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Abstract. Bulk-Synchronous Parallel ML (BSML) is a functional data-
parallel language to code Bulk-Synchronous Parallel (BSP) algorithms.
It allows an estimation of execution time, avoids deadlocks and nonde-
terminism. This paper presents the implementation of a new primitive
for BSML which can express divide-and-conquer algorithms.
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1 Introduction

Bulk-Synchronous Parallel ML (BSML) is an extension of ML to code Bulk-
Synchronous Parallel (BSP) algorithms as functional programs in direct mode.
BSP is a parallel programming model (we refer to [2,9] for an gentle introduction
to BSP) which offers a high degree of abstraction and allows scalable and pre-
dictable performance on a wide variety of architectures with a realistic cost model
based on a structured parallelism. Deadlocks and non-determinism are avoided.
BSP programs are portable across many parallel architectures and BSML ex-
presses them with a small set of primitives. These primitives are implemented as
a parallel library (http://bsmllib.free.fr) for the functional programming
language Objective Caml (OCaml). Using a safe high-level language as ML to
programming BSP algorithms allows performance, scalability and expressivity.

The BSP model does not allow to synchronize a subset of the processors. This
is often considered as an obstacle to express divide-and-conquer algorithms in
the BSP model. Nevertheless it is showed in [9] that for typical applications,
exploiting the loss of efficiency due to the lack of computation-communication
overlapping is outweighed by the advantages of bulk data transfer, while making
programming and debugging much more difficult.

Nevertheless, [10] argues that the divide-and-conquer paradigm fits naturally
into the BSP model, without any need of subset synchronization. It proposes a
method which is fully compliant with the BSP model. This method is based on
sequentially interleaved threads of BSP computation, called superthreads (more
explanation what superthreads are and how they support the divide-and-conquer
scheme can be found in [10]). [7] presents a new primitive for BSML called
parallel superposition and its associated cost model. This primitive is based on
a notion similar to Tiskin’s superthreads and was only informally described as
equivalent to pairing. Adding this primitive in BSML allows to programming
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bsp_p: unit→int bsp_l: unit→float bsp_g: unit→float
mkpar: (int→α )→α par apply: (α →β )par→α par→β par
put: (int→α option)par→(int→α option)par proj: α option par→int→α option
type α option = None | Some of α super: (unit →α ) →(unit →β ) →α ∗ β

Fig. 1. The core BSMLlib library

more easily divide-and-conquer BSP algorithms. In the current paper we present
the behavior of the parallel implementation.

2 Functional Bulk-Synchronous Parallel ML

BSML does not rely on SPMD (Single Program Multiple Data) programming.
Programs are identical to usual sequential OCaml programs but work on a parallel
data structure. Some of the advantages are better readability.

The BSMLlib library is based on the elements given in Figure 1. It gives access
to the BSP parameters of the underling architecture. For example, bsp_p() is
p, the static number of processes. There is an abstract polymorphic type α par
which represents the type of p-wide parallel vectors of objects of type α one per
processor. Those parallel vectors are created by mkpar so that (mkpar f) stores
(f i) on process i for i between 0 and p−1: mkpar f = (f 0) · · · (f i) · · · (f (p−1))

Asynchronous phases are programmed with mkpar and with apply such that
(apply (mkpar f) (mkpar e)) stores ((f i)(e i)) on process i:

apply · · · fi · · · · · · vi · · · = · · · (fi vi) · · ·

The put primitive expresses communication and synchronization phases. Con-
sider the expression: put(mkpar(fun i→fsi)) (∗). To send a value v (resp. no
value) from process j to process i, the function fsj at process j must be such as
(fsj i) evaluates to Some v (resp. None). The expression (∗) evaluates to a parallel
vector containing functions fdi of delivered messages. At process i, (fdi j) evalu-
ates to Some v (resp. None) if process j sent the value v (resp. no value) to the
process i. The proj primitive also expresses communication and synchronization
phases. (proj vec) returns a function f such that (f n) returns the nth value of the
parallel vector vec. If this value is the empty value None then process n sends no
message to the other processes. Otherwise this value is broadcast. Without this
primitive, the global control cannot take into account data computed locally.

