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Abstract is a C library of BSP communication routines (and also for

Java [7]) initially based on the BSPlib standard [5].

PUB (Paderborn University BSPLib) is a C library sup- The aim of this paper is the Coq development of two
porting the development of Bulk-Synchronous Parallel (BSPformal operational semantics for both BSP message passing
algorithms. The BSP model allows an estimation of thg BSMP) and remote memory accesses (DRMA) program-
execution time, avoids deadlocks and non-determinisns. Thiming styles of a kernel imperative language with PUB
paper presents two formal operational semantics for aprimitives. The first semantics is dedicated to classicad® BS
C+PUB subset language using the Coq proof assistant, oneperations. The second one is to enable high-performance
for classical BSP operations and one that emphasises highperations. High-performance operations improve speedup

erformance primitives. of programs using unbuffered communications but must
p p

be used wisely due to their unsafe and non-derministic
1. Introduction nature (i.e., a program that badly uses these routines can

produce different outputs whenever applied to the same

Solving a problem on a parallel machine is often alNPut). Determinacy is a property of ordinary sequential
complex job. High-level tools (models, languaget;) are ~ Programming languages and is a powerful aid in debugging
necessary to simplify both the design of parallel algorshm and validating programs even if it limits the programmer’s
and their programming but also to ensure a better safety dtexiPility to code certain algorithms. The semantics for
the generated applications. To ensure the lack of comprehefRigh-performance operations would be the basis to produce
sion of the implementations or to designe tools for proofsS€mantics certified optimisations on communications such

of correctness of programs, a classical step is to provid@S those of [8] (but which are unproved). _
semantics of the language. First, we briefly describe the Coq proof assistant (Sec-

A recent approach is to use a proof assistarg.Coq [1]) tion 2) and the P.UB Iibrgry (Sectiqn 3). Then we give our
for the development of the semantics [2] and then formallyk€rnel language in Section 4 and in Section 5 a small-step
prove the properties of the language and correctness gemantics for classical BSP operations. In Section 6 we
programd. The use of theorem-proving systems ensurespr_es?_”t an extensmn_of this semantics for h|_gh—performanc
better safety (trust in the generated softwares). Even iprimitives. We end with related works (Section 7), conclu-
it is longer to formally prove parallel programs than to Sion and future work (Section 8).
code them, the development of certified Dwarf8] (and
tools for this) is a first step to produce less buggy paralle. The Coq Proof Assistant
applications: one could program using certified libraried a
really trust the results of the procedures’ calls (thesaties The Coq systeth[1] is a proof assistant based on a
are less buggy than normal ones). logic which is a variant of type theory, following the

BSP is a parallel model which offers a high degree of “propositions-as-types, proofs-as-terms” paradigmicéied
abstraction, allows an estimation of the execution time orwith built-in support for inductive and co-inductive defini
a wide variety of architectures, avoids deadlocks and nontions of predicates and data types.
determinism. The Paderborn University BSPLib (PUB [6]) From a user's perspective, Coq offers a rich specifica-

, o tion language to define problems and state theorems. This
" :-Csc)%m;o%’}agg'i;saﬁgu'd be found in the users’ contributiosis site of - |angage includes (1) constructive logic with all the usual

2. Dwarfs are high-level abstractions of parallel numérioathods (as connectives and quantifiers; (2) inductive definitiones in-

Linear Algebra, FFTetc), which each capture a pattern of computation

and communication common to a class of important applinatio 4. Available at http://cog.inria.fr/ with nice introduetis to this theorem-
3. We refer to [4], [5] for a gentle introduction to the BSP mabd proving system.



4 P (BSMP) and remote memory access (DRMA). Some col-
lective communication operations like broadcast are also
. provided, but they are not interesting for our purpose bgeau
they can easily be simulated by primitive BSMP operations.

To become more flexible, PUB also has an additional
feature which is the creation of independent BSP objects.
That allows subset synchronisation and migration of BSP
threads to adapt to changing load on real machines. This
extension is not modelled here because too complex and
too architecture dependant. We will thus use only one group
of processors which is the BSP computer.

As in the standard MPI, we first need to initialise our
parallel computation which is done using the function
bsplib_init. Now, we can query some informations about
Figure 1. The BSP model of execution the machinebsp_nprocs returns the number of processors

p andbsp_pid returns the processor id. The processor id is
in the rangey, ..., p — 1. To terminate a BSP computation,
%e usebsplib_done which cleans up all PUB resources.

