Parallel I/0 in Bulk-Synchronous Parallel ML

Frédéric Gava

LACL, University Paris XII, Créteil, France
gavaQuniv-parisi2.fr

Abstract. Bulk Synchronous Parallel ML or BSML is a functional data-
parallel language for programming bulk synchronous parallel (BSP) al-
gorithms. The execution time can be estimated and dead-locks and in-
determinism are avoided. For large scale applications where parallel pro-
cessing is helpful and where the total amount of data often exceeds the
total main memory available, parallel disk I/O becomes a necessity. We
present here a library of I/O features for BSML and its cost model.

1 Introduction

Ezternal memory (EM) algorithms are designed for large computational prob-
lems in which the size of the internal memory of the computer is only a small
fraction of the size of the problem. Important applications fall into this category
([12] for a survey). Parallel processing is an important issue for EM algorithms for
the same reasons that parallel processing is of practical interest in non-EM algo-
rithm design. The combination of I/O computing, on multiple disks, with multi-
processor parallelism is a challenge for the ” Large-Scale“ computing community.
Bulk-Synchronous Parallel ML or BSML is an extension of ML for programming
Bulk-Synchronous Parallel (BSP) algorithms as functional programs associated
with a compositional cost model. BSP computing is a parallel programming
model introduced by Valiant [T1] to offer a high degree of abstraction like PRAM
models. Such algorithms offer portable, predictable and scalable performances
on a wide variety of architectures ([8] for a survey). BSML expresses them with
a small set of primitives taken from the confluent BSA-calculus. Those opera-
tions are implemented as a parallel library (http://bsmllib.free.fr) for the
functional programming language Objective Caml (http://www.ocaml.org).
Parallel disk I/O has been identified as a critical component of a suitable high
performance computer. [2] showed how an EM machine can take full advantage of
parallel disk I/O and multiple processors. This model is based on an extension of
the BSP model for I/O accesses. To take advantage of these new results, we have
to extend the BSML language with parallel I/O features for programming this
new kind of algorithms. This paper describes our first work in this direction. The
remainder of this paper is organized as follows. In Section Rlwe briefly present the
BSML language. In Section[3 we introduce the EM-BSP model and the problems
that appear in BSML. We then give in Section [the new primitives for BSML,
the associated cost model and an example. We discuss related work and conclude
(section [)). This paper is an extended abstract of a technical report which can
be found at http://www.univ-parisi2.fr/lacl where more details are given.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 331-338] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

http://bsmllib.free.fr
http://www.ocaml.org
http://www.univ-paris12.fr/lacl
Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

332 F. Gava

2 Functional Bulk-Synchronous Parallel ML

A BSP computer contains a set of processor-memory pairs, a communication
network allowing inter-processor delivery of messages and a global synchroniza-
tion unit which executes collective requests for a synchronization barrier. In this
model, a parallel computation is subdivided in super-steps, at the end of which
a barrier synchronization and a routing is performed. Hereafter all requests for
data were posted during a preceding super-step are fullfilled.

There is currently no implementation of a full BSML language but rather a
partial implementation as a library (the BSML1ib library) for Objective Caml. In
particular, it offers the function bsp_p:unit->int such as the value of bsp_p()
is p, the static number of processes of the parallel machine. There is also an
abstract polymorphic type ’a par which represents the type of p-wide paral-
lel vectors of objects of type ’a, one per process. The nesting of par types is
prohibited. Our static analysis enforces this restriction [3]. The BSML parallel
constructs operate on parallel vectors. Parallel vectors are created by:

