
A Parallel Categorical Abstract Machine for Bulk Synchronous Parallel ML

Frédéric Gava, Frédéric Loulergue and Frédéric Dabrowski

Laboratory of Algorithms, Complexity and Logic, Créteil, France
{gava,loulergue}@univ-paris12.f, fdabrowski@lspf.org

Abstract

We have designed a functional data-parallel language
called BSML for programming bulk-synchronous parallel
(BSP) algorithms in so-called direct mode. In a direct-
mode BSP algorithm, the physical structure of processes is
made explicit. The execution time can then be estimated
and dead-locks and indeterminism are avoided. The BSM-
Llib library has been implemented for the Objective Caml
language. But there is currently no full implementation
of such a language and an abstract machine is needed to
have a certified implementation. Our approach is based
on a byte-code compilation to a parallel abstract machine
performing exchange of data and synchronous requests de-
rived from the abstract machine of the Caml language.

1. Introduction

Our previous work aimed at the design of a parallel
functional language based on formal semantics. Bulk Syn-
chronous Parallel ML or BSML is such a language. It is
an extension of ML for programming direct-mode parallel
Bulk Synchronous Parallel algorithms as functional pro-
grams. Bulk-Synchronous Parallel (BSP) computing is a
parallel programming model introduced by Valiant [23]
to offer a high degree of abstraction like PRAM models
and yet allow portable and predictable performance on a
wide variety of architectures. A BSP algorithm is said to
be in direct mode [10] when its physical process struc-
ture is made explicit (the programmer retains control of
memory allocation for each process unlike shared mem-
ory style). Such algorithms offer predictable and scalable
performances. BSML expresses them with a small set of
primitives taken from the confluent BSλ calculus [17]: a
constructor of parallel vectors, asynchronous parallel func-
tion application, synchronous global communications and
a synchronous global conditional.

This is no full implementation of the BSML language
but our BSMLlib library implements (with slight restric-
tions) the BSML primitives using Objective Caml [13] and

MPI (Message Passing Interface) [22]. It is efficient and
its performance follows curves predicted by the BSP cost
model [15]. The BSλ-calculus describes the primitives at
a high level. We can see a BSλ term as a program which
applies sequentially the primitives to parallel vectors. At
the implementation level, the parallel vector does not ex-
ist. Each processor works on “sequential” values. Thus it
is not obvious that the implementation is correct with re-
spect to the calculus. We designed several semantics from
the BSλ-calculus to a formal presentation of the imple-
mentation as a parallel abstract machine: the distributed
evaluation [14] and the BS-SECD machine [19] each level
of semantics has been proved correct with respect to the
previous level. Nevertheless, the SECD machine [12] is a
very old abstract machine for the execution of function lan-
guages and is no longer used in implementations. Merlin
and Hains [18] designed a parallel abstract machine used
for the execution of BSML programs and based on the Cat-
egorical Abstract Machine or CAM, which is the abstract
machine of the runtime system of the CAML language.

We are now involved in the CARAML project
(www.caraml.org) which it aims at using Objective
Caml for Grid computing with, for example, applica-
tions to parallel databases and molecular simulation. In
this project, we desire to design a safe environment for
the compilation and execution of BSML programs and a
methodology for proving the correctness of BSML pro-
grams. A “safe environment” means that we want to have
a parallel virtual machine described formally and correct
with respect to the BSλ-calculus. Thus, the implementa-
tion of the parallel abstract machine and the compilation
schema has to be proved correct with respect to their for-
mal descriptions.

In such a context, we could use the abstract machine
designed by Merlin and Hains but it cannot be easily ex-
tended to distributed high performance computing because
the number of processes must be known at compilation
time. In the framework of Grid computing we want to have
“parallel agents”, compiled in byte-code, which would
move to the fronted of a parallel machine and then unfold
on the available nodes. In this case, of course, the num-

ber of available processes is known only when the agent
arrives at the front-end of the parallel machine. The com-
pilation and the abstract machine must be independent of
the number of processes available at runtime.

