
Two Formal Semantics of a Subset of the Paderborn University BSPlib

Frédéric Gava
Laboratory of Algorithms, Complexity and Logic (LACL)

University of Paris-East
Créteil-Paris, France

Email: gava@univ-paris12.fr

Jean Fortin
Laboratory of Algorithms, Complexity and Logic (LACL)

University of Paris-East
Créteil-Paris, France

Email: jean.fortin@ens-lyon.org

Abstract

PUB (Paderborn University BSPLib) is a C library sup-
porting the development of Bulk-Synchronous Parallel (BSP)
algorithms. The BSP model allows an estimation of the
execution time, avoids deadlocks and non-determinism. This
paper presents two formal operational semantics for a
C+PUB subset language using the Coq proof assistant, one
for classical BSP operations and one that emphasises high
performance primitives.

1. Introduction

Solving a problem on a parallel machine is often a
complex job. High-level tools (models, languages,etc.) are
necessary to simplify both the design of parallel algorithms
and their programming but also to ensure a better safety of
the generated applications. To ensure the lack of comprehen-
sion of the implementations or to designe tools for proofs
of correctness of programs, a classical step is to provide
semantics of the language.

A recent approach is to use a proof assistant (e.g.Coq [1])
for the development of the semantics [2] and then formally
prove the properties of the language and correctness of
programs1. The use of theorem-proving systems ensures
better safety (trust in the generated softwares). Even if
it is longer to formally prove parallel programs than to
code them, the development of certified Dwarfs2 [3] (and
tools for this) is a first step to produce less buggy parallel
applications: one could program using certified libraries and
really trust the results of the procedures’ calls (these libraries
are less buggy than normal ones).

BSP3 is a parallel model which offers a high degree of
abstraction, allows an estimation of the execution time on
a wide variety of architectures, avoids deadlocks and non-
determinism. The Paderborn University BSPLib (PUB [6])

1. Some examples could be found in the users’ contributions web site of
the Coq proof assistant.

2. Dwarfs are high-level abstractions of parallel numerical methods (as
Linear Algebra, FFT,etc.), which each capture a pattern of computation
and communication common to a class of important applications.

3. We refer to [4], [5] for a gentle introduction to the BSP model.

is a C library of BSP communication routines (and also for
Java [7]) initially based on the BSPlib standard [5].

The aim of this paper is the Coq development of two
formal operational semantics for both BSP message passing
(BSMP) and remote memory accesses (DRMA) program-
ming styles of a kernel imperative language with PUB
primitives. The first semantics is dedicated to classical BSP
operations. The second one is to enable high-performance
operations. High-performance operations improve speedup
of programs using unbuffered communications but must
be used wisely due to their unsafe and non-derministic
nature (i.e., a program that badly uses these routines can
produce different outputs whenever applied to the same
input). Determinacy is a property of ordinary sequential
programming languages and is a powerful aid in debugging
and validating programs even if it limits the programmer’s
flexibility to code certain algorithms. The semantics for
high-performance operations would be the basis to produce
semantics certified optimisations on communications such
as those of [8] (but which are unproved).

First, we briefly describe the Coq proof assistant (Sec-
tion 2) and the PUB library (Section 3). Then we give our
kernel language in Section 4 and in Section 5 a small-step
semantics for classical BSP operations. In Section 6 we
present an extension of this semantics for high-performance
primitives. We end with related works (Section 7), conclu-
sion and future work (Section 8).

2. The Coq Proof Assistant

The Coq system4 [1] is a proof assistant based on a
logic which is a variant of type theory, following the
“propositions-as-types, proofs-as-terms” paradigm, enriched
with built-in support for inductive and co-inductive defini-
tions of predicates and data types.

From a user’s perspective, Coq offers a rich specifica-
tion language to define problems and state theorems. This
language includes (1) constructive logic with all the usual
connectives and quantifiers; (2) inductive definitionsvia in-

4. Available at http://coq.inria.fr/ with nice introductions to this theorem-
proving system.

Figure 1. The BSP model of execution

ference rules and axioms; (3) a pure functional programming
language with structural recursion.

Proofs are developed interactively using tactics that build
incrementally the proof term behind the scene. These tactics
range from the trivial (intro, which adds an abstraction
to the proof term) to rather complex decision procedures
(omega for Presburger arithmetic).