mkpar: (int -> ’a) -> ’a par
so that (mkpar f) stores (f i) on process i for ¢ between 0 and (p—1) ((mkpar
£)=((f 0),...,(f (p—1))). These values are said to be local. The expression
(mkpar f) is a parallel object and it is said to be global (which is similar on each
processor). A BSP algorithm is expressed as a combination of asynchronous local
computations (first phase of a superstep) and phases of global communication
(second phase of a superstep) with global synchronization (third phase of a su-
perstep). Asynchronous phases are programmed with mkpar and with:
apply: (a -> ’b) par -> ’a par -> ’b par
so that apply (mkpar f) (mkpar e) stores (f i) (e i) on process ¢. The
communication and synchronization phases are expressed by:
put: (int->’a option) par -> (int->’a option) par
where ’a option is defined by: type ’a option = None | Some of ’a. Con-
sider the expression: put (mkpar (fun i->fs;))(x). To send a value v from pro-
cess j to process i, the function fs; at process j must be such that (fs; i)
evaluates to Some v. To send no value from process j to process i, (fs; i) must
evaluate to None. Expression (x) evaluates to a parallel vector containing a func-
tion £d; of delivered messages on every process. At process i, (£d; j) evaluates
to None if process j sent no message to process i or evaluates to Some v if pro-
cess j sent the value v to the process i. The full language would also contain a
synchronous global conditional, omitted here for the sake of conciseness.

3 External Memories in BSML

3.1 The EM-BSP Model

In the BSP model, the performance of a parallel computer is characterized by
only three parameters (expressed as multiples of the local processing speed): p
the number of processors, [the time required for a global synchronization and
g the time for collectively delivering a l-relation (communication phase where

Parallel I/O in Bulk-Synchronous Parallel ML 333

Internal Bus

Nework
Router

Fig. 1. A BSP Computer with External Memories

every processor receives/sends at most one word). The network can deliver an
h-relation in time gh for any arity h.

[2] extended the BSP model to include secondary local memories. The basic
idea is very simple and it is illustrated in Figure[ll Each processor has, in addition
to its local memory, an EM in the form of a set of disks. Modern computers
typically have several layers of memory which include main memory and caches
as well as disks. We restrict ourselves to the two-level model because the speed
difference between disk and main memory is much more signifiant than between
the other layers of memory. This idea is applied to extend the BSP model to
its EM version EM-BSP by adding the following parameters to the standard
BSP parameters: M is the local memory size of each processor, D the number
of disk drives of each processor, B the transfer block size of a disk drive and
G is the ratio of local computational capacity (number of local computation
operations) divided by local I/O capacity (number of blocks of size B that can
be transferred between the local disks and memory) per unit time. In many
practical cases, all processors have the same number of disks and, thus, the
model is restricted to that case (although the model forbids different numbers of
drives and memory sizes for each processor). The disk drives of each processor
are denoted by Dy, D1, ... ,Dp_1. Each processor can use all its D disk drives
concurrently, and transfer D x B items from the local disks to its local memory in
a single 1/O operation being at cost G (thus, we do not deal with the intricacies
of blocked secondary memory accesses). Each processor is assumed to be able to
store in its local memory at least one block from each disk at the same time, i.e.,
DB << M. Like computation on the BSP model (for the sake of conciseness, we
refer to [8] for more details), the computation on the EM-BSP model proceeds
in a succession of super-steps and it allows multiple I/O operations during the
computation phase of the super-step.

3.2 Problems by Adding I/O in BSML

The main problem in adding external memory (and so I/O operators) to BSML
is to keep safe the fact that in the global context, the values on each processor
are the same. For example, take the following expression:

334 F. Gava

let our_channel= open_in "file.txt" in
let our_value=(input_value our_channel)) in ...

It is not true that the files (or the associate channel) on each processor contain
the same value and in this case, each processor reads on its secondary memory a
different value. If this expression had been evaluated with the BSML1ib library,
and we would have obtained an incoherent result (and a crash of the BSP ma-
chine). Another problem come from side-effects that can occur on each processor:

let a=mkpar(fun i->if(i=0)then(open_in "file.txt");skip else skip)
in (open_out "file.txt")

where only the first processor has opened a file in read mode and after, each
processor opened the same file in write mode except the first processor: the file
has already been open and we have an incoherent result. Our solution is to add
two kinds of files: global and local ones. In this way, we also add two kinds of
I/0 operators. Local 1/O operators do not have to occur in the global context
(also global I/O operators do not have to occur locally) and the global files need
to be the same on each node (in a shared disks or as a copy of the files on each
process). An advantage having shared disks is in the case of some algorithms
(as those which sort) when we have only one file (the list of data to sort) at
the beginning of the program and one file (the sorted data) at the end. On the
other hand, in the case of a distributed global file system, the global data are
also distributed and programs are less sensitive to the problem of faults.