The primitive super effects parallel superposition, which allows the evaluation
of two BSML expressions as interleaved threads of BSP computationsin. From
the programmer’s point of view, the functional semantics of the superposition is
the same as pairing but of course the evaluation of superE1 E2 is different from
the evaluation of (E1, E2) [4]). The phases of asynchronous computation of E1
and E2 are run. Then the communication phase of E1 is merged with that of of
E2. The messages are obtained by concatenation of the messages and only one
barrier occurs. If the evaluation of E1 needs more supersteps than that of E2
then the evaluation of E1 continues (and vice versa).
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3 Implementation

The implementation of the superthreads needed for the superposition uses the
thread feature of OCaml. Each superthread is defined as a thread associated
with an identifier and a channel of communication (à la Concurrent ML) to
sleep or wake up a superthread. A specific scheduler is thus needed. We also
need an environment of communication defined as a hash table (where keys are
the identifier of the superthreads).

3.1 New Implementation of the Primitive of BSML

In this new implementation of the BSMLlib library, the core module which con-
tains the primitives presented in section 2, is implemented in SPMD style us-
ing a lower level communication library, a module for the scheduling of the
superthreads called Scheduler, a module for the environment of communication
called EnvComm and a module of generic operators for the parallel superposition
called SuperThread. The implementation of all the other modules of the BSMLlib
library is independent of the actual implementation of these modules. The mod-
ule of communication called Comm is based on the following elements [8]:

pid: unit→int nprocs: unit→int send: α option array→α option array
There are several implementations of Comm based on MPI (which used the MPI
MPI_Alltoall C operator), PUB [3] and TCP/IP (only using the TCP/IP features
of OCaml). The meaning of pid and nprocs is obvious. The function Comm.send
takes on each process an array of size nprocs() of optional values. If at process
j the value contained at index i is (Some v) then the value v will be sent from
process j to process i. If the value is the None value, nothing will be sent. The
result is an array of sending values. A global synchronization occurs inside this
communication function.

The implementation of the abstract parallel vectors, mkpar and apply is as
follows (rules 7.2 and 7.3, page 121 of the small-steps semantics in [4]):

type α par = α let mkpar f = f (Comm.pid()) let apply f v = (f v)
The communication primitives of the BSMLlib, i.e, the put and proj primitives
are also implemented as in the small-steps semantics (rules 7.4 and 7.5):

let send v = let id=(Scheduler.pid_superthread_run SuperThread.our_schedule) in
EnvComm.add SuperThread.envComm id v; (SuperThread.rcv())

let mkfuns = (fun res i →if ((0<=i)&&(i<(!nprocs))) then res.(i) else None)
let put f = mkfuns (send (Array.init (!nprocs) f))
let proj v = put (fun _ →v)
let super f1 f2 = let t=(SuperThread.create_child f2) and v=f1 ()

in (v, SuperThread.wait t)

The send operator (rule 7.8) takes the identifier (Scheduler.pid_superthread_run)
of the current active superthread (from the scheduler SuperThread.our_schedule)
and puts the values to send in the environment of communication (EnvComm).
Then it returns the received values after the communication phase.

The primitive super is also implemented as in the semantics (rule 7.10 page
122), i.e., we build a pair where in the first component, we compute f1 and in the
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module SuperThread:functor(HowComm:sig val make_comm:(unit→unit) ref end)→sig
val envComm : unit EnvComm.t val our_schedule : Scheduler.t
val rcv : unit →α type β data_of_thread
val create_child: (unit→β )→β data_of_thread val wait: β data_of_thread →β
end

Fig. 2. The Super Module

second component we run a child as another superthread to compute f2 and we
wait for its result. SuperThread.create_child run another superthread and return
the identifier of the new superthread which is the argument of the wait operator.

In [4], we describe how we implemented the module Scheduler which helps to
schedule the superthreads (with the strategy of the small-steps semantics) and
the module EnvComm of the environment of communication.