For example, let us define in Coq a language of numerical
expressionse := n | e1 + e2 (integers are notedZ):
I n d u c t i v e expr :Set := num :Z→ expr

| p l u s : expr→ expr→ expr

and its one step reduction:
I n d u c t i v e one s tep : expr→ expr→Prop :=
| p l u s l e f t :∀ e1 e ’1 e2 , one s tep e1 e ’1

→ one s tep (p l u s e1 e2) (p l u s e ’1 e2)
| p l u s r i g h t :∀ n1 e2 e ’ 2 , one s tep e2 e ’2
→ one s tep (p l u s (num n1) e2) (p l u s (num n1) e ’ 2)
| plus sum : ∀ n1 n2 ,

one s tep (p l u s (num n1) (num n2)) (num (n1+n2))

The transitive and reflexive closure ofone step is:
I n d u c t i v e s t e p s t a r : expr→ expr→Prop :=
| s o s r e f l : ∀ e , s t e p s t a r e e
| s o s t r a n s : ∀ e1 e2 e3 , ones tep e1 e2

→ s t e p s t a r e2 e3 → s t e p s t a r e1 e3

The small-step semantics i.e. abstract evaluation of expres-
sion e to integern is noted (s t e p s t a r e (num n)).

3. The PUB library

3.1. Generalities

PUB is a C-Library of communication routines to sup-
port development of parallel algorithms based on the BSP
model5. PUB offers functions for both message passing

5. We briefly recall that execution of a BSP program is dividedinto super-
steps (see left scheme in Fig. 1), each separated by a global synchronisation;
a super-step consists of each processor doing some calculations on local
data and communicating some data to other processors; the collective barrier
of synchronisation event guarantees that all communications of data have
completed before the commencement of the next super-step.

(BSMP) and remote memory access (DRMA). Some col-
lective communication operations like broadcast are also
provided, but they are not interesting for our purpose because
they can easily be simulated by primitive BSMP operations.

To become more flexible, PUB also has an additional
feature which is the creation of independent BSP objects.
That allows subset synchronisation and migration of BSP
threads to adapt to changing load on real machines. This
extension is not modelled here because too complex and
too architecture dependant. We will thus use only one group
of processors which is the BSP computer.

As in the standard MPI, we first need to initialise our
parallel computation which is done using the function
bsplib init6. Now, we can query some informations about
the machine:bsp nprocs returns the number of processors
p andbsp pid returns the processor id. The processor id is
in the range0, . . . , p− 1. To terminate a BSP computation,
we usebsplib done which cleans up all PUB resources.

3.2. Message Passing and Synchronisation

According to the BSP model all messages are received
during the synchronisation barrier and cannot be read before.
Barrier is done usingbsp sync which blocks the node until
all other nodes have calledbsp sync and all messages sent
to it in the current super-step have been received.

Sending a single message is done using
void bsp send(int dest,void∗ buffer,int s) where buffer
is a pointer to a memory address to send to processor id
dest ands size bytes of this block. After calling this routine
the buffer may be overwritten or freed.

In the next super-step, each processor can access the
received messages (typet bspmsg). This can be done using
t bspmsg∗ bsp findmsg(int proc id,int index) whereproc id
is the id of the source-node andindex is the index of
the message. To access to the messaget bspmsg, we need
bspmsg data which returns a pointer to the sending block
of data andbspmsg size its size. Alsobsp nmsgs returns
the number of messages received in the last super-step. Note
that the messages of the last super-step are available until
the next synchronisation call. At this point the memory used
for these messages will be deallocated.

3.3. Remote Memory Access

Another way of communication is through remote
memory access: after every processor has registered a
variable for direct access, all processors can read or
write the value on other processors. Registering a vari-
able or deleting it from global access is done us-
ing: void bsp push reg (t bsp∗ bsp, void∗ ident, int size)

6. We refer to the manual, http://wwwcs.uni-paderborn.de/∼pub/
documentation.html for C type and more details about other functions of
the PUB.

and void bsp pop reg(t bsp∗ bsp, void∗ ident). The PUB
needs that if different variables have to be registered then
all processors have to call thebsp push reg functions in the
same order (same forbsp pop reg).

DRMA operations are void bsp get (t bsp∗ bsp,
int srcPID, void∗ src, int offset, void∗ dest, int nbytes)
(global reading access) andvoid bsp put (t bsp∗ bsp,
int destPID, void∗ src, void∗ dest, int offset, int nbytes)
(global writing access).

bsp get copiesnbytes bytes from the variablesrc at offset
offset on processorsrcPID to the local memory address
dest. bsp put copiesnbytes bytes from local memorysrc
to variabledest at offsetoffset on nodedestPID. All get and
put operations are executed during the synchronisation step
and all get are served before a put overwrites a value.

3.4. High Performance Primitives

All communication primitives have their high-
performance counterparts. The copies are done
asynchronously and unbuffered, so it is finished after
the next super-step and the buffer (src and dest) must not
be changed before. The time when destination is written is
undefined (architecture dependant).

The PUB also contains an oblivious synchronization
void bsp oblsync(t bsp∗ bsp,int nmsgs) which should be
used if the programmer knows the numbernmsgs of mes-
sages a processor will receive in a superstep. This type
of synchronization is much faster than the other one since
no additional communication is needed and no barrier
synchronization is done (but the user must know exactly
how many messages every node will receive). Supersteps
with standard synchronization can alternate with oblivious
synchronizations, but within one superstep each processor
has to use the same type of synchronization. The number of
messages (nmsgs) that a processor waits inbsp oblsync is:

• Each message which will be found in the mes-
sage queue (sent withbsp send, bsp msgsend or
bsp hpsend);

• Eachbsp put (or bsp hpput) produces “one message”
at the destination. Eachbsp get (or bsp hpget) pro-
duces “one message” at source and destination.