Thus, we have two important cases for the global file system which could be
seen as new parameters of the EM-BSP machine: we have shared disks or not. In
the first case, the condition that the global files are the same for each processor
point of view requires some synchronizations for some global I/O operators. For
example, when the program either created or deleted a file because it seems
to be impossible (un-deterministic) for a process to create a file in the global
file system if at the same time another process deleted it. On the other hand,
reading (resp. writing) values from files do not need any synchronization (only
one of the processors need to really write the value on the shared disks). In the
second case, all the files are distributed and no synchronization is needed (each
processor read/write/delete etc. in its own file system) but at the beginning, the
global files systems need to be empty. By this way, a new ratio (G9) is needed
which could be G is their is no shared disks. We supposed to have the same D
and B for the shared disks (if not we can simulating these by cut the shared
disks and change the GY constant).

4 New Primitives and Their Costs

4.1 New Primitives

In this section we describe the core of our library, i.e, the minimal set of functions
for programming EM-BSP algorithms. This library will be incorporated in the
next release of the BSML1ib. As in the BSML1ib library, we used MPI and we have

Parallel I/O in Bulk-Synchronous Parallel ML 335

functions to access to the EM-BSP parameters of the underlining architecture.
In particular, if offers the functions embsp_D:unit->int which gives the number
of disks and is_global _shared: unit->bool which gives if the global file sys-
tem is shared or not. Since having two file systems, we need two abstract types
of input channels and output channels: glo_in_channel (resp. loc_in_channel)
and glo_out_channel (resp. loc_out_channel) to read or write in a global (resp.
local) file. Therefore, we can open the named files for writing, and return a new
output channel on that file, positioned at the beginning of the file. For this, we
have two kinds of functions for global and local files:

glo_open_out : string -> glo_out_channel

loc_open_out : string -> loc_out_channel
The file is truncated to zero length if it already exists. It is created if it does
not already exist. Raise Sys_error if the file could not be opened. In the same
manner, we have two functions for opening a named file in read mode which
returns a new input channel positioned at the beginning of the file. Now, with
our channel, we can read and write values to the files. To do this, we need to “se-
rialize” our values, i.e. transform our values to be written on a file: the module
Marshal of the Objective Caml language provides functions to encode arbitrary
data structures as sequences of bytes, which can then be written on a file and
can then be read back, possibly by another process. To Write the representation
of a structured value of any type to a channel (global or local), we used the
following functions:

glo_output_value : glo_out_channel -> ’a -> int

loc_output_value : loc_out_channel -> ’a -> int
which return the number of I/O operations used to write the values. The object
can be read back, by the read functions:

glo_input_value : glo_in_channel -> int * ’a

loc_input_value : loc_in_channel -> int * ’a
which read the representation of a structured value and return the corresponding
value with the number of I/O operations that have been done (we refer to [7]
in order to have type safe values in channel and read it). To write (or read) on
the D-disks of the machines, we used the thread facilities of Objective Caml: we
create D-threads which write (or read) on the D-disks. The last primitive copies
a local file from a processor to the global files system:

glo_copy : int -> string -> string -> unit par
and could be used at the end of the BSML program to copy the result to the
global file system. It is not a communication primitive because this method has
a more expensive cost than any communication primitive. As in any program-
ming language, we also have some functions close channels, to set the current
writing/reading position for channel, to return the total length (number of char-
acters) of the given channel, or to return the total size, in characters of a value if
it would be serialized to be written on a disk (and, thus, have the number of I/O
operations needed). But for the sake of conciseness, we did not present them.

