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Abstract. Bulk-Synchronous Parallel ML (BSML) is a functional data-
parallel language for the implementation of Bulk-Synchronous Parallel
(BSP) algorithms. It makes an estimation of the execution time (cost)
possible. This paper presents some general examples of BSML programs
and a comparison of their predicted costs with the measured execution
time on a parallel machine.
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1 Introduction

Solving a problem is often a complex job especially when a parallel machine
is used: it is necessary to manage communication, synchronisation, partition of
data etc. at the same time. Algorithmic models and high-level languages are
needed to simplify both the design of parallel algorithms (ability to compare
their costs1) and their programmation in a safe, efficient and portable manner.

BSML is an extension of ML designed for the implementation of BSP algo-
rithms as functional programs using a small set of parallel primitives. BSP [3,17]
is a parallel model which offers a high degree of abstraction and allows scalable
and predictable performance on a wide variety of architectures with a realistic
cost model based on a small set of machine parameters. Deadlocks and non-
determinism are avoided. BSML is implemented as a parallel library2 for the
functional programming language Objective Caml (OCaml).

Our methodology is as follow: first, analyse the complexity of the sequential
algorithm, then design one or more parallel algorithms, analyse their BSP costs,
calculate the BSP parameters of the parallel machines, program these algorithms
in BSML and finally test the performance of the programs on different architec-
tures. Using safe high-level languages like ML to program BSP algorithms (that
is BSML) allows performance, scalability and expressivity.

Other approaches to safe high-performance computation exist. We can cite
concurrent programming [6], more or less synchronous processes [5,18] or the au-
tomatic parallelization of programs [1] and algorithmic skeletons [7]. In the first
two cases, the expressivity of concurrence or mobility is sought (but with lower

1 We speak about complexity for sequential algorithms and cost for parallel ones.
2 Web page at http://bsmllib.free.fr.

gava@univ-paris12.fr
http://bsmllib.free.fr


performance). In other cases, it’s the simplicity of parallelism (which becomes
almost transparent) which is sought. As opposed to these methods, we prefer
the use of a performance model3 at the cost of expressiveness.

Indeed, other approaches do not allow, in their intrinsic models, to predict the
run-time4. That makes algorithmic optimisations and the choice of the best al-
gorithm for a given architecture difficult: even if the number of processes/thread-
s/workers or their computations can be limited, it is often difficult to analyse
the communication times or the placement of computation and data on the pro-
cessors. Nevertheless, it is possible to find empirical optimisations (by successive
tests) or to design better schedulers [2]. But algorithmic optimisations are still
hard to analyse. In this article, we illustrate our methodology with simple exam-
ples of problems that illustrate many aspects of classical algorithmic problems.

2 Functional Bulk-Synchronous Parallel Programming

2.1 The Bulk-Synchronous Parallel Model

In the BSP model, a computer is a
set of uniform processor-memory
pairs and a communication net-
work allowing inter-processor de-
livery of messages (for sake of con-
ciseness, we refer to [3,17] for more
details). A BSP program is exe-
cuted as a sequence of super-steps,
each one divided into three suc-
cessive disjoint phases: each pro-
cessor uses its local data (only) to
perform sequential computations
and to request data transfers to

other nodes; the network delivers the requested data; a global synchronisation
barrier occurs, making the transferred data available for the next super-step.

The performance of the BSP machine is characterised by 4 parameters: the
local processing speed r; the number of processor p; the time l required for a
barrier; and the time g for collectively delivering a 1-relation, a communication
phase where every processor receives/sends at most one word. The network can
deliver an h-relation (every processor receives/sends at most h words) in time
g × h. The execution time (cost) of a super-step s is the sum of the maximal of
the local processing, the data delivery and the global synchronisation times.

3 Note that this observation has already been made in the context of programming
C+BSP matrix computations [12,14].

4 Some tools [8,11] exist but are too much complex to be used or are not implemented.



bsp p: unit→int bsp l: unit→float bsp g: unit→float
mkpar: (int→α )→α par apply: (α →β ) par→α par→β par

put: (int→α ) par→(int→α ) par proj: α par→int→α

super: (unit→α )→(unit→β )→α ∗ β

Fig. 1. The BSML primitives.

2.2 Bulk-Synchronous Parallel ML

BSML is based on 8 primitives (Fig. 1), three of which are used to access the
parameters of the machine. Implementation of these primitives rely either on
MPI, PUB [4] or on the TCP/IP functions provided by the Unix module of
OCaml. A BSML program is built as a sequential program on a parallel data
structure called parallel vector. Its ML type is α par, which expresses that it
contains a value of type α at each of the p processors.