Why high-performance in BSP (PUB) ? Figure 2 shows
the speedups for various versions of a program (the classic
N -body problem7) that use only classical BSP operations,
BSP with unbuffered communications (BSP+HP), oblivious
synchronisations (BSP+OblSync) or all this optimisations
(BSP+HP+OblSync). This program is based on a systolic
loop algorithm [9]. In such an algorithm, data (point masses)
is passed around from processor to processor in a sequence

7. This computes the gravitational energy ofN point masses, which is
given by:

∑N
i=1

i6=j

∑N

j=1

mimj

ri−rj
wherem are masses andr coordinates.

of super-steps where each processor computes the interac-
tions of its point masses with received ones. It is no surprise
to see that the use of high-performance operations results in
improved speedup·

4. BSP Core Language

Our core language is the classical IMP with a setExp of
expressions (booleans, integers, matrix,etc.) with operations
on them. SetX of variables is a subset ofExp with two
special variables:pid and nprocs. Our language is as
follows (sequential control flow commands):

c ::= skip Null command
| x := e Assignment
| c1; c2 Sequence
| if e then c1 else c2 endif Conditional
| while edo cdone Iteration
| declare y := ebegin c end New variable

with x, y ∈ X and e ∈ Exp. Expressions are evaluate to
valuesv (subset ofExp) and we write:Ei,Ri |=

i,p

e⇓v with
p the number of processors andi the pid. Ei is the store
(memory as a mapping from variables to values) of processor
i andRi is the set of received values. We suppose that
Ei,Ri |=

i,p

pid ⇓ i and Ei,Ri |=
i,p

nprocs ⇓ p. Evaluation
of Exp is not total (ex. evaluation of1 + true) but for
simplicity always terminates. Parallel operations are:

| sync Barrier of synchronisation
| push(x) Registers a variablex for global access
| pop(x) Deletex from global access
| put(e, x, y) Distant writing ofx to y of processore
| get(e, x, y) Distant reading fromx to y
| send(x, e) Sending value ofx to processore

In contrast to the PUB, we use basic values instead of
arbitrary buffer addresses (char ∗). Exp is extended with
findmsg(i, e) that finds theeth message of processori of
the previous super-step andnmsg that returns the arity of
Ri (i.e. number of received values).

5. Small-step Semantics

We give the semantics in an human reading format but
the full Coq development can be downloaded athttp://lacl.

univ-paris12.fr/gava/pdp-coq.tar.
We recall that we do not handle high-performance rou-

tines in this semantics because they are non-deterministic,
unsafe and because programs are first written using classical
operations and then optimised (by hand or by the compiler):
the main goal of this semantics is to prove the correctness
of programs, not to optimise them.

0

2

4

6

8

10

12

14

2 4 6 8 10 12

A
cc

el
er

at
io

n

Number of processors forN=50000

N -body problem with systolic loop

BSP
BSP+HP
BSP+OblSync
BSP+HP+OblSync

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

2 4 6 8 10 12

E
ffi

ci
en

ty

Number of processors forN=50000

N -body problem with systolic loop

BSP
BSP+HP
BSP+OblSync
BSP+HP+OblSync

Figure 2. Performances of the N -body problem

5.1. Generalities

Small-step semantics specifies the operation of a program
one step at a time. There is a set of rules that we continue to
apply to configurations until reaching a final configuration
if ever. In our parallel case, we will have two kinds of
reductions: local ones (on each processor) and global ones
(for the whole parallel machine).

Our semantics is thus a set of rules. We noteE [x/v]
insertion or substitution inE of a new binding fromx to v.
We noteR the received values from the previous super-step
andC communications that need to be done in the current
super-step. We also notex a variable that has been registered
for global access (DRMA),x for the contrary andx when
that is not important.

To simplify our semantics and make it readable, we
introduce some minor modifications to the specification
from the PUB documentation. First, we do not require that
different variables have to be registered in the same order on
each processor8. Second, to not have a confusion between
new variables and those that have been registered before, one
could not declare variables that have been created before9.

5.2. Local Rules

We note⇀
i,p

for local reductions (e.g. one at each proces-

sor). Local final configurations are noted〈E , C,R, c1〉.
Figure 3 gives rules of the local control flow and Figure 4

the rules of the PUB routines. Note that we ensure that there
is always instructions after async (without introducing
infinite reductions for this) and thatsync; c and skip are
local terminated states. The communications environmentC
now contains messages to be sent (noted with←) and asyn-
chronous messages received from other processors (noted

8. To show regard for the PUB’s documentation, we can count oneach
processor the registering of variables and compare them at each barrier.