Thus, we need to design a new parallel abstract machine
(based on a sequential machine already used in implemen-
tations of functional languages) which may be extended
easily (or which may be a substantial subpart of a more
complex abstract machine) for Grid computing. This pa-
per presents such a machine. We first present the BSP
model and give an informal presentation of BSML through
the BSMLlib programming library (section 2). Then we
define a bulk synchronous parallel categorical abstract ma-
chine and the compilation of BSML to this parallel abstract
machine (section 3) and conclude (section 4).

2. Functional Bulk Synchronous Parallelism

The Bulk Synchronous Parallel (BSP) model [23, 21]
describes: an abstract parallel computer, a model of exe-
cution and a cost model. A BSP computer has three com-
ponents: a homogeneous set of processor-memory pairs,
a communication network allowing inter processor deliv-
ery of messages and a global synchronization unit which
executes collective requests for a synchronization barrier.
A wide range of actual architectures can be seen as BSP
computers.

The performance of the BSP computer is characterized
by three parameters (expressed as multiples the local pro-
cessing speed): the number of processor-memory pairs p ;
the time l required for a global synchronization ; the time
g for collectively delivering a 1-relation (communication
phase where every processor receives/sends at most one
word). The network can deliver an h-relation (communi-
cation phase where every processor receives/sends at most
h words) in time g × h. Those parameters can easily be
obtained using benchmarks.

A BSP program is executed as a sequence of super-
steps, each one divided into (at most) three successive and
logically disjointed phases: (a) Each processor uses its lo-
cal data (only) to perform sequential computations and to
request data transfers to/from other nodes; (b) the network
delivers the requested data transfers; (c) a global synchro-
nization barrier occurs, making the transferred data avail-
able for the next super-step. The execution time of a super-
step is, thus the sum of the maximal local processing time,
of the data delivery time and of the global synchronization
time. The execution time of a BSP program is, therefore
the sum of the execution time of its super-steps.

There is currently no implementation of a full Bulk Syn-
chronous Parallel ML language but rather a partial im-
plementation as a library for Objective Caml. The so-
called BSMLlib library is based on the following ele-

ments. It gives access to the BSP parameters of the un-
derling architecture. In particular, it offers the function
bsp_p:unit->int such that the value of bsp_p() is
p, the static number of processes of the parallel machine.
There is also an abstract polymorphic type ’a par which
represents the type of p-wide parallel vectors of objects
of type ’a, one per process. The nesting of par types
is prohibited. A type system enforces this restriction [8].
The BSML parallel constructs operates on parallel vectors
which are created by:

mkpar: (int -> ’a) -> ’a par
so that (mkpar f) stores (f i) on process i for i be-
tween 0 and (p − 1).

A BSP algorithm is expressed as a combination of asyn-
chronous local computations (first phase of a super-step)
and phases of global communication (second phase of a
super-step) with global synchronization (third phase of a
super-step). Sequential functional languages are based on
particular strategies for the evaluation of expressions. In
our framework we keep the strategy of the sequential lan-
guage: the parallelism comes only from our new primi-
tives. Thus the sequentiality which comes from the evalu-
ation strategy remains and is used to identify the different
phases in a BSML program. Asynchronous phases are pro-
grammed with mkpar and with:

apply: (’a -> ’b) par
-> ’a par -> ’b par

apply (mkpar f) (mkpar e) stores (f i) (e
i) on process i. The distinction between a communication
request and its realization at the barrier is ignored. put ex-
presses communication and synchronization phases:

put: (int->’a option) par
-> (int->’a option) par

where ’a option is defined by: type ’a option
= None | Some of ’a.

Consider: put(mkpar(fun i->fsi)) (∗). To
send a value v from process j to process i, the function
fsj at process j must be such that (fsj i) evaluates to
Some v. To send no value from process j to process i,
(fsj i) must evaluate to None. Expression (∗) evaluates
to a parallel vector containing a function fdi of delivered
messages on every process. At process i, (fdi j) evalu-
ates to None if process j sent no message to process i or
evaluates to Some v if process j sent the value v to the
process i.