The BSP asynchronous phase is programmed using the two primitives mkpar

and apply so that (mkpar f) stores (f i) on process i (f is a sequential function):
mkpar f = (f 0) · · · (f i) · · · (f (p−1)) and apply applies a parallel vector of func-
tions to a parallel vector of arguments: apply · · · fi · · · · · · vi · · · = · · · (fi vi) · · ·

The first communication primitive is put. It takes as argument a parallel
vector of functions which should return, when applied to i, the value to be sent
to processor i. put returns a parallel vector with the vector of received values:
at each processor these values are stored in a function which takes as argument
a processor identifier and returns the value sent by this processor.

The second communication primitive proj is such that (proj vec) returns a
function f where (f n) returns the nth value of the parallel vector vec. Without
this primitive, the global control cannot take into account data computed locally.

The primitive super allows the evaluation of two BSML expressions as in-
terleaved threads of BSP computations. From the programmer’s point of view,
the semantics of the superposition is the same as pairing but the evaluation of
superE1 E2 is different: the phases of asynchronous computation of E1 and E2

are run; then the communication phase of E1 is merged with that of of E2 and
only one barrier occurs; if the evaluation of E1 needs more super-steps than that
of E2 then the evaluation of E1 continues (and vice versa).

2.3 Often Used Parallel Functions

The primitives described in the previous section constitute the core of the BSML
language. In this section, we define some useful functions which are parts of the
standard BSML library. For the sake of conciseness, their full code is omitted.

replicate:α →α par creates a parallel vector which contains the same value
everywhere. The primitive apply can be used only for a parallel vector of func-
tions that take one argument. To deal with functions that take two arguments
we need to define the apply2:(α →β →γ )→α par→β par→γ par function.
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Fig. 2. BSP parameters of our machine.

It is also common to apply the same sequential function at each processor.
We use the parfun functions where only the number of arguments to apply differs:
parfun:(α →β )→α par→β par and parfun2:(α →β →γ )→α par→β par→γ par.

It is common to perform a total exchange. Each processor contains a value
(represented as a vector of values) and the result of (rpl total:α par→α list v0 · · · vp−1 )
is [v0, . . . , vp−1], a list of these values on each processor.

2.4 Computation of the BSP parameters

One of the main advantages of the BSP model is its cost model: it is quite simple
and yet accurate. We used the BSML implementation [15] of a program [3] that
benchmarks and determines the BSP parameters of our machine (16 Pentium
IV 2.8 Ghz, 1 Gb RAM nodes cluster interconnected with a Gigabyte Ethernet
network). We then compute these parameters for 3 libraries, corresponding to 2
different implementations of BSML: MPICH, OPEN-MPI5 and PUB [4].

Fig. 2 summarises the timings (where r is 330 Mflops/s for each library) for an
increasing number of processors. We notice that the parameter l is growing in a
quasi-linear way for the library PUB. However, for the libraries MPI, two jumps
are visible. No explanation has been found yet. For parameter g, it is surprising
to see that it is high for a few processors and then more stable (real parameter
exchange of the network). This is certainly due to the buffer management in
communication protocols and OS: when the number of processors increases, the
buffers are filled faster and messages are transmitted immediately.

3 Examples of BSP problems in BSML

To illustrate our methodology, we present 2 classic problems: sieve of Eratos-
thenes and N -body computing. For each problem, we give the parallel methods,
BSP cost formulas as well as tests of comparison between theoretical (depending

5 http://www.mcs.anl.gov/mpi/mpich1 and http://www.open-mpi.org/

http://www.mcs.anl.gov/mpi/mpich1
http://www.open-mpi.org/


on the BSP parameters) and experimental performances. This comparison shows
that the BSP cost analysis would help choosing the best BSML program.

3.1 Sieve of Eratosthenes

The sieve of Eratosthenes generates a list of primary numbers below a given
integer n. We study 3 parallelization methods. We generate only the integers
that are not multiple of the 4 first prime numbers and we classically iterate only
to

√
n. The probability of a number a to be a prime number is 1

log(a) , so we

deduce a complexity of (
√

n × n)/ log(n).
Fig. 3 gives the BSML code of the 3 methods. We used the following functions:

elim:int list→int→int list which deletes from a list all the integers multiple of the
given parameter; final elim:int list→int list→int list iterates elim; seq generate:int→int→int list
which returns the list of integers between 2 bounds; and select:int→int list→int list
which gives the

√
nth first prime numbers of a list.