9. We can introduce a dynamic change of variables’s name but that is a
tedious work.

〈E,C,R, c1〉 ⇀
i,p

〈E′, C′,R′, c′
1
〉 if c1 6≡sync

〈E, C,R, c1; c2〉 ⇀
i,p

〈E′, C′,R′, c′
1
; c2〉

E,R |=
i,p

e⇓v

〈E, C,R, x := e〉 ⇀
i,p

〈E[x/v], C,R, skip〉

〈E,C,R, skip; c2〉 ⇀
i,p

〈E,C,R, c2〉

〈E, C,R, (sync; c1); c2〉 ⇀
i,p

〈E, C,R, sync; (c1; c2)〉

〈E, C,R, sync〉 ⇀
i,p

〈E, C,R, sync; skip〉

E,R |=
i,p

e⇓true

〈E,C,R, if e then c1 else c2 endif〉 ⇀
i,p

〈E, C,R, c1〉

E,R |=
i,p

e⇓ false

〈E,C,R, if e then c1 else c2 endif〉 ⇀
i,p

〈E, C,R, c2〉

〈E, C,R, while e do c done〉 ⇀
i,p

〈E,C,R, if e then c′ else skip endif〉

wherec′ = c;while e do c done

E,R |=
i,p

e⇓v andx 6∈E

〈E, C,R, declare x := ebegin c end〉 ⇀
i,p

〈E[x/v],C,R, c〉

Figure 3. Reduction of sequential control flow

with →). Messages (communications) are used withget,
put or send with their natural arguments (we note% for
modulo calculus10).

10. Another way is to forbidden communications over0 · · · p − 1; we
think that communications modulop is much closer to a safe BSPlib
implementation that is the PUB.

5.3. Global Reductions and Communications

PUB programs are SPMD ones so a programc is startedp
times. We model this as ap-vector ofc with its environments
of execution that containsE , communicationsC and received
valuesR. A final configuration isskip on all processors:
〈〈E0, C0,R0, skip‖ · · · ‖Ep−1, Cp−1,Rp−1, skip〉〉

The global reductions call the local ones with this rule:

〈Ei, Ci,Ri, ci〉 ⇀
i,p

〈E′i, C
′

i,R
′

i, c′i〉

〈〈· · · ‖Ei, Ci,Ri, ci‖ · · ·〉〉⇀ 〈〈· · · ‖E′
i
, C′

i
,R′

i
, c′

i
‖ · · ·〉〉

This represents a reduction by a single processor, which
then introduces an interleaving of computations. Note that
in the following rules, eachci could be an empty set of
instructions. Communications and BSP synchronisation are
done with this rule:

〈〈E0, C0,R0, sync; c0‖ · · · ‖Ep−1, Cp−1,Rp−1, sync; cp−1〉〉
⇀ 〈〈Comm(E0, C0,R0), c0‖ · · · ‖Comm(Ep−1, Cp−1,Rp−1), cp−1〉〉

That is, if all processors are in thesync case, communi-
cations are done (using theComm function that model ex-
changes of messages) and the current super-step is finished.
TheComm function specifies the order of the messages dur-
ing the communications. It modifies the environment of each
processori such thatComm(C′i,R

′
i, E
′
i) = (C′′i ,R′′i , E ′′i) is

for BSMP as follows:

C′′i = ∅

R′′

i =

p−1
⋃

j=0

nj
⋃

n=0

{j, n +

j
∑

a=0

na, v} if {send, i, v} ∈n C
′

j

That is, we suppose that each processorj has sentnj

messages toi and thus we take thenth message (noted
∈n) from this ordering set. DRMA accesses are defined as
follow:

E
′′

i = E
′

i

p−1
⋃

j=0

[y/v]

p−1
⋃

j=0

[y′/v
′

] if

{y 7→ v} ∈ E′j
and{get, j, x, y} ∈ C′i

{y′ 7→ v} ∈ E′i
and{put, i, y′, v′} ∈ C′j

That is, first, get accesses with the natural order of
processors are performed (list of substitutions) and thenput

accesses finish the communications (same natural order).
We note⇒ for a finite derivation and⇒

∞

for an infinite
one (this has to be read as “program diverges”).⇒ (resp.⇒

∞

)
is defined by induction (resp. by co-induction i.e. infinite but
rational derivation [10]) in Figure 5. Execution of a program
is complete in the final configuration case or there exists a
reduction step before having this final configuration or the
program diverges. Programs that neither evaluate nor diverge
according to the rules above are said to ”go wrong”.