336 F. Gava

operator cost

loc_open_in constant time tf,r
(Loc_output_value v)|G x [224) ()]
p x t9. + [If shared global file system
t Else
GY x (%e(“)] If shared global file system
px G x [220)] Blse
(%l x (G + GY) + If shared global file system
(%] X 2x G + size(file) x g+ [Else

glo_open_in

(glo_output_value v)

(glo_copy file)

Fig. 2. Cost of some operators
4.2 Formal Cost Model

Given the weak call-by-value strategy, a program is always reduced in the same
way. In this case, costs can be associated to the parallel and I/O operators. The
cost model associated to our programs follows our extention of the EM-BSP cost
model. If the sequential evaluation time of each component of the parallel vector
is w; +m; (computional time and local I/O time), the parallel evaluation time of
the parallel vector is maxg<j<p w; + Maxg<i<p M;. Provided the two arguments
of the parallel application are vectors of values, the parallel evaluation time of
(apply (fo,---, fo—1) (Vo,... ,Up_1)) I8 Maxg<i<p W; + Maxo<;<p M; where w;
(resp. m;) is the computational time (resp. I/O time) of (f; v;) at processor i.
To evaluate put (fo,..., fp—1), first each processor evaluates the p local terms
(fi 7), 0 < j < p leading to p? sending values vf . Once all values have been
exchanged, a synchronization barrier occurs. At the beginning of this second

super-step, each processor i constructs the function from the 11;- received values.

So, the parallel evaluation time of put (fy, ..., fp—1) is:
mar w} + max h; X g + maz m; + mar w? + I
0<i<p 0<i<p 0<i<p 0<i<p

where w} (resp. m;) is the computation time (resp. I/O time) of (f; j), h; is the
number of words transmitted (or received) by processor i and w? is the compu-
tation time at processor i to constructing the result function from the v;- values.
Our I/0 operators have naturally some I/O costs and some computational time.
We also provided that the arguments of the I/O operators have been evaluated
first (italweak call-by-value strategy). As explained in the EM-BSP model, each
transfer from (resp. to) the local files to (resp. from) its local memory has the
cost G for DB items and depending if the global files system is shared or not, the
global I/O operators have different costs and some barrier synchronisations is
needed. The Figure[2 gives the costs of some selected operators (for more details,
see the technical report). The cost (parallel evaluation time) above are context
independent. This is why our cost model is compositional. The compositional
nature of this cost model relies on the absence of nesting of parallel vectors (our
static analysis enforces this condition [3]) and the fact of having two kinds of
file systems: a global I/O operator which access to a global file (and could make
some communications or synchronization) never occurs locally.

Parallel I/O in Bulk-Synchronous Parallel ML 337

4.3 Example

Our example is the classical reduction of lists. Each processor performs a local
reduction, then sends its partial results to the following processors and finally
localy reduces the partial results with the sended values:

em_scan_list (+) <[1;2], [3;4]> = <[1;1+2], [1+2+3, 1+2+3+4]>
for a reduction of two processors. But to take advantage of the disks and I/O
operators, we suppose having large lists on each processor (6 billions of elements).
These lists are supposed to be in a file on each processor and they are cutted out
on sub-lists of sizes D B. The final result would be a file on each processor which
contain sub-lists of size DB. Preliminary experiments on a cluster of PCs (7 bi-
Pentium IIT with 512MB of RAM and ethernet network, see technical report) has
been done to show a performance comparison between a BSP algorithms using
only the BSML1ib and the corresponding EM-BSP code using our library to have
some parallel virtual memories. For small lists, the overhead for the external
memory mapping makes the BSML program outperform the EM-BSML one.
However, once the main memory is all utilized, the performance of the BSML
program degenerates (cost of the paging mechanism). The EM-BSML program
continues “smoothly” and clearly outperforms the BSML code.