Superstep ¢

Time

Superstep 1+ 1

ference rules and axioms; (3) a pure functional programmin
language with structural recursion.

Proofs are developed interactively using tactics thatdbuil . L
incrementally the proof term behind the scene. These tactic>-2- Message Passing and Synchronisation
range from the trivial i(nt r o, which adds an abstraction
to the proof term) to rather complex decision procedure
(onega for Presburger arithmetic).

For example, let us define in Coq a language of numeric

s According to the BSP model all messages are received
during the synchronisation barrier and cannot be read eefor
aI?arrier is done usingysp_sync which blocks the node until
eXpressions :— n | e1 + es (integers are note): all lot.her nodes have calldgbp_sync and all messages sent
Inductive expr:Set ‘= numZ—sexpr toitin t_he current s_uper—step have been_ received. _

| plus : expr— expr— expr Sending a single message is done using
void bsp_send(int dest,voidx buffer,ints)  where buffer

and its one step reduction: is a pointer to a memory address to send to processor id

Inductive one_step:expr expr—Prop :=

| plus_left:V el e’'l e2, onestep el e’'l dest ands size bytes of this block. After calling this routine
— one_step (plus el e2) (plus e'l e2) the buffer may be overwritten or freed.
| plus_right:v nl e2 e’2, onestep e2 e'2 In the next super-step, each processor can access the
— one_step (plus (num nl) e2) (plus (num nl) e’2) . . .
| plus.sum: ¥ ni n2 received messages (typebspmsg). This can be done using

one_step (plus (num n1) (num n2)) (num (n1+n2)) t_bspmsg* bsp_findmsg(int proc_id,int index) whereproc_id
The transitive and reflexive closure ofie_step is: is the id of the source-node arnddex is the index of
Inductive step star:exproexpr—Prop := the message. TQ access to the _messgmmsg, we need
| sosrefl: V e, stepstar e e bspmsg_data which returns a pointer to the sending block
| sos trans:V el e2 e3, onestep el e2 of data andospmsg_size its size. Alsobsp_nmsgs returns
—step_star e2 e3— step.star el €3 ha nymper of messages received in the last super-step. Note
The small-step semantics i.e. abstract evaluation of exprethat the messages of the last super-step are available until
sion e to integern is noted(step_star e (num n)) the next synchronisation call. At this point the memory used
for these messages will be deallocated.
3. The PUB library
3.3. Remote Memory Access
3.1. Generalities
Another way of communication is through remote
PUB is a C-Library of communication routines to sup- memory access: after every processor has registered a
port development of parallel algorithms based on the BSRjariable for direct access, all processors can read or
modeP. PUB offers functions for both message passingwrite the value on other processors. Registering a vari-

5. We briefly recall that execution of a BSP program is divided super- fable OI’. deleting it from global ac_ces; IS . dope us-
steps (see left scheme in Fig. 1), each separated by a gioimirsnisation;  INQ: void bsp_push_reg (t_bspx bsp, voidx ident, int size)
a super-step consists of each processor doing some caloslain local
data and communicating some data to other processors; ltbetive barrier 6. We refer to the manual, http://wwwcs.uni-paderborn:ge/b/
of synchronisation event guarantees that all communicsitof data have  documentation.html for C type and more details about otbactfons of
completed before the commencement of the next super-step. the PUB.



and void bsp_pop_reg(t_bspx bsp, voidx ident). The PUB  of super-steps where each processor computes the interac-
needs that if different variables have to be registered thetions of its point masses with received ones. It is no suepris
all processors have to call thep_push_reg functions in the  to see that the use of high-performance operations results i
same order (same fdusp_pop_reg). improved speedup

DRMA operations are void bsp_get (t_bspx bsp,
int srcPID, voidx src, int offset, voidx dest, int nbytes)
(global reading access) andoid bsp_put (t_bsp* bsp,
int destPID, voidx src, voidx* dest, int offset, int nbytes)
(global writing access). Our core language is the classical IMP with a Batp of

bsp_get copiesnbytes bytes from the variablerc at offset ~ €Xpressions (booleans, integers, matetc,) with operations
offset on processorsrcPID to the local memory address ©On them. SetX of variables is a subset dfzp with two
dest. bsp_put copiesnbytes bytes from local memorgrc ~ SPecial variablespid and nprocs. Our language is as
to variabledest at offsetoffset on nodedestPID. All getand ~ follows (sequential control flow commands):
put operations are executed during the synchronisatign ste