if {x 7→ v}∈E with E′ = E ⊕ {x 7→ v}

〈E, C,R, push(x)〉 ⇀
i,p

〈E′, C,R, skip〉

if {x 7→ v}∈E with E′ = E ⊕ {x 7→ v}

〈E, C,R, pop(x)〉 ⇀
i,p

〈E′, C,R, skip〉

E,R |=
i,p

e⇓pid and{x 7→ v}∈E and{y 7→ v′}∈E

〈E,C,R, put(e, x, y)〉 ⇀
i,p

〈E,C′,R, skip〉

whereC′ = C ∪ {put, pid%p, y, v,←}

E,R |=
i,p

e⇓pid and{x 7→ v}∈E and{y 7→ v′}∈E

〈E,C,R, get(e, x, y)〉 ⇀
i,p

〈E, C′,R, skip〉

whereC′ = C ∪ {get, pid%p, x, y,←}

E,R |=
i,p

e⇓pid and{x 7→ v}∈E with C′ = C ∪ {send, pid%p, v,←}

〈E,C,R, send(x, e)〉 ⇀
i,p

〈E,C′,R, skip〉

Figure 4. Reduction of the PUB’s routines

5.4. Coq Development and Lemmas

As mentioned above, the semantics was developed using
Coq. We give here some intuitions of this development. We
note i n s t r for a list of instructionsenvnmt for environments
(store E , communicationsC and received valuesR). We
also use eq envnmt for equivalence of environments.p-
vectors are represented as functions fromZ to instructions or
environments. The two rules of global reduction⇀ (doing
local calculations and communications) are modelled with
the inductivesm a l l s tep sem as follow:

I n d u c t i v e sm a l l s tep sem : (Z→envnmt)→ (Z→ i n s t r)
→ (Z→envnmt)→ (Z→ i n s t r)→Prop :=

| s m a l l s t e p s e m l o c a l : ∀
i env1 i1 env2 i2 env1 i i 1 i env2 i i 2 i ,

s m a l l s t e p s e m l i env1 i i 1 i env2 i i 2 i →
eq envnmt env1 i (env1 i)→

eq envnmt env2 i (env2 i) → i 1 i = i 1 i → i 2 i = i 2 i →
(∀ n , n<>i → (eq envnmt (env1 n) (env2 n))∧

(i 1 n = i2 n)) →
sm a l l s tep sem env1 i1 env2 i2

| sm a l l s tep sem sync : ∀ env1 env2 i1 i2 ,
comm g env1 env2 →∀ i , 0<=i<p →

(i 1 i = sequence sync (i2 i)) ∨ (i 1 i = sync ∧
i 2 i = s k i p) → sm a l l s tep sem env1 i1 env2 i2 .

Then,⇒ (resp.⇒
∞

) are defined by a inductive (resp. co-
inductive) on this reduction.

The inductives m a l l s t e p s e m l defines a local reduction,
that is execution of a communication routine or execution
of a sequential control flow. We give here an interesting part
of its Coq’s definition:

I n d u c t i v e s ma l l s te p s e m l (i : Z) : envnmt→ i n s t r→envnmt
→ i n s t r→Prop :=

| . . .
(∗ I f t he n e l s e s e man t i c s∗)
| s m a l l s t e p s e m i f e l s e t r u e : ∀ e i1 i2 l 1 l1 ’ ,

∀i 〈〈· · · ‖ni, Ei, Ci,Ri, skip‖ · · ·〉〉 ⇒ 〈〈· · · ‖ni, Ei, Ci,Ri, skip‖ · · ·〉〉

∀i 〈〈· · · ‖ni, Ei, Ci,Ri, ci‖ · · ·〉〉⇀ 〈〈· · · ‖n′

i, E
′

i, C′i,R
′

i, c′i‖ · · ·〉〉 〈〈· · · ‖n
′

i, E
′

i, C′i,R
′

i, c′i‖ · · ·〉〉 ⇒ 〈〈· · · ‖n
′′

i , E′′i , C′′i ,R′′

i , c′′i ‖ · · ·〉〉

〈〈· · · ‖ni, Ei, Ci,Ri, ci‖ · · ·〉〉 ⇒ 〈〈· · · ‖n′′

i
, E′′

i
, C′′

i
,R′′

i
, c′′

i
‖ · · ·〉〉

∀i 〈〈· · · ‖ni, Ei, Ci,Ri, ci‖ · · ·〉〉⇀ 〈〈· · · ‖n′

i, E
′

i, C
′

i,R
′

i, c′i‖ · · ·〉〉 〈〈· · · ‖n
′

i, E
′

i, C
′

i,R
′

i, c′i‖ · · ·〉〉 ⇒
∞

〈〈· · · ‖ni, Ei, Ci,Ri, ci‖ · · ·〉〉 ⇒
∞

Figure 5. Whole reduction of a PUB program

b e va l i l 1 e t r u e → eq envnmt l1 l1 ’ →
s ma l l s te p s e m l i l 1 (i f e l s e e i1 i 2) l1 ’ i 1

(∗ pu t ∗)
| s ma l l s te p s e m pu t : ∀ e p id x y l l ’ ,

e v a l i l e (z va lue p id)→ upda te pu t l p i d x y l ’ →
s ma l l s te p s e m l i l (pu t e x y) l ’ s k i p

(∗ send ∗)
| s ma l l s te p s e m s e nd : ∀ e p id x l l ’ v ,

e v a l i l e (z va lue p id)→
l ookup (f s t l) x v → upda te s e nd l v p id l ’→
s ma l l s te p s e m l i l (send x e) l ’ s k i p

| . . .

