems, nesting of parallel vectors
is not allowed. The typing ML programs is well-known
[5] but is not suited for our language. Moreover, it is
not sufficient to detect nesting of abstract typear
such as the previous example. Consider the following
program:

let example2 =
mkpar (fun pid —
let this =mkpar (fun i — i) in pid)

Its type is (intpar) but its evaluation will lead to
the evaluation of the parallel vectahis inside the
outmost parallel vector. Thus, we have a nesting of
parallel vectors which cannot be seen in the type.
Other problems arise with polymorphic values. The
most simple example is a projectiolet fst = fun
(a,b) — a. Its type is of coursex x B — «. The
problem is that some instantiations are incorrect. For
example:

fst (1, mkpar (fun i — i))

has type int given by the Objective Caml system. But
the evaluation of the expression needs the evaluation of
a parallel vector. Thus, we may be in a situation such as
in example20ne solution would be to have a syntac-
tic distinction between global and local variables (as in
the BS\-calculus). The type system would be simpler
but it would be very inconvenient for the programmer
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since she or he would have to write three different ver-
sions of thefstfunction (the fourth possible version is
incorrect). The nesting can be even more difficult to
detect:

let c1 _ = (1,mkpar(funi — i)
and ¢z _ = (2,put(mkpar (fun i d — None)))in
mkpar (fun i —
if i < (bsp_p()/2) then fst(c1()) elsefst(c2()))

The evaluation of this expression would imply the eval-
uation ofcs() on the first half of the network ang()

on the second. Bygut implies a synchronization bar-
rier and notmkpar so this will lead to mismatched
barriers and the behavior of the program will be unpre-
dictable. The goal of our type system is to reject such
expressions.

4. A Polymorphic Type System

We begin by defining the term algebra for the basic
kinds of semantic objects: the simple types. Simple
types are defined by the following grammar:

ti=k|a|1—>12 | nx12| (rpar)

wherex denotes basic types (int, unit, etcy),vari-
able typesyzi — 12 types of functionszy x 2 types
of pairs and £ par) types of parallel vectors.

We want to distinguish between three subsets of sim-
pletypes. The setof local typeswhich representusual
Objective Caml types, the variable typ€sfor poly-
morphic types and global typ€& for parallel objects.
The local types (written) are:

Ti=k|T1—>D|T—>1T|T1%x12
the variable types are (written):
Ti=a|n1i—> |- D|Txh | Tis | 1% T2

and the global types (writtet) are:
= (Ttpar) | (tpar) |1 > 2|1 > 2|11 > 2

|T1% T2 | To* T2 | T1 kT2 | T1 % T2 | T % T2
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Of course, we havé N G =@ andV NG = @. But,
it is easy to see that not every instantiations from a
variable type are in one of these kinds of types. Take
for example, the simple type par)— intor the simple
type @ par) and the instantiationr =int par: it leads
to a nesting of parallel vectors.

To remedy this problem, we will useonstraints
to say which variables are ib or not. For a poly-
morphic type system, with this kind of constraints,
we introduce aype schemeith constraints to gener-
ically represent the different types of an expression:
o =Va,...,a,.[t/C], wheret is a simple type and
C is a constraint of classical propositional calculus
given by the following grammar:

C:=True | False| L(@) | C1AC2 | C1 = C2

When the set of variables is empty, we simply write
[t/ C] and do not write the constraints when they are
equal toTrue. We suppose that we work modulo some
usual equations (like associativity) about th@pera-
tor.

For a simple typer, £(r) says that the simple type
is in L and we uses the following inductive rules to not
have the locality of a type but of its variables:

L(x) = True

L(t par) = False

L(t1 — w2) = L(71) A L(12)
L(t1 % 12) = L(t1) A L(T2)

In the type system and for the substitution of a type
scheme we will use rules to construct constraints from
a simple type callethasic constraintsWe noteC, for

the basic constraints from the simple typand we use
the following inductive rules:

C; = True ifratomic

Clry»1p) = Cry A Cy A L(12) = L(11)
Clz par) = L(7) A Cy

Cluxr) = Coy A Cry

In our type system, we will use basic constraints
and constraints associated to sub-expressions that are
needed in cases similar to the expressgample2of

the previous section.
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The set of free variables of a type scheme is defined have x € Dom(E), we can replace the range by the

by:

FNaq, ...,0,.[t/C]) = (F(r) U F(O)\ {1, ..., a,}

new type scheme fot. To continue with the introduc-
tion of the type system, we define how to generalize a
type scheme. Yet, type schemes have universal quanti-
fied variables, but not all the variables of a type scheme

where the free variables of the type and the constraints can.

are defined by trivial structural induction. We note Dom
for the domain of @ubstitution(i.e. a finite application

of variables of type to simple types). We can now define
the substitution on a type scheme.

Definition 1. If aq, ..

., a, are out of reach op,
o(Vaq, ..., a,.[t/C]) =Vaq, ..., ay.
[o(7)/9(C) A\ Coip] ®)

BieDom(@)NF([z/C])

We say that a variable is out of reachof a sub-
stitution ¢ if: ¢(a) = «, i.e. ¢ don't modify o (or « is
not in the domain ofy) and if « is not free in g/ C],
thenw is not free inp([t/ C]), i.e., ¢ do not introduce
«in its result. The condition thaty, . .., «, are out of
reach ofp can always be validated by renaming first
a1, ..., o, with fresh variables (we suppose that we
have an infinite set of variables). The substitution on

the simple type and on the constraints are defined by

trivial structural induction.