4, BSP Core Language

and all get are served before a put overwrites a value. = skip Null command
| z:=e Assignment
. N | e Sequence
3.4. High Performance Primitives | if ethenc; elsecs endif Conditional
| whileedocdone Iteration
|

All  communication primitives have their high-
performance counterparts. The copies are done
asynchronously and unbuffered, so it is finished aftewith z,y € X ande € Fxp. Expressions are evaluate to
the next super-step and the buffer (src and dest) must netiluesy (subset ofEzp) and we write:;, R; = e v with
be changed before. The time when destination is written i® the number of processors ardhe pid. &; is the store
undefined (architecture dependant). (memory as a mapping from variables to values) of processor

The PUB also contains an oblivious synchronization: and R, is the set of received values. We suppose that
void bsp_oblsync(t_bsp+ bsp,int nmsgs) which should be &, R; = pid| i and&;, R; & nprocs || p. Evaluation
used if the programmer knows the numimensgs of mes-  of Ezp is not total (ex. evaluation of + true) but for
sages a processor will receive in a superstep. This typsimplicity always terminates. Parallel operations are:
of synchronization is much faster than the other one since

declarey := ebegincend New variable

no additional communication is needed and no barrier | sync Barrier of synchronisation
synchronization is done (but the user must know exactly | Push(z) Registers a variable for global access
how many messages every node will receive). Supersteps| PoP(z) Deletex from global access

with standard synchronization can alternate with obligiou | Put(e,z,y) Distant writing ofz to y of processok

synchronizations, but within one superstep each processor| get(e,z,y) Distant reading from: to y
has to use the same type of synchronization. The number of | send(z,e)  Sending value of: to processoe

messagesn that a processor waits imsp_obl is: . .
gesnfnsgs) P p_obisyne In contrast to the PUB, we use basic values instead of

« Each message which will be found in the mes-gpirary puffer addressesHar +). Exzp is extended with
sage queue (sent withsp_send, bsp_msgsend OF  fqmsg(i, ¢) that finds thecth message of processbof

bsp_hpsend); ) _ the previous super-step amdnsg that returns the arity of
o Eachbsp_put (or bsp_hpput) produces “one message R. (i.e. number of received values).
at the destination. Eachsp_get (or bsp_hpget) pro-

duces “one message” at source and destination.

Why high-performance in BSP (PUB) ? Figure 2 shows5' Small-step Semantics

the speedups for various versions of a program (the classic

N-body problen) that use only classical BSP operations, We give the semantics in an human reading format but

BSP with unbuffered communications (BSP+HP), obliviousthe full Coq development can be downloadedha:/lacl.

synchronisations (BSP+OblSync) or all this optimisationsuniv-paris12.fr/gava/pdp-cog.tar

(BSP+HP+ObISync). This program is based on a systolic We recall that we do not handle high-performance rou-

loop algorithm [9]. In such an algorithm, data (point magsestines in this semantics because they are non-deterministic

is passed around from processor to processor in a sequengasafe and because programs are first written using classica
operations and then optimised (by hand or by the compiler):

7. This computes the gravitational energy J6f point masses, which is  the main goal of this semantics is to prove the correctness

given byzig 2,7:1 # wherem are masses and coordinates. of programs, not to optimise them.
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Figure 2. Performances of the N-body problem

5.1. Generalities (E,C,R,c1) — (€',C",R',¢}) if c1#sync
P

. . . (€,C,R,c1502) = (€',C", R, c5c2)
Small-step semantics specifies the operation of a program ip
one step at a time. There is a set of rules that we continue to

. . . . . . . E,R |L=p elv
apply to configurations until reaching a final configuration

(£,C. R,z :=e) — (£[z/v],C, R, skip)

if ever. In our parallel case, we will have two kinds of P
reductions: local ones (on each processor) and global ones _
(for the whole parallel machine). (€,C, R, skipica) = (£,C, R, ca)
Our semantics is thus a set of rules. We néie/v]
insertion or substitution i€ of a new binding fromz to v. (€,C,R, (sync;er)ic2) = (€,C, R, syne; (1 c2))
We noteR the received values from the previous super-step
andC communications that need to be done in the current (£,C,R,sync) — (£,C, R, sync; skip)
super-step. We also nofea variable that has been registered e
for global access (DRMA)z for the contrary and: when &R cltrue
that is not important_ (€,C,R,if ethenc elsecy endif) — (£,C, R, c1)
To simplify our semantics and make it readable, we _ v
introduce some minor modifications to the specification &R E elfalse
from the PUB documentation. First, we do not require that (€,C,R,if ethenc; elsecy endif) — (£,C, R, c2)