We previously defined [11] (also in Coq) a natural seman-
tics of the same PUB subset. This semantics has been proved
(also using Coq) to be deterministic and we thus have the
following lemmas by induction/co-induction:

Lemma 1:⇒ and⇓ (resp.⇒
∞

and⇓∞) are equivalent.
Lemma 2:⇒ is deterministic.
Lemma 3:⇒ and⇒

∞

are mutually exclusive.

6. Semantics for Hig-performances Operations

6.1. Generalities

In this semantics, we introduce high-performance features
and thus, as specified in the PUB’s documentation, we will
have to keep track of the number of messages sent/received
(notedni in an environment). The main property is that high-
performance routines are non-deterministic and communica-
tions can be performed at any time: it does not depend on
the programs but directly on external parameters such as
state of the OS during execution of the program.

Note that these routines do not put in the environment a
value but a variable that is a pointer to the value. In this way,
values are sent asynchronously with special rules. Also, we
note the high-performance semantics as the small-step one
and⇒hp and⇀hp if we need to distinguish them.

In this semantics, the rules for the sequential control
flow and those of the traditional communication primitives
are the same for the small-step semantics. The language is
also extended with the high-performance primitives. Rules
for these primitives are given in Figure 6. The only real
change is for global reductions: new rules are needed to add
asynchronous communications i.e. communications that can
be done at “any time”.

6.2. New Communications

As in the small-step semantics, we have a rule to represent
a reduction by a single processor. Asynchronous communi-
cations are done with these rules:

〈〈· · · ‖ni, Ei, Ci ∪ {hpsd, j, x,←},Ri, ci‖ · · ·〉〉 where{x 7→ v} ∈ Ei ⇀
〈〈· · ·‖ni, Ei, Ci,Ri, ci‖· · ·‖nj +1, Ej , Cj∪{hpsd, j, x,→},Rj , cj‖· · ·〉〉

〈〈· · · ‖ni, Ei, Ci ∪ {hpput, j, y, x,←},Ri, ci‖ · · ·〉〉 where{x 7→ v}∈Ei

⇀ 〈〈· · · ‖ni, Ei, Ci,Ri, ci‖ · · · ‖nj + 1, Ej [y/v], Cj ,Rj , cj‖ · · ·〉〉

〈〈· · ·‖ni, Ei, Ci∪{hpgt, j, x, y,←},Ri, ci‖· · ·‖nj , Ej , Cj ,Rj , cj‖· · ·〉〉
⇀ 〈〈· · · ‖ni + 1, Ei[x/v], Ci,Ri, ci‖ · · · ‖nj + 1, Ej , Cj ,Rj , cj‖ · · ·〉〉
where{y 7→ v} ∈ Ej

That is, hpsend sends the value pointed byx to the
memoryEj of processorj, hpput writes the value to the
memory at destination andhpget takes the value at source
and the two counters are increased. When all asynchronous
communications have been done, synchronous communica-
tions and BSP synchronisation is done with this rule:

〈〈n0, E0, C0,R0, sync; c0‖· · ·‖np−1, Ep−1, Cp−1,Rp−1, sync; cp−1〉〉
⇀〈〈0, Comm(E0, C0,R0), c0‖· · ·‖0, Comm(Ep−1, Cp−1,Rp−1), cp−1〉〉

if ∀i, j, x, y, v {hpsd, j, v} /∈ Ci ∧ {hpgt, j, x, v} /∈ Ci ∧
{hpput, j, y, v} /∈ Ci

That is if each processor is in thesync case, communi-
cations are done using theComm function that exchanges
the messages, which finishes the current super-step. For the
oblivious synchronisation we use this rule:

〈〈· · · ‖ni, Ei, Ci,Ri, oblsync(e); ci‖ · · ·〉〉
⇀ 〈〈· · · ‖0, Comm(Ei, Ci,Ri), ci‖ · · ·〉〉

with Ei,Ri |=
i,p

e⇓ni + ‖Comm(Ei, Ci,Ri)‖

and if ∀i, j, v, x, y {hpsd, j, v} /∈ Ci ∧ {hpgt, j, x, v} /∈ Ci ∧
{hpput, j, y, v} /∈ Ci

That is it blocks the current processori until ni asyn-
chronous messages have been received plus number of mes-
sages generated by the BSP synchronous communications
(‖Comm(Ei, Ci,Ri)‖).

Note that⇒hp (resp.⇒
∞

hp) is define as⇒ (resp.⇒
∞

).