5 Conclusions and Future Works

With few exceptions (e.g. [12]), previous authors focused on a uniprocessor EM
model. The Parallel Disk Model (PDM) introduced by Vitter and Shriver [12]
is used to model a two-level memory hierarchy consisting of D parallel disks
connected to v > 1 processors via a shared memory or a network. The PDM cost
measure is the number of I/O operations required by an algorithm, where items
can be transferred between internal memory and disks in a single I/O operation.
While the PDM captures computation and I/O costs; it is designed for a specific
type of communication network, where a communication operation is expected
to take a single unit of time, comparable with a single CPU instruction. BSP
and similar parallel models capture communication and computational costs for
a more general class of interconnection networks, but do not capture I/O costs.
Some other parallel functional languages like SAC [4], Eden [6] or GpH [5] offer
some I/0 features but without any cost model, and parallel EM algorithms need
to be carefully hand-crafted to work optimally and correctly in EM environments.
In [1], the authors have implemented some I/O operations to test their models
but in a low level language and low level data. To our knowledge, our library is
the first for an extension of the BSP model with I/O features (called EM-BSP)
and for a parallel functional language with a formal cost model.

The Bulk Synchronous Parallel ML allows direct mode Bulk Synchronous
Parallel programming and the current implementation of BSML is the BSML1ib
library. But for some applications where the size of the problem is very signifi-
cant, external memory is needed. We have presented in this paper an extention
of BSP model named the EM-BSP for external memory and how to extend
the BSML1ib for I/O access in this external memory. The cost model of these

338 F. Gava

new operators and a formal semantics (see technical report) have been investi-
gated. This library is the continuity of our work about imperative and persistant
features on our functional data-parallel language. To ensure safety and the com-
positional cost model, two kinds of I/O operators are needed (global and local
ones) and those operators need not occur in another context (local or global).
We are currently working on a flow analysis [9] for BSML to avoid this problem
statically and to forbid nesting of parallel vectors. We are also working on the
implementation of BSP algorithms [§] [10] and their transformations into EM-
BSP algorithms as described in [2] to have a new library of classical programs
as in the BSML1ib library to be used with large computational problems.

Acknowledgments. The authors wish to thank the anonymous referees for
their comments. This work is supported by a grant from the French Min-
istry of Research and the ACI Grid program, under the project CARAML
(www.caraml.org).

References

1. F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari. Parallel virtual mem-
ory. In 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 889—
890, Baltimore, MD, 1999.

2. F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari. Bulk synchronous
parallel algorithms for the external memory model. Theory of Computing Systems,
35:567-598, 2003.

3. F. Gava and F. Loulergue. A Polymorphic Type System for Bulk Synchronous
Parallel ML. In PaCT 2003, LNCS, pages 215-229. Springer Verlag, 2003.

4. C. Grelck and Sven-Bodo Scholz. Classes and objects as basis for I/O in SAC. In
Proceedings of IFL’95, pages 30—44, Gothenburg, Sweden, 1995.

5. P.W. Trinder K. Hammond and all. Comparing parallel functional languages:
Programming and performance. Higher-order and Symbolic Computation, 15(3),
2003.

6. U. Klusik, Y. Ortega, and R. Pena. Implementing EDEN: Dreams becomes reality.
In K. Hammond, T. Davie, and C. Clack, editors, Proceedings of IFL’98, volume
1595 of LNCS, pages 103-119. Springer-Verlag, 1999.

7. X. Leroy and M. Mauny. Dynamics in ML. Journal of Functional Programminyg,
3(4):431-463, 1994.

8. W. F. McColl. Scalability, portability and predictability: The BSP approach to
parallel programming. Future Generation Computer Systems, 12:265-272, 1996.

9. F. Pottier and V. Simonet. Information flow inference of ML. ACM Transactions
on Programming Languages and Systems, 25(1):117-158, 2003.

10. J. F. Sibeyn and M. Kaufmann. BSP-Like External-Memory Computation. In
Proc. 8rd Italian Conference on Algorithms and Complezity, volume 1203 of LNCS,
pages 229-240. Springer-Verlag, 1997.

11. L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103, August 1990.

12. J.S. Vitter and E.A.M. Shriver. Algorithms for parallel memory, two -level mem-
ories. Algorithmica, 12(2):110-147, 1994.

	Introduction
	Functional Bulk-Synchronous Parallel ML
	External Memories in BSML
	The EM-BSP Model
	Problems by Adding I/O in BSML

	New Primitives and Their Costs
	New Primitives
	Formal Cost Model
	Example

	Conclusions and Future Works