. . . . i,p
different variables have to be registered in the same onder o
each processbr Second, to not have a confusion between (£,c, R, while e docdone) — (€,C, R, if ¢ then ¢’ else skip endif)

i,p

new variables and those that have been registered befae, on wherec’ = ¢; while e do ¢ done
could not declare variables that have been created Before

E,RE elvandzge

£,C. R, declare s = cbegincend) — (£[z/v],C, R, c
5.2. Local Rules ( eclare z ebegin cen >i7p< [z/v] c)

We note— for local reductions (e.g. one at each proces-  Figure 3. Reduction of sequential control flow

y
sor). Local ﬁnal configurations are notéél,C, R, c1).

Figure 3 gives rules of the local control flow and Figure 4
the rules of the PUB routines. Note that we ensure that there
is always instructions after aync (without introducing with —). Messages (communications) are used vgtt,
infinite reductions for this) and thatync;c andskip are  put or send with their natural arguments (we nofé for
local terminated states. The communications environrfient modulo calculu¥).
now contains messages to be sent (noted wi)hand asyn-
chronous messages received from other processors (noted

8. To show regard for the PUB’s documentation, we can courgamh
processor the registering of variables and compare theracht learrier. 10. Another way is to forbidden communications oger--p — 1; we
9. We can introduce a dynamic change of variables’s namehbtitig a think that communications modulp is much closer to a safe BSPIib
tedious work. implementation that is the PUB.



5.3. Global Reductions and Communications if {z— v}€EWith &' = € @ {F — v}
(€,C, R, push(z)) (€7,C, R, skip)

i,p

_ PUB programs are SPMD ones so a p_rogtas_lstarteqo (T 0} CE With & = £ & {z o)

times. We model this asgvector ofc with its environments (.C. R, pop(z)) — (£/,C, R, skip)

of execution that contain§, communication§ and received B

values’R. A final configuration isskip on all processors: £,R [ elpidand{z — v} €€ and{j — v'} €€

{€0,Co, Ro,skip|| -+ |€p—1,Cp—1, Rp—1,skip) (€,C, R, put(e, z,y)) — (£,C’, R, skip)
The global reductions call the local ones with this rule:

i,p
whereC’ = C U {put, pid%p, g, v, —}

(€i,Ci, Ri, ci) = (€],C{, R, c}) E,RE elpidand{z — v} and{y — v'} €E
P
(E,C,R,get(e,z,y)) — (£,C’, R, skip)
(o ll€Ci Riyeill -y = (- 1€, CL Ry, eill -+ ) P

i

i,
whereC’ = C U {get, pid%p, =, 7, <}

This represents a reduction by a single processor, which &:R [ el pid and{z — v} € £ with ¢’ = C U {send, pid%p, v, —}
then introduces an interleaving of computations. Note that (€,¢, R, send(,€)) — (£,C", R, skip)
in the following rules, eacl:; could be an empty set of
instructions. Communications and BSP synchronisation are
done with this rule:

Figure 4. Reduction of the PUB's routines

(€0, Co, Ro, sync; col| -+ [|Ep—1,Cp1, Rp—1,5ync; cp—1) 5.4. Coq Development and Lemmas
— (C‘O’rﬁ/ﬂl(é’o,C()7 RU), Co” e HComm(Sp,l,Cp,h ’R,pfl), Cpfl)

cations are done (using tf@mm function that model ex- €0d. We give here some intuitions of this development. We
changes of messages) and the current super-step is finishé@te instr for a list of instructionsenvnmtfor environments
The Comm function specifies the order of the messages dur{Store £, communications” and received value®). We

ing the communications. It modifies the environment of eactlSO Useeq_envnmt for equivalence of environmentg-
processor such thatComm(Cl, R}, £!) = (C/,R!, &) is ~ Vectors are represented as functions fta instructions or