The full language would also contain a synchronous
conditional operation:
ifat: (bool par) * int * ’a * ’a -> ’a
such that ifat (v,i,v1,v2) will evaluate to v1 or
v2 depending on the value of v at process i. But Objec-
tive Caml is an eager language and this synchronous con-
ditional operation can not be defined as a function. That is
why the core BSMLlib contains the function: at:bool

par -> int -> bool to be used only in the con-
struction: if (at vec pid) then... else...
where (vec:bool par) and (pid:int). Global
conditional is necessary of express algorithms like:

Repeat Parallel Iteration Until Max of local errors < ε

This framework is a good tradeoff for parallel program-
ming because: we defined a confluent calculus so we de-
signed a purely functional parallel language from it. With-
out side-effects, programs are easier to prove, and to re-
use. An eager language allows good performances ; this
calculus is based on BSP operations, so programs are easy
to port, their costs can be predicted and are also portable
because they are parametrized by the BSP parameters of
the target architecture.

3. A BSP Abstract Machine for BSML

3.1. Introduction

3.1.1. Abstract machines for the λ-calculus To calcu-
late the values of the λ-calculus, a lot of abstract machines
have been designed. The first was the SECD machine [12]
which was used for the first implementation of the LISP
language. It uses environment (a list of values) for the clo-
sure and four stacks for the calculus. But it is an old and
not optimized machine. In the same spirit, [2] presents the
functional abstract machine (FAM). The FAM optimizes
access to the environment by using arrays (so with a con-
stant cost access). It is to be noticed that for functional
languages with a call by name strategy, [20] designs the
G-machine with its graph reduction. But we have an eager
language so those techniques are not suitable for us.

The CAM, categorical abstract machine, was intro-
duced and used by Curien and Cousineau to implement the
CAML language [4]. The CAM [3] is an environment ma-
chine derived from categorical combinators of Curien [5]
and has its roots from equational and denotational seman-
tics of the λ-calculus.

3.1.2. Abstract machines for the BSλ-calculus For the
BSλ-calculus, [19] modified the SECD. But this new ma-
chine still has the same problems as the original one: slow-
ness, difficulty to have real instruction machine and opti-
mize it, notably for the exchange of closures.

To remedy to these problems, [18] introduced a mod-
ification of the CAM for BSP. But this machine has two
problems:

• the number of processors of the machine which will
execute the program has to be known at compilation.
Using an abstract machine eases portability but stati-
cally defining the number of processors for compila-
tion is against it. Moreover it is not at all adapted for
Grid computing.

• the instruction of exchange of values is difficult to
translate to real code, especially in an efficient way,
because this instruction adds instructions to the code
during the execution.

The first problem is specific to [18] but the second prob-
lem is shared with the BSP SECD machine. We give here
a suitable abstract machine which is an extension of the
CAM for BSP computing without these problems. We first
recall the execution model of the original sequential CAM
and after present its new BSP extensions. Then we explain
a technique allowing to compile our core language to this
abstract machine.

3.2. The BSP CAM

The BSP CAM has two kinds of instructions: sequential
and parallel ones. Its corresponds to the two structures of
the original calculus: the BSλ-calculus [17].

3.2.1. Sequential CAM The CAM machine is a very
simple machine where categorical terms can be considered
as code acting on a graph of values. Instructions are few in
number and quite close to real machine instructions. The
machine state has two components:

1. a code pointer C called program counter representing
the code being executed as a sequence of instructions.

2. a stack S (a sequence of machine values) called stack
pointer holding function arguments, intermediate re-
sults and function return contexts.

Each of them holds a pointer in a real implementation;
however, for simplicity, we will describe them as contain-
ing respectively a list of instructions (program counter) and
a list of stack elements (stack pointer). The top of the stack
corresponds to a term (a structured value) which have been
computed by the CAM. It may be viewed as a register. The
CAM supposes a de-curryfied version of the calculus. This
is why all our operators (and specially the apply opera-
tor) use pairs (noted (s, t)).