3.2 Functions for the Implementation of the Superposition

The module for implementing the parallel superposition called SuperThread is
a functor based on the elements given in Figure 2. We have an environment of
communication called envComm, a scheduler called our_schedule, the abstract
type β data_of_thread of a superthread and the functions used above.

This functor is parameterized by a module which contains a reference to a
function that makes the communication. This reference would be affected at
the initialization with a function that would manipulate the environment of
communication (iterating the hash-table) and perform the communications using
the function send of the module Comm. Now, we will describe the implementation
of the principal elements of this module.

The first one is the rcv operator which works as in rule 7.9 of the small-
steps semantics i.e., this operator returns and deletes from the environment of
communication the values received by the superthread at the current superstep.
rcv is implemented using the functions of the scheduler which works as follow.
We first test if the current superthread is the last superthread of the superstep.
If it is the case, communications are done because we are at the end of the
superstep. Then, we test if the current superthread is not the only one to run. If
it is the case, those superthreads need to be run (strategy of the semantics: after
the blocked communications, superthreads need to continue their works) and
thus, we sleep the current superthread and wake up the first of them. Note that
in this case the scheduler would give the hand to the current active superthread
in the future. If not i.e., the current superthread is the only one, we finish by
returning the value read from the environment. of communication.

The second one is the wait operator which returns the final result of the
superthread child. It works as follow. First we test if the child has finished its
computation. If not the father has to wait this result and thus we remove the
superthread from the scheduler. We also wake up the next superthread and make
sleep the current superthread. Its child would wake up it in the future. To finish,
the result of the child is returning.
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The last one, is the creation of a child (a new superthread) with the create
_child operator which works as follow. First, a new superthread is created as
a new OCaml’s thread which first sleeps (strategy of the semantics), computes
the final result and to finish. The end of the child works as follow. First, we
test if the father has ended its computation or not. If it is the case, then the
child wakes up its father. Else, the superthread is removing from the scheduler
and the next superthread is waked up. We also test if the superthread child is
the last superthread of the superstep. If it is the case, communications are done
because we are at the end of the superstep.

4 Example and Benchmarks

4.1 Calculus of the Prefix Using the Parallel Superposition

The example presented below is a divide-and-conquer version of the scan pro-
gram using the parallel superposition. In this version of the calculus of the prefix,
the processors are divided into two parts and the scan is recursively applied to
those parts (Figure 3). The value held by the last processor of the first part
is broadcast to all the processors of the second part, then this value and the
values held locally are combined together by the operator op on the second
part.

In our benchmarks, we will make a performance comparison of the divide-
and-conquer version of the computation of the prefix with two other versions.
The first one, is the direct version and the second one is the binary computation
using log(p) supersteps [2] those coded in Figure 4.

let inbounds first last n = (n>=first)&&(n<=last) (∗ inbounds: α →α →α →bool ∗)
let within_bounds = inbound 0 (bsp_p()−1) (∗ mix: int→α par ∗ α par→α par ∗)
let mix m (v1,v2)=let f pid v1 v2=if pid<=m then v1 else v2

in apply (apply (mkpar f) v1) v2
let replicate e = mkpar (fun _ →e) (∗ replicate: α →α par ∗)
let parfun f v = apply (replicate f) (∗ parfun:(α →β )→α par→β par ∗)
let parfun2 f v1 v2 = apply (parfun f v1) v2

(∗ scan: (α →α →α )→α →α par→α par ∗)
let scan_super op vec =
let rec scan’ fst lst op vec = if fst>=lst then vec else
let mid=(fst+lst)/2 in
let vec’=mix mid (super(fun()→scan’ fst mid op vec)(fun()→scan’(mid+1) lst op vec))

in let msg vec = apply (mkpar(fun i v→
if i=mid then fun dst→if inbounds (mid+1) lst dst then Some v else None
else fun dst→ None)) vec

and parop = parfun2(fun x y→match x with None→y|Some v→op v y) in
parop (apply(put(msg vec’)) (replicate mid)) vec’ in