E,R |=
i,p

e⇓pid and{x 7→ v}∈E and{y 7→ v′}∈E with C′ = C ∪ {hpput, pid%p, y, x,←}

〈n,E, C,R, hpput(e, x, y)〉 ⇀
i,p

〈n, E, C′,R, skip〉

E,R |=
i,p

e⇓pid and{x 7→ v}∈E and{y 7→ v′}∈E with C′ = C ∪ {hpgt, pid%p, x, y,←}

〈n, E, C,R, hpget(e, x, y)〉 ⇀
i,p

〈n, E, C′,R, skip〉

E,R |=
i,p

e⇓pid and{x 7→ v}∈E with C′ = C ∪ {hpsd, pid%p, x,←}

〈n, E, C,R, hpsend(x, e)〉 ⇀
i,p

〈n, E, C′,R, skip〉

〈n, E, C,R, (oblsync; c1); c2〉 ⇀
i,p

〈n, E, C,R, oblsync; (c1; c2)〉

〈n, E, C,R, oblsync〉 ⇀
i,p

〈n, E,C,R, oblsync; skip〉

Figure 6. Reduction rules of the PUB’s high-performance routines

6.3. Coq Development and Lemmas

In the Coq development of this semantics, the only real
change is for thesm a l l s tep sem inductive: we need to add
the asynchronous communications. For example, we give
here some modification of this inductive definition:

I n d u c t i v e s ma l l s te p s e m : (Z→envnmt)→ (Z→ i n s t r)
→ (Z→envnmt)→ (Z→ i n s t r)→Prop :=

| . . .
(∗ We read the number o f messages wanted

and go to the n e x t s u p e r s t e p .∗)
| s m a l l s t e p s e m o b l s y n c s t e p : ∀ env1 i1 env2 i2 e v i r ,

0<=i<p → (i 1 i) = sequenceHP (oblsync HP e) r →
e = num (z va lue v)→ (env1 i) . (nbmsg) = v→
(i 2 i) = r → end comm (env1 i) (env2 i)→
(∀ n , n<>i → (env1 i = env2 i) ∧ (i 1 i = i 2 i)) →
s ma l l s te p s e m env1 i1 env2 i2

(∗ hpput t r a n s i t i o n , can happen any t ime∗)
| s ma l l s te p s e m ob ls ync hppu t : ∀
env1 i1 env2 i2 i j x y v t l ,

0<=i<p → (i 1 i) = (i 2 i) →
(env1 i) . (envc) = (chpputHP j x y) : : t l →
e v a l i (env1 i) (va r x) v→
u p d a t e p u t r (env1 j) j v y (env2 j) →
(∀ n , n<>i → (env1 i = env2 i) ∧ (i 1 i = i 2 i)) →
s ma l l s te p s e m env1 i1 env2 i2 .

| . . .

Now we have following lemmas:
Lemma 4:⇒ and⇒hp (resp.⇒

∞

and⇒
∞

hp) are equivalent
for programs that do not used high-performance routines.

Lemma 5:⇓ and⇒hp (resp.⇓∞ and⇒
∞

hp) are equivalent
for programs that do not used high-performance routines.
Programs that have been proved correct using the natural
semantics [11] are also correct if we executed them in a
high-performance environment.

Lemma 6:⇒hp is deterministic for programs that do not
used high-performance routines.

Lemma 7:⇒hp and ⇒
∞

hp are mutually exclusive for
program that do not used high-performance routines.

Lemma 8:⇒hp is not deterministic.

Take for example, the simple following program:

declare x := pid and y := 1begin

push(x);
hpput((pid + 1)modnprocs, x, x);
x := x + 1
sync;
y := x

end

For each processor, it is impossible to know which value
(pid or pid + 1 or pid− 1) is assigned toy.

Lemma 9:⇒hp and⇒
∞

hp are not mutually exclusive.
Infinite reductions (and deadlocks) can occur for a some
execution cases of a program and the same program can
terminate for other cases. For example, in the above pro-
gram, if we loop on a test of equality ony andpid, we will
have a case where it is an infinite loop for some processors.

Conjecture 1:There are some code optimisation func-
tions Opt such that:

1) if ⇒ is defined for any programc then for Opt(c)
⇒hp gives the same environment

2) if ⇒∞ is defined for any programc then it is also the
case thatOpt(c)⇒

∞

hp

A function that does not modify the code is a possible case
(see Lemma 4) but not an interesting one.

7. Related work

Simplicity (yet efficiency) of the BSP model allows to
prove properties and correctness of BSP programs. Different
approaches for proofs of BSP programs have thus been
studied such as BSP functional programming using Coq [12]
or the derivation of BSP imperative programs using Hoare’s
axiom semantics [13], [14]. The main drawback of these
approaches is that they use their own languages that are in
general not subsets of real programming languages. Also
they neither used any proof assistant (except [12]) nor

implemented dedicated tools which is a lack of safety: users
make hand proofs so they are just theoretical works.

Our work simplifies and extends for BSMP routines and
diverging programs the BSPLib small-steps semantics of
[15]. Also, our Coq development ensures safety.