The values stored in this stack are constants, closures,
pairs of values which may in turn be pairs so that trees may
be constructed. The CAM uses closures [C, s] and recur-
sive closures [C, s]r where C is a fragment of CAM code
and s is a value meant to denote an environment for rep-
resenting functional values in a natural way since its struc-
ture is induced by categorical combinator’s properties (op-
timize closure building and environment sharing instead of
optimizing access to values). Environments, as in the natu-
ral semantics, are trees of values coding by pairs. Environ-
ments give the values of free variables in closure for the
CAM machine which could be used with special instruc-
tions. Predefined operations (such as addition, subtraction,
etc.) may be added to the instructions.

BEFORE AFTER

stack code stack code
(t1,t2)::S Fst;C t1::S C

(t1,t2)::S Snd;C t2::S C

t::S Quote(c);C c::S C

t::S Cur(C1);C [C1,t]::S C

t::S CurRec(C1);C [C1,t]r::S C

s::S Push;C s::s::S C

t1::t2::S Swap;C t2::t1::C C

t1::t2::S Cons;C (t2,t1)::S C

([C1,s],t)::S App;C (s,t)::C::S C1

([C1,s]r,t)::S App;C ((s,[C1,s]r,t))::C::S C1

t::C1::S Return;C t::S C1

(t1,t2)::S Add;C (t1 + t2)::S C

(t1,t2)::S Sub;C (t1 − t2)::S C

(t1,t2)::S Equal;C true::S C if t1 = t2
(t1,t2)::S Equal;C false::S C else
true::S Branch(C1,C2);C S C1;C
false::S Branch(C1,C2);C S C2;C
nc::S Isnc;C true::S C

t::S Isnc;C false::S C

Figure 1. Asynchronous instructions

The traditional machine is summarized in Figure 1. It
must be read as: executing the instruction when the ma-
chine is in this state takes it to a new state. Evaluating a
CAM program begins with an empty stack and ends with
a value in the register that is the result of the program and
an empty program counter. We briefly give the meaning of
the instructions:

Push : duplicates the register.

Swap : swaps the tops of the stack.

Cons : makes a pair on the tops of the stack.

Fst : expects a term (s, t) and replaces it by s (resp. t for
the Snd instruction).

Cur : replaces the register s by the closure [C, s] where C

is in the code encapsulated by the Cur instruction.

CurRec : replaces the register s by the recursive closure
[C, s]r where C is in the code encapsulated by the
CurRec instruction. This is a cyclic closure.

App : expects the register ([C, s], t) (resp. ([C, s]r , t))
replaces it by (s, t) (resp. ((s, [C, s]), t)) prefixed the
rest of the code and the program counter is C.

Quote : replaces the register by the encapsulated con-
stants (int, bool or the special constant of non-
communication).

Return : returns the context program counter.

Branch : removes the register and according to whether it
is true or false, executed C1 or C2.

Add : primitive operator of the addition. Takes a pair on
the register and gives the addition of the two compo-
nents. (Idem for Sub, Equal and another arithmetic
operations).

Isnc : primitive operator which tests if the register is the
non-communication constant or not.

We have an instruction Cur for closure and CurRec for
recursive one. The recursivity of the closure appears in the
App rule when the closure is used again in the environ-
ment. The Branch instruction is used for the if then else
(and at) constructor. It was also added to the CAM by [5].
Environments are not mere lists but full binary trees. The
categorical combinators Fst and Snd are precisely access
functions into those binary trees. The compiling process
uses a pattern that is the formal image of the environment.
Fst and Snd are also used to represented the fst and snd
primitive operators. We refer to [5] and [3] for more details
on the CAM and the theory of categorical combinators.