%

for BSMP as follows: environments. The two rules of global reductien (doing
local calculations and communications) are modelled with
cl =0 the inductivesmallstep sem as follow:
p—1 "j J
Ry = U ULin+ D na v} if {send, i, v} €n C; Inductive smallstepsem :@Z—envnmt)—(Z—instr)
J=0n=0 a=0 —(Z—envnmt)— (Z—instr)—Prop:=
) | smallstepsem_local : V
That is, we suppose that each procesgdnas sentn; i envl il env2 i2 envli ili env2i i2i,
messages ta and thus we take theth message (noted smallstepsem.| i envii ili env2i i2i —

. . . eg_envnmt envli (envl i
€,) from this ordering set. DRMA accesses are defined a%q_e,?(,nmt env2i (enf,z i)_))z izili—i2 izi2i —
follow: (V n, ni — (eg_envnmt (envl n) (env2 n))A
(il n=1i2 n)) —
smallstepsem envl il env2 i2
T eg

p—1 p—1
" _ — and {get, j, =z, ¥} € C| | smallstepsem.sync :V envl env2 il i2,
& =& U[y/v]U[y /o]t W —vreeg commg envl env2 —VY i, O<=i<p —
=0 =0 and{put,i,y’,v'} € ] (i1 i = sequence sync (i2 i))Vv (il i = sync A

i2 i = skip) —smallstepsem envl il env2 i2.
That is, first, get accesses with the natural order of
processors are performed (list of substitutions) and thet
accesses finish the communications (same natural order).
We note=- for a finite derivation and= for an infinite
one (this has to be read as “program diverges?)(resp.=)
is defined by induction (resp. by co-induction i.e. infinite b
rational derivation [10]) in Figure 5. Execution of a progra
is complete in the final configuration case or there exists i e smallstep sem | (i:Z):envnmts instr—envamt
reduction step before having this final configuration or the —instr—Prop:=
program diverges. Programs that neither evaluate norghver (‘* It then else semanticss)
according to the rules above are said to "go wrong”. | smallstepsem_ ifelse_true :V e il i2 11 117,

Then, = (resp.=) are defined by a inductive (resp. co-
inductive) on this reduction.

The inductivesmallstep sem_| defines a local reduction,
that is execution of a communication routine or execution
of a sequential control flow. We give here an interesting part
of its Coq’s definition:



Vi (- |ni, &, Ci, Ry, skipl| - -) = (- [|ni, &, Ci, Ry, skip|| - - -)

Vi lni & Ci Riseill- o) = (- Ing, €, CL Ry eill - ) (- 1Ini, £, CiL R, C'H V= o el R )

0 %a0 i Ty M i~ i1 Ci

(o lini, &6, Ci, Ry el |-y = (- IInff, €7, CRY el -+ 2)

i G

Vi (- lni €, Co Riseall -2} = (- Inf, €, CLRE el - -} (-~ |Inf, €, CL R, el - ) =
('"'H”LﬁgnCmRmCi”"')OO:

Figure 5. Whole reduction of a PUB program

b_eval i 11 e true — egq_envnmt 11 11’ — 6.2. New Communications
smallstepsem_| i 11 (ifelse e il i2) 11’ i1

(* put =) : :

| smallstepsem put : v e pid x y | 1", As mt_he small-s_tep semantics, we have a rule to represent
eval i | e (zvalue pid)— updateput | pid x y I’ — a reduction by a single processor. Asynchronous communi-
smallstepsem.| i | (put e xy) 1" skip cations are done with these rules:

(x send x)

| smallstepsem.send :V e pid x | |’ v,
eval i | e (zvalue pid)— (- l|ni, &,Ci U {hpsd, j, z,<}, Ri, ci|| - - ) where{z — v} € & —
lookup (fst I) x v — updatesend | v pid |'— (-llni, &, Ciy Riy cill- - lInj +1, €5, C;U{hpsd, j, z,—}, Ry, ¢l - )

smallstepsem.| i | (send x e) I’ skip

We previously defined [11] (also in Coq) a natural seman- ¢ - lIni. & Ci U {hpput, j, 3, o, —}, Ri, cil -« ) where{z — v} €&;

tics of the same PUB subset. This semantics has been proved Alni, €, Ciy Ry cill - - - lIny + 1, &[F/v], Cj, Ry sl - - )