scan’ 0 (bsp_p()−1) op vec

Fig. 3. Code of the divide-and-conquer algorithm of the parallel prefix
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let scan_direct op e vv =
let mkmsg pid v dst=if dst<pid then None else Some v in
let procs_lists=mkpar(fun pid→from_to 0 pid) in
let rcv_msgs=put(apply(mkpar mkmsg) vv) in
let values_lists= parfun2 List.map (parfun (compose noSome) rcv_msgs) procs_lists in
applyat 0 (fun _ →e) (List.fold_left op e) values_lists

let scan_logp op vec =
let rec scan_aux n vec =
if n >= (bsp_p()) then vec else
let msg = mkpar(fun pid v dst→

if ((dst=pid+n)or(pid mod (2∗n)=0))&&(within_bounds (dst−n))
then Some v else None)

and senders = mkpar(fun pid→natmod (pid−n) (bsp_p()))
and op’ = fun x y→match y with Some y’→op y’ x | None →x in
let vec’ = apply (put(apply msg vec)) senders in
let vec’’= parfun2 op’ vec vec’ in
scan_aux (n∗2) vec’’ in

scan_aux 1 vec

Fig. 4. Code of the direct and binary algorithm of the parallel prefix

4.2 Benchmarks

We did some preliminary experiments on a cluster with 10 Pentium IV nodes
(with 1 Go of main memory per node) interconnected with a Gigabit Ethernet
network. Both need log p supersteps except the direct version which need one
superstep. The values were arrays of floats representing polynomials. The binary
operation is the sum of two polynomials.

The MPI and TCP/IP implementations of the Comm module were used. These
programs ran 100 consecutively times with initial randomized polynomials and
this 5 times. The native code compiler of OCaml was used. In Figures 5, diagrams
show the average of the results with increasing size of polynomials. In (a) and
(c) (resp. (b) and (d)), we give the performances using the MPI (resp. TCP/IP)
implementation of BSML.

The direct version is the faster for small polynomials. However, the version
using the superposition and TCP/IP seems to be the faster one for big polyno-
mials. For all the versions, the scalability of the BSP model is well-preserved.

We have also perform some performance comparisons of the direct and binary
versions of the scan with a BSMLlib which does not contain the superposition
and with our new one which supports superposition. We have show that the
overhead, for programs which do not use superposition, is negligible.

5 Related works

The superthread way to divide-and-conquer in the framework of an object-
oriented language was presented in [10]. There is no formal semantics and no
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Fig. 5. Experiments of parallel prefix of polynomial using MPI or TCP/IP

implementation from now on. An algorithmic skeletons language which offers
divide-and-conquer skeletons was designed in [12]. Nevertheless, the cost model
is not really the BSP model but the D-BSP model which allows subset synchro-
nization. We follow [9] to reject such a possibility.

A general data-parallel formulation for a class of divide-and-conquer prob-
lems was evaluated in [1]. A combination of techniques are used to reorganize
the algorithmic data-flow, providing great flexibility to efficiently exploit data
locality and to reduce communications. But those techniques are only define for
a low-level parallel language, High Performance Fortran.

In [5], the proposed approach distinguished three levels of abstraction and
their instantiations. (1), a small language, as an extension of ML, defines the
static parallel parts of the programs. The language comes with a partial evalua-
tor which acts as a code transformer using MetaOCaml. (2), an implementation
of a divide-and-conquer skeleton demonstrates how meta-programming can gen-
erate the appropriate set of communications for a particular process from an
abstract specification. (3), the application programmer composes the program
using skeletons, without then need to consider details of parallelism. However,
cost prediction nor native (efficient) code generation are possible.
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6 Conclusion

The parallel superposition is a new primitive of BSML and it allows divide-and-
conquer algorithms to be expressed easily, without breaking the BSP execution
model. Compared to the parallel juxtaposition [6], this new primitive has not
the drawbacks of its predecessor: the cost model is a compositional one and it
can be seen as a purely functional primitive. We have presented in this paper
how implements this new primitive with the help of the low-level semantics and
makes some benchmarks of a classical BSP algorithms.

The ease of use of the superposition will be experimented by implementing
BSP algorithms described as divide-and-conquer algorithms in the literature.
An implementation of the superthreads using fault tolerant threads of MPI and
static cost analysis as in [11] are also another directions of research.
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