Those instructions which are the traditional instructions
of the CAM correspond to the asynchronous steps of the
BSP model. In the next section, we add special instruc-
tions (which could be seen as categorical combinators) for

stack code
Before 〈 n::t0::S0, . . . , n::tp−1::Sp−1 〉 〈 At;C0, . . . , At;Cp−1 〉
After 〈 tn::S0, . . . ,tn::Sp−1 〉 〈 C0, . . . , Cp−1 〉

Before 〈 . . . , t :: S, . . . 〉 〈 . . . , Nprocs;C, . . . 〉
After 〈 . . . , p::S, . . . 〉 〈 . . . , C, . . . 〉

Before 〈 . . . ,

i
︷︸︸︷

S , . . . 〉 〈 . . . ,

i
︷ ︸︸ ︷

Pid;C, . . . 〉

After 〈 . . . ,

i
︷︸︸︷

i::S , . . . 〉 〈 . . . ,

i
︷︸︸︷

C , . . . 〉

Before 〈 (tp−1
0 , (tp−2

0 , (. . . , t00) . . .))::S0,. . . , 〈 Send;C0, . . . , Send;Cp−1 〉

(tp−1
p−1, (t

p−2
p−1, (. . . , t

0
p−1) . . .))::Sp−1 〉

After 〈 (t0p−1, (t
0
p−2, (. . . , t

0
0) . . .))::S0,. . . , 〈 C0, . . . , Cp−1 〉

(tp−1
p−1, (t

p−1
p−2, (. . . , t

p−1
0) . . .))::Sp−1 〉

Figure 2. BSP CAM instructions

the parallel machine and for the synchronous steps of the
model.

3.2.2. Parallel extensions A BSP CAM is simply the
duplication, on each process, of the sequential CAM ex-
tended by some primitives. To express the BSP super-
steps we need two kinds of instructions: sequential instruc-
tions and synchronous ones. For the first phase of the BSP
model (asynchronous calculus), we also need the number
of processes and the name (number) of each process (in
the spirit of SPMD programming) given by new sequential
instructions:

Nprocs : replaces the register by the number of processes
(p). The actual value is defined at the beginning of ex-
ecution and not at compilation. Thus a program com-
piled for our abstract machine is totally portable.

Pid : adds on the stack the number of the process.

The Pid instruction is needed for the construction of the
parallel vectors by giving the name of the process (i).
Then, to express the synchronization and communication
phases of the BSP super-step, we need to add two spe-
cial instructions to the BSP CAM: At and Send. They
are the only instructions which need BSP synchronization
between the sequential CAMs. At (with a Branch instruc-
tion) is used for the global conditional. Send is an instruc-
tion for the primitive synchronous put operator, used for
the exchange of values between the processes. We now
give the actions of these instructions on the BSP CAM:

At : reads the value n of the register and pops it, then
replaces the (new) register by the register of the nth

process.

Send : replaces the register, supposed to be a “recursive”
pair (see next section) by another pair which is the

result of the exchange of values between the p pro-
cesses.

The instructions of the BSP CAM are given in Figure 2
for a p processors machine. Nprocs and Send are the only
instructions which depend on the number of processes.

3.3. Compilation of BSML

We shall now consider the problem of compiling our
core language to the machine. The BSML language uses
real identifiers and not De Bruijn indices [6] (they trans-
form an identifier to the number of λ-abstraction which
are included between the identifier and the λ-abstraction
that binds it; this method was used to solve the problem
of binding variables); our compiling function will have to
deal with the translation of a variable to some access code
that will find at run time its value in the environment. Thus
the compiling function has an extra parameter which gives
the position of the free variables of the expression to be
compiled in the environment. We note [[e]]P the function
of compilation of an expression e with the environment P .
The compiling function is defined by induction on the ex-
pression and begins with an empty environment (). We
suppose that the expressions are well-typed and the nested
of parallel vectors is rejected by the type checker of the
BSML language.