Logarithmic reduce method For our first method we use the classical parallel
prefix computation (also call folding reduce) :

scan ⊕ v0 · · · vp−1 = v0 v0 ⊕ v1 · · · ⊕p−1
k=0vk

We use a divide-and-conquer BSP algorithm (implemented using the super prim-
itive) where the processors are divided into two parts and the scan is recursively
applied to those parts; the value held by the last processor of the first part is
broadcasted to all the processors of the second part, then this value and the
values held locally are combined together by the associative operator ⊕ on the
second part. In our computation, the sent values are first modified by a given
function (select to just sent the

√
nth first prime numbers)

The parallel methods is thus very simple: each processor i holds the inte-
gers between i × n

p
+ 1 and (i + 1) × n

p
. Each processor computes a local sieve

(the processor 0 contains thus the first prime numbers) and then our scan is ap-
plied. We then eliminate on processor i the integers that are multiple of integers
of processors i − 1, i − 2, etc. We have log(p) super-steps where each processor
sent/received at most 2 values (list of size max

√
n). The BSP cost is accordingly:

log(p) × (
√

m×m

log(m) + 2 ×
√

n × g + l) where m = n
p
.

Direct method It is easy to see that our initial distribution (bloc of integers)
gives a bad load balancing (processor p − 1 has the bigger integers which have
little probability to be prime). We will distributes integers in a cyclic way: a
is given to processor i where amodp = i). The second method works as fol-
lows: each processor computes a local sieve; then integers that are less to

√
n

are globally exchanged; a new sieve is applied to this list of integers (thus giving
prime numbers) and each processor eliminates, in its own list, integers that are
multiples of this

√
nth first primes. The BSP cost is accordingly:

2 ×
√

m×m

log(m) +

√√
n×

√
n

log(
√

n)
+

√
n × g + l



let eratosthene scan n =
let p=bsp p() in

let listes = mkpar (fun pid→ if pid=0 then seq generate (n/p) 10
else seq generate ((pid+1)∗(n/p)) (pid∗(n/p)+1)) in

let local eras = parfun (local eratosthene n) listes in

let scan era = scan super final elim (select n) local eras in

applyat 0 (fun l →2::3::5::7::l) (fun l→l) scan era

let eratosthene direct n =
let listes = mkpar (fun pid→ local generation n pid) in

let etape1 = parfun (local eratosthene n) listes in

let selects = parfun (select n) etape1 in

let echanges = replicate total exchange selects in

let premiers = local eratosthene n
(List.fold left (List.merge compare) [] echanges) in

let etape2 = parfun (final elim premiers) etape1 in

applyat 0 (fun l→2::3::5::7::(premiers@l)) (fun l→l) etape2

let rec eratosthene n =
if (fin recursion n) then apply (mkpar distribution) (replicate (seq eratosthene n))
else

let carre n = int of float (sqrt (float of int n)) in

let prems distr = eratosthene carre n in

let listes = mkpar (fun pid →local generation2 n carre n pid) in

let echanges = replicate total exchange prems distr in

let prems = (List.fold left (List.merge compare) [] echanges) in

parfun (final elim prems) listes
let eratosthene rec n =
applyat 0 (fun l→2::3::5::7::l) (fun l→l) (eratosthene n)

Fig. 3. BSML code of the the parallel versions of the sieve of Eratosthenes.

Recursive method Our last method is based on the generation of the
√

nth
first primes and elimination of the multiples of this list of integers. We generate
this by a inductive function on n. We suppose that the inductive step gives the√

nth first primes and we perform a total exchange on them to eliminates the
non-primes. End of this induction comes from the BSP cost: we end when n is
small enough so that the sequential methods is faster than the parallel one. The
inductive BSP cost is accordingly:

Cost(n) =
√

m×m

log(m) +
√

n × g + l + Cost(
√

n)

Cost(n) =
√

n×n

log(n) if BSP cost ¿ complexity

Fig. 4 gives the predicted and measured performances (using the PUB imple-
mentation). To simplify our prediction, we suppose that pattern-matching and
modulo are constants in time. Size of lists of integers can be measured using the
Marshal module of OCaml. Note that we obtain a super-linear acceleration for
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Fig. 4. Performances (using PUB) of the sieve of Eratosthenes.

the recursive method. This is due to the fact that, using a parallel method, each
processor has a smaller list of integers and thus the garbage collector of OCaml

is called less often. One can notice that predicted performances using the BSP
cost model are close to the measured ones.

3.2 The N-body problem

The classic N -body problem is to calculate the gravitational energy of N point
masses, which is given by:

E = −
N∑

i=1
i6=j

N∑

j=1

mi × mj

ri − rj

The complexity of this problem is thus in order of magnitude of N2. To
compute this sum, we show two parallel algorithms : using a total exchange
of the point masses or using a systolic loop6. At the beginning of these two
methods, each processor contains a sub-part (as a list) of the N point masses:
we thus have a parallel vector of lists of N/p point masses.

Fig. 5 gives the BSML code of the 2 algorithms. pair energy computes the
interaction of a list of masses with another one. The sequential method is thus
a call of this function to the same list.