A type scheme can be seen like the set of types

given by instantiation of the quantifier variables. We
introduce the notion of instance of a type scheme with
constraints.

Definition 2. We note [/C] < Vasi, ..., a,.[t'/C]
iff there exists a substitutiop of domainasy, ..., o,
where [/ C] = ¢([t'/C')).

We write E for an environmentwhich associates

Definition 3. Given an environmentE, a type
scheme {/C] without universal quantification, we
define an operatorGen to introduce universal
quantification: Gen([t/C], E) = Va1, ..., ay.[t/C],
wherdas, ..., a,} = F(r) \ F(E)

With this definition, we have introduced polymor-
phism. The universal quantification gives the choice
for the system to take the good type from a type
scheme.

We noteTC the function which associates a type
scheme to the constants and to the primitive operations
(some cases):

TC(i) = int i=0,1,...
TC(fst) = VapB.[(a * B) — a/L(x) = L(B)]
TC(mkpar) = Va.[(int — a) — (a par)/L(a)]
TC(apply) = Vep.[((« — B)par * (a par))
— (B par)/L(e) A L(B)]
TC(put) = Vo.[(int — ) par
— (int — a)par/L(a)]

We formulate type inference by a deductive proof
system that assigns a type to an expression of the lan-
guage. The context in which an expression is associated
with a type is represented by an environment which
maps identifiers to type schemes. Deductions produce
conclusions of the fornk + e : [t/ C] which are called

type schemes to free variables of an expression. It typing judgmentsthey could be read as: “in the type

is an application from free variables (identifiers) of
expressions to type schemes. We note DBi£
{x1,...,x,} for its domain, i.e. the set of variables

environmentk, the expressioe has the type/C]".
The static semantics manipulates type schemes by us-
ing the mechanism of generalization and instantiation

associated. We assume that all the identifiers are dis-specified in the previous sections. The inductive rules

tinct. We noteE(x) for the type scheme associated with
x in E. The substitutionp on E is a point to point
substitution on the domain d&. The set of free vari-
ables is naturally defined on the free variables on all
the type scheme associated in the domairkEofi-
nally, we write E + {x : o} for the extension oE to

the mapping ofx to o. If, before this operation, we

of the type system are given in théy. 1

In all the inductive rules, if a constrai@ of the
hypothesis can be solved false then the induc-
tive rule cannot be applied and then the expression
is not well typed. Our constraints are a sub part of
the propositional calculus, so solving constraints is
decidable.
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[r/C] < E(z)

Erz:[r/C] (Var)

Erc:[r/C]

[7/Cl STC)

E+{z:[n/CLl}Fe:[r/C

[r/C] < TC(o)

) Etop:[r/C] (Op)

Etr(funz —e):[n — T2/C(7'1"7'2) A Cy

(Fun)

Ere [ —71/C] Eley:[7/CY]
Et (e e9) : [7/C1 A Cy (App)
Ete :[n/C] E+{z:Gen([ri/C1],E)} b eq : [12/Co) Let
Etlet z =e in ey : [12/C1 A Ca A L(12) = L(11)] (Let)
Et e :[n/C) Et ey :[ma/Cy) .
Bt (ees)  [nxmfCi A Gy L)
EFe :[bool/C.] Etres:[r/Ce] Etes:[1/Cel

E I if e; then ey else e3 : [T/Ce; A Cey A Ce]

(Ifthenelse)

Fig. 1. The inductive rules.

Like traditional static type systems, the ca&gp),
(Cons) and {ar) used the definition of an instance
of a type scheme. The rulé=(@n) introduces a new
type scheme in the environment with the basic con-
straints from the simple type of the argument. In the
rules @pp), (Pair) and (ef) we make the conjunction
of the constraints to known if the two sub-cases are
coherent. Moreover, inLet), we introduce the con-
straint L(t2) = L(r1) because an expression liket
X = e1 In ez can be seen like fiin X — e2) e1).

So we have to protect our type system against func-
tional expression from global values to local values
like in the programexample2 The rule (fthenelse)
makes also the conjunction of the constraints. The
then elseconstruction could return a global or a usual
value.

The basic constraints are important in our type sys-
tem but are not sufficient. For example, for a parallel
identity:

fun x — lety = put(mkpar (fun i d — None))in x

the simple type given by Objective Camhis— « and

the basic constraint€(«) = L(«)) are always solved

to True. But it is easy to see that the variabléof type

a) could not be a usual value. Our type system, with
constraints from the sub-expression (hput) would
give the type schemew[— o/L(x) = Falsq (i.e.,
could not be a usual value and the instantiation are in
G). [1] presents the dynamic semantics of BSML and

5. Conclusions and future work

BSML allows direct mode Bulk Synchronous Par-
allel (BSP) programming. To preserve a compositional
cost model derived form the BSP cost model, the nest-
ing of parallel vectors is forbidden. The type system
presented in this paper allows a static avoidance of nest-
ing. Thus, the pure functional subset of BSML is safe.
We have also designed an algorithm for type inference
and implemented it.

A general framework for type inference with con-
strained typeg44] also exists and could be used for
a type system with only basic constraints. We do not
used this system mainly because it has been proved for
A-calculus and not for the BScalculus with its two
level structure (local and global), and also because in
this system, there are no constraints depending on sub-
expressions.

A further work will concern imperative features.
Dynamic semantics of the interaction of impera-
tive features with parallel operations have been de-
signed. To ensure statically the safety of this inter-
action, we are currently working on the typing of
effects.
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