3.3.1. Environments We have seen that environments
are binary trees. Thus the access function will transform
variables on Fst and Snd instructions to access the envi-
ronment:

[[x]]() = raise fail
[[x]](P,x) = Snd
[[x]](x,P) = Fst

[[x]](P1 ,P2) = (Snd; [[x]]P2
)?(Fst; [[x]]P1

)

Application
[[op e]]P = [[e]]P ; Code − Operator(op);
[[(e1 e2)]]P = Push; [[e1]]P ; Swap; [[e2]]P ; Cons; App;
Pair and Abstraction
[[(e1, e2)]]P = Push; [[e1]]P ; Swap; [[e2]]P ; Cons;
[[(fun x → e)]]P = Cur([[e]](P,x); Return;);
Sequential construction
[[if e1 then e2 else e3]]P = Push; [[e1]]P ; Branch([[e2]]P ; Return; , [[e3]]P ; Return;);
[[let x = e1 in e2]]P = Push; [[e1]]P ; Cons; [[e2]](P,x);
[[let rec f x = e1 in e2]]P = Push; CurRec([[e1]]((P,f),x); Return;); [[e2]](P,f); Cons;
Parallel construction
[[if e1 at e2 then e3 else e4]]P = Push; Push; [[e1]]P ; Swap; [[e2]]P ; At; Branch([[e3]]P ; Return; , [[e4]]P ; Return;);

[[put]]P = Insert_Send([[put_function]]P)
[[put e]]P = Push; Insert_Send([[put_function]]P); Swap; [[e]]P ; Cons; App;

Figure 3. Compilation

[[]]?[[]] means that during the compilation if the first
branch of the function fails then the second is used.

3.3.2. Sequential mini-BSML expressions Constants
are trivially compiled to Quote and Nprocs instructions:

[[i]]P = Quote(i); if i ∈ N

[[b]]P = Quote(b); if b ∈ B

[[nc]]P = Quote(nc);
[[bsp_p]]P = Nprocs;

For the primitive operators we use a function
Code_Operator which gives the instruction of each oper-
ator and we have: [[op]]P = Cur(Snd; Cod_Op(op););
where:

Cod_Op(+) = Add Cod_Op(-) = Sub
Cod_Op(=) = Equal Cod_Op(fst) = Fst

Cod_Op(snd) = Snd Cod_Op(isnc) = Isnc

Applications, abstractions, pairs, let binding and recursive
binding are classically compiled (see [5, 1]). For some op-
timizations, we use a trick of [5] which compiles differ-
ently applications and primitive operators applied to their
arguments (figure 3).

3.3.3. Parallel operators For the primitive operations,
we used what the semantics suggests: the parallel opera-
tor mkpar is compiled to the application of the expression
to the “pid” (or name) of the processes and apply is simply
the application because the first value is supposed to be a
closure (or recursive) from an abstraction or an operator.
Thus we add to the CodOp the two new cases:

Cod_Op(op) =

{
Pid; Cons; App where op = mkpar
App where op = apply

The global conditional is compiled like the traditional con-
ditional but with another argument and by adding the At
instructions before the Branch to make the synchronous
and communication running of the BSP model (figure 3).

To compile the put operator, a first way presented by
[18] used at compilation the static number of processes
and two special instructions: one adds code during the ex-
ecution to calculate all the values to be sent and a second
exchanges those values and generates code to read them.
Clearly, in a real implementation with real machine codes
this is neither easy nor efficient to add a lot of machine
code. Moreover the length of this code was dependent on
the static number of processes of the parallel machine.

To remedy to this problem, we use a program which
recursively computes the values to be sent. The source of
this program is independent on the number of processes be
it execution depends on it since this program uses bsp_p.

To do this, we can add a special closure name
put_function to iterate the calculus. We can write it in our
functional language to directly have the code generated by
our compiler (Figure 4).

To have the compilation of the put primitive operator,
we use Insert_Put (figure 2): informally Insert_Put

adds the Send instruction in the code generated (by our
compilation schema) from the put_function between the
end of the construction of the last pair and the call of the
read function (the compiled code is not shown here for the
sake of conciseness).

Let us explain informally what happens at a given pro-
cess. create recursively computes the values to be sent.
f is here the function given as argument (at a given pro-
cess) to the put primitive in a BSML program. It is ap-
plied to all the process numbers from the last one to the

let put_function = fun f ->
let rec create n =

if n=0 then f n else ((f n),(create (n-1))) in
let construct_one_case = fun g -> fun pid -> fun value -> fun n ->

if n=pid then value else g n in
let rec read couple = let counter=(fst couple) in

let value=(snd couple) in
if counter=0 then fun n -> (if n=0 then value else nc)
else (construct_on_case(read(counter-1,snd value))counter)(fst value)

in read ((bsp_p-1),(create(bsp_p-1)))

Figure 4. put_function

first one: we then have p values to be sent. They are in
a data structure similar to a list but built using pairs only:
(vp−1, (vp−2, . . . (v1, v0))).