Total exchange method The method is naive: a total exchange of these lists
is done and then processors compute the interaction of its own list with other
ones; at the end, a parallel fold is applied to sum the partial interactions. The
BSP cost is accordingly: N × g + 2 × N + N

p
× N + l + p × g + l that is two

super-steps: time of the total exchange and the concatenation of the received
lists; time to perform the local interactions and time to finish the fold.

6 There exist more sophisticated algorithms that take advantage of the symmetry of
the sum but this is not the subject of this article.



Systolic loop Our second algorithm is based on a systolic loop [13]. In such
an algorithm, data is passed around from processor to processor in a sequence
of super-steps. We can easily write a generic systolic loop in BSML:

(∗ val systolic:(α →α →β ) →(γ →β par →γ ) →α par →γ →γ ∗)
let systolic f op vec init =
let rec calc n v res =
if n=0 then res else

let newv=Bsmlcomm.shift right v in

calc (n−1) newv (op res (Bsmlbase.parfun2 f vec newv))
in calc (bsp p()) vec init

with shift right:α par→α par which shifts the values from each processor to its
right-hand neighbour (part of the standard BSML library).

Initially, each processor receives its share of the N point masses and calculates
the interactions among them. Then it sends a copy of its particles to its right-
hand neighbour, while at the same time receiving the particles from its left-hand
neighbour. It calculates the interactions between its own particles and those that
just came in, and then it passes on the particles that came from the left-hand
neighbour to the right-hand neighbour. After p − 1 super-steps, all pairs of
particles have been treated and a folding of these values can be done to finish
the computation. The BSP cost is accordingly:

p × (N
p
× g + l + 2 × N

p
+ N

p
× N

p
) + p × g + l

≡ N × g + p × l + 2 × N + N
p
× N + l + p × g + l

that is the same as before but with more synchronization time.
Fig. 6 gives the predicted and measured performance (using MPICH). Size

of lists of particules are measured as before. One can notice that performances
scales well. The naive method has better theoretical and practical performances
than the systolic ones. The asset of the systolic method appears when the number
of particules is so big that lists do not fit in the main memory of a node of the
parallel machine: performance degenerates due to the paging mechanism used
to get enough virtual memory. This is a limitation of the BSP model that could
be solved using a more sophisticated one for out-of-core applications [9].

One can also notice that for our two examples (sieve of Eratosthenes and N -
body), measured performances are sometime better than predicted ones. This
is due to the fact that in some cases, communications can perform better than
predicted ones (g and l are averages of network parameters).

4 Conclusion

BSML is a language for programming BSP algorithms. We have attempted to
show that it is possible to predict the performance of BSP algorithms following
the parameters of a given machine and so to choose what the most efficient and
scalable BSML program is. We have illustrated this with two classical problems.
Our work illustrates the importance of a high-level parallel paradigm with more
compact and therefore more readable code without too bad performances.



type point = float ∗ float ∗ float and atom = point ∗ float
let minus point (x1,y1,z1) (x2,y2,z2) = (x1−.x2,y1−.y2,z1−.z2)
let length point (x,y,z) = sqrt(x∗.x +. y∗.y+. z∗.z)

(∗ val pair energy : atom list →atom list →float ∗)
let pair energy some bodies other bodies =
List.fold left (fun energy →function (r1,m1) →

energy+.(List.fold left (fun energy →function (r2,m2) →

let r=length point(minus point r2 r1) in

if r>0. then energy+.(m1∗.m2)/.r else energy)
0. other bodies)) 0. some bodies

(∗ Total exchange method ∗)
let final ex = parfun2 pair energy my bodies

(parfun List.concat (total exchange my bodies)) in

let res final= fold direct (+.) 0. final ex in

...
(∗ Systolic method ∗)
let energy=parfun2 pair energy my bodies my bodies in

let final sys = systolic pair energy (parfun2 (+.)) my bodies energy in

let res final= fold direct (+.) 0. final sys in

...

Fig. 5. BSML code of the parallel versions of the N -body problem.
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Fig. 6. Performance (using MPICH) of the N -body problem.

Even if our methodology might seem lengthy, we believe it is necessary for the
future of parallel programming especially as multi-cores machines became the
norm. Their programming (as well as clusters) in a safe, expressive, predictable
and efficient manner will surely become one of the keys to software design.

Future work will naturally be comparison with other parallel languages and
libraries as OCamlP3L, C+BSPlib, C+MPI, Eden or Gph [10] (and with big-
ger programs and other kinds of architectures as multi-cores ones) in order to
validate our approach. Finally, manual cost analysis for functional programs has



its limits: it is necessary to estimate (sometimes by testing) the number of flops
needed to make a pattern-matching, build a tuple, etc. We could use [16] in order
to estimate them automatically.

Acknowledgement: Thanks to Louis Gesbert for its speel checking.
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