In [11], we presented a formal deterministic operational
semantics (a natural semantics) for BSP programs and
used it to prove the correctness of a classical numerical
computation (the N-body problem which is considered to
be an important Dwarf [3]) and the divergence of some
programs.

8. Conclusion

In this paper, we have presented two formal deterministic
operational semantics for BSP programs: one for classi-
cal BSP operations and another which introduces high-
performance primitives. An originality of this paper is that
all results were proved using a proof assistant (the Coq
system) which ensures a better trust in the results.

The authors know that proving correctness of BSP com-
putations only using this semantics is a too tedious work.
Instead, it is intended to be the basis for better tools for the
proof of BSP programs. We are thinking about extending
the theoretical work of [16] and its C application software
[17] which generates lemmas to be proved (using a proof
assistant) from Hoare’s assertions in C programs that ensure
correctness (using a formal semantics).

Our second semantics could be used to create a certified
software for optimisation (a certified version of [8]): trans-
forming buffered operations to unbuffered ones and BSP
synchronisations to oblivious ones. The semantics would
help to prove the equivalence of classical BSP programs
transformation to high-performance ones.

The main goal of this work is an environment where
programmers could prove correctness of their BSP programs
and at the end automatically get high-performance versions
in a certified manner. Adapting it to MPI programs would
be an interesting challenge.

References

[1] Y. Berthot and P. Castéran,Interactive Theorem Proving and
Program Development — Coq’Art: The Calculus of Inductive
Constructions. Springer-Verlag, 2004.

[2] B. E. Aydemir, A. Bohannon, N. Foster, B. Pierce, D. Vytin-
iotis, G. Washburn, S. Weirich, S. Zdancewic, M. Fairbairn,
and P. Sewell, “The poplmark challenge,” 2005, http://fling-l.
seas.upenn.edu/plclub/cgi-bin/poplmark/.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick, “The Landscape of Parallel
Computing Research: A View from Berkeley,” Electrical
Engineering and Computer Sciences, University of California
at Berkeley, Tech. Rep. UCB/EECS-2006-183, 2006.

[4] R. H. Bisseling,Parallel Scientific Computation. A structured
approach using BSP and MPI. Oxford University Press,
2004.

[5] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl, “Questions
and Answers about BSP,”Scientific Programming, vol. 6,
no. 3, pp. 249–274, 1997.

[6] O. Bonorden, B. Juurlink, I. V. Otte, and O. Rieping, “The
Paderborn University BSP (PUB) library,”Parallel Comput-
ing, vol. 29, no. 2, pp. 187–207, 2003.

[7] O. Bonorden, J. Gehweiler, and F. M. auf der Heide, “A Web
Computing Environment for Parallel Algorithms in Java,”
Scalable Computing: Practice and Experience, vol. 7, no. 2,
pp. 1–14, 2006.

[8] A. Danalis, L. Pollock, and M. Swany, “Automatic MPI
application transformation with ASPhALT,” inWorkshop on
Performance Optimization for High-Level Languages and
Libraries (POHLL 2007), in conjunction with IPDPS, 2007.

[9] K. Hinsen, “Parallel scripting with Python,”Computing in
Science & Engineering, vol. 9, no. 6, 2007.

[10] X. Leroy and H. Grall, “Coinductive Big-step Operational
Semantics,”Information and Computation, 2008, to appear.

[11] F. Gava and J. Fortin, “Formal Semantics of a Subset of the
Paderborn’s BSPlib,” inPDCAT 2008. IEEE Press, 2008, to
appear.

[12] F. Gava, “Formal Proofs of Functional BSP Programs,”Par-
allel Processing Letters, vol. 13, no. 3, pp. 365–376, 2003.

[13] Y. Chen and W. Sanders, “Top-Down Design of Bulk-
Synchronous Parallel Programs,”Parallel Processing Letters,
vol. 13, no. 3, pp. 389–400, 2003.

[14] A. Stewart, M. Clint, and J. Gabarró, “Axiomatic Frameworks
for Developing BSP-Style Programs,”Parallel Algorithms
and Applications, vol. 14, pp. 271–292, 2000.

[15] J. Tesson and F. Loulergue, “Formal Semantics for the
DRMA Programming Style Subset of the BSPlib Library,” in
Seventh International Conference on Parallel Processing and
Applied Mathematics (PPAM 2007), ser. LNCS, J. Weglarz,
R. Wyrzykowski, and B. Szymanski, Eds. Springer, 2007.

[16] J.-C. Filliâtre, “Verification of Non-Functional Programs us-
ing Interpretations in Type Theory,”Journal of Functional
Programming, vol. 13, no. 4, pp. 709–745, 2003.

[17] J.-C. Filliâtre and C. Marché, “Multi-Prover Verification of C
Programs,” inSixth International Conference on Formal Engi-
neering Methods (ICFEM), ser. LNCS, vol. 3308. Springer-
Verlag, 2004, pp. 15–29, http://why.lri.fr/caduceus/.