The Send instruction exchanges the values between the
different processes. At the end of the exchange, each pro-
cess has again p values organized as described before.

Then read and construct_one_case build recur-
sively the function (in the case of the machine a closure)
which is the result of the put primitive of BSML (at a given
process). At the first step the function produced is fun n
-> if n=p-1 then vp−1 else nc. When the re-
cursion ends we obtain a closure which represents the fol-
lowing function:

fun n->if n=p-1 then vp−1

else . . .if n=0 then v0 else nc

3.4. Example

We developed a sequential implementation of the BSP
CAM. To illustrate, we compiled and ran the following
trivial expression (see Figure 5) with two processes mkpar
(fun pid -> pid+1). We also implemented a paral-
lel version of the BSP CAM with the BSMLlib library.
BSML programs are compiled to lists of instructions of
the BSP CAM. Thus it cannot attain the efficiency of an
abstract machine written in a low level language and with
a real compiler to byte-code, but the first experiments show
that the execution times follow the costs predicted by the
BSP model with of course very large values for g and l and
a low value for the “processor” speed (which in this case
represents the speed of the non-optimized CAM).

4. Conclusions and Future Works

The Bulk Synchronous Parallel Categorical Abstract
Machine presented here provides a detailed formal descrip-
tion of a parallel runtime system for Bulk Synchronous
Parallel ML. It has two advantages with respect to the BSP-
SECD machine and the BSP-CAM of [18]: the number of

processes of the parallel machine has not to been known at
compilation, thus improving the portability; the commu-
nication operation does not add instructions at execution,
making the implementation both simpler and more classic.
We already developed a parallel prototype of this machine
using the BSMLlib library. Timings show that the BSP
model holds. A complementary side is our work on proofs
of BSML program using the Coq Proof Assistant [7]. The
next phases will be:

• the proof of correctness of this machine with respect
to a version of the BSλ-calculus with explicit sub-
stitution [16]. We will use the work of Hardin and
et. [11] on the proof of sequential abstract machines
using a λ-calculus of explicit substitutions.

• extensions of the machine to be able to compile the
full Caml language extended by parallel operations:
imperative features such as assignment (we already
studied at a higher level, the interaction of our parallel
operations with the imperative features of Caml [9])
and exceptions. This is an ongoing work. The main
problem is to design an exception mechanism to deal
with exceptions raised into a mkpar (at the local
level) but caught only at the global level.

• the development of an efficient and certified parallel
implementation of this abstract machine. We will use
Spark (www.sparkada.com).

Acknowledgments This work is supported by a grant from
the French Ministry of Research and the ACI Grid pro-
gram, under the project CARAML.

5. References

[1] S. Boutin. Proving correctness of the translation
from mini-ml to the cam with the coq proof develop-
ment system. Technical Report 2536, INRIA, 1995.

[2] L. Cardelli. Compiling a functional language. In
Conference Record of the 1984 ACM Symposium on

Processor 0 Processor 1
()::[] Cur(C);Pid;Cons;App; ()::[] Cur(C);Pid;Cons;App;
([C:()])::[] Pid;Cons;App; [C:()]::[] Pid;Cons;App;
0::[C:()]::[] Cons;App; 1::[C:()]::[] Cons;App;
([C:()],0)::[] App; ([C:()],0)::[] App;
((),0)::;::[] C ((),1)::;::[] C
((),0)::((),0)::;::[] Snd;Swap;Quote 1;Cons;Add;Return; ((),1)::((),1)::;::[] Snd;Swap;Quote 1;Cons;Add;Return;
0::((),0)::;::[] Swap;Quote 1;Cons;Add;Return; 1::((),1)::;::[] Swap;Quote 1;Cons;Add;Return;
((),0)::0::;::[] Quote 1;Cons;Add;Return; ((),1)::1::;::[] Quote 1;Cons;Add;Return;
1::0::;::[] Cons;Add;Return; 1::1::;::[] Cons;Add;Return;
(0,1)::;::[] Add;Return; (1,1)::;::[] Add;Return;
1::;::[] Return; 2::;::[] Return;
1::[] ; 2::[] ;

where C=Push;Snd;Swap;Quote 1;Cons;Add;Return;
and where i is the name of the process and p the number of processes

Figure 5. BSP CAM running example

Lisp and Functional Programming, pages 208–217,
Austin, Texas, August 1984. ACM.

[3] G. Cousineau, P.-L. Curien, and M. Mauny. The
categorical abstract machine. Science of Computer
Programming, 8:173–202, 1987.

[4] G. Cousineau and G. Huet. The CAML primer (ver-
sion 2.6.1). Technical report, INRIA-Rocquencourt,
1990.

[5] P.-L. Curien. Categorical Combinators, Se-
quential Algorithms and Functional Programming.
Birkhäuser, Boston, second edition, 1993.

[6] N.G. De Bruijn. Lambda-calculus notation with
nameless dummies, a tool for automatic formula ma-
nipulation, whith application to the Church-Rosser
theorem. Indag. Math., 34:381–392, 1972.

[7] F. Gava. Formal Proofs of Functional BSP Pro-
grams. Parallel Processing Letters, 2003. to appear.

[8] F. Gava and F. Loulergue. A Polymorphic Type
System for Bulk Synchronous Parallel ML. In
PaCT 2003, number 2763 in LNCS, pages 215–229.
Springer, 2003.

[9] F. Gava and F. Loulergue. Semantics of a Functional
Bulk Synchronous Parallel Language with Impera-
tive Features. In ParCo 2003, Dresden, Germany,
2003. to appear.

[10] A. V. Gerbessiotis and L. G. Valiant. Direct Bulk-
Synchronous Parallel Algorithms. Journal of Paral-
lel and Distributed Computing, 22:251–267, 1994.

[11] T. Hardin, L. Maranget, and L. Pagano. Functional
runtime systems within the lambda-sigma calculus.
Journal of Functional Programming, 8(2):131–176,
1998.

[12] P. J. Landin. The mechanical evaluation of expres-
sions. The Computer Journal, 4(6):308–320, 1964.

[13] Xavier Leroy. The Objective Caml System 3.06,
2002. web pages at www.ocaml.org.

[14] F. Loulergue. Distributed Evaluation of Func-
tional BSP Programs. Parallel Processing Letters,
(4):423–437, 2001.

[15] F. Loulergue. Implementation of a Functional Bulk
Synchronous Parallel Programming Library. In 14th
IASTED PDCS Conference, pages 452–457. ACTA
Press, 2002.

[16] F. Loulergue. A Calculus of Functional BSP Pro-
grams with Explicit Substitution. In ParCo 2003,
Dresden, Germany, 2003. to appear.

[17] F. Loulergue, G. Hains, and C. Foisy. A Calculus
of Functional BSP Programs. Science of Computer
Programming, 37(1-3):253–277, 2000.

[18] A. Merlin and G. Hains. La Machine Abstraite Caté-
gorique BSP. In Journées Francophones des Lan-
gages Applicatifs. INRIA, 2002.

[19] A. Merlin, G. Hains, and F. Loulergue. A SPMD En-
vironment Machine for Functional BSP Programs.
In Proceedings of the Third Scottish Functional Pro-
gramming Workshop, 2001.

[20] S. L. Peyton Jones. The Implementation of Func-
tional Programming Languages. Prentice-Hall,
1987.

[21] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl.
Questions and Answers about BSP. Scientific Pro-
gramming, 6(3):249–274, 1997.

[22] M. Snir and W. Gropp. MPI the Complete Refer-
ence. MIT Press, 1998.

[23] Leslie G Valiant. A bridging model for parallel com-
putation. Communications of the ACM, 33(8):103,
1990.