(also using Coq) to be deterministic and we thus have the

following lemmas by induction/co-induction: _ i, €5, CU{bpgE, 4, 2.5y}, Ras call- - lIng, €5,C o Ry eI+ )
Lemma 1:= andl (resp.=and|*°) are equivalent. = (o lni + 1, E[2/v], Co, Ras il -+ lImy +1,€5,C5, Ry, ¢4l -+ <)
Lemma 2:= is deterministic. where {y — v} € &
Lemma 3:=- and=-are mutually exclusive. That is, hpsend sends the value pointed hy to the

memory&; of processorj, hpput writes the value to the
6. Semantics for Hig-performances Operations  memory at destination arlipget takes the value at source
and the two counters are increased. When all asynchronous
communications have been done, synchronous communica-

6.1. Generalities tions and BSP synchronisation is done with this rule:

In this semantics, we introduce high-performance features
.\ . . .y {no,&o,Co, Ro,sync;col|- - -|[np—1,Ep—1,Cp—1, Rp—1,Sync; cp—1)
and thus, as specified in the PUB’s documentation, we will . (0, Comm(&, Co, Ro), coll- - -||0, Comm(Ep—1,Cp—1, Rp-1), cp1)
have to keep track of the number of messages sent/received Vi j,.y.v {hpsd, j,v} ¢ Cs A {hpgt v} € C A
(notedn; in an environment). The main property is that high- e {hpput, j, y, v} € C e
performance routines are non-deterministic and commenica
tions can be performed at any time: it does not depend onThat is if each processor is in thgync case, communi-
the programs but directly on external parameters such a@ations are done using ti@mm function that exchanges
state of the OS during execution of the program. the messages, which finishes the current super-step. For the
Note that these routines do not put in the environment #@blivious synchronisation we use this rule:
value but a variable that is a pointer to the value. In this,way
values are sent asynchronously with special rules. Also, we (- --|n;, &, cq,n oblsync(e); ci| - - -)
note the high-performance semantics as the small-step one = {110, Comm(&s, Cay Ra)s el -+ )

and=-, and —,, if we need to distinguish them. with €, Ri 27 e Uni + [Comm(E:, Ci, Ro)|
In this semantics, the rules for the sequential control it (hpsd. i} ¢ Co A {hpgt.j.o.v} &0 A
s . . e and It vs, g3, v, x, sd, 7, v i 3]y T,V i
flow and those of the traditional communication primitives R Nl A

are the same for the small-step semantics. The language is

also extended with the high-performance primitives. Rules That is it blocks the current processoruntil n; asyn-

for these primitives are given in Figure 6. The only realchronous messages have been received plus number of mes-
change is for global reductions: new rules are needed to adéRges generated by the BSP synchronous communications
asynchronous communications i.e. communications that cafll Comm(&;, Ci, R;)|]).-

be done at “any time”. Note that=j, (resp.%hp) is define as= (resp.>).



E,R \721] el pid and{z — v} €& and{y — v’} € £ with ¢’ = C U {hpput, pid%p,y, =, «—}
(n,€,C, R, hpput(e, z,y)) — (n,€,C’, R, skip)

“mp

E,R |l£p el pid and{z — v} €& and{y — v’} € £ with C’ = C U {hpgt, pid%p, x,7, —}
(n,&,C, R, hpget(e, x,y)) (n,&,C’, R, skip)
P

i

&R elpidand{z — v} €& with ¢’ = C U {hpsd, pid%p, x, —}
(n,&,C,R,hpsend(z,e)) — (n,&,C’, R, skip)
i,p

(n,&,C, R, (oblsync;cy); ca) — (n,E,C, R,oblsync; (c1;c2))

@, p

(n,&,C, R,oblsync) — (n,&,C, R, oblsync;skip)

ip

Figure 6. Reduction rules of the PUB’s high-performance routines

6.3. Coq Development and Lemmas Take for example, the simple following program:
declarez := pid and y := 1 begin
In the Coq development of this semantics, the only real push(z);
change is for thesmallstep sem inductive: we need to add hpput((pid + 1) mod nprocs, z, z);
the asynchronous communications. For example, we give ri=x+1
here some maodification of this inductive definition: sync;
Y=
end

Inductive smallstepsem :Z—envnmt)—(Z—instr)

| — (z=envamt)= (Z—instr)—Prop:= For each processor, it is impossible to know which value

(* Wedread theh number of messagvu;s wanted (pid or pid + 1 or pid — 1) is assigned tay.
and go to the next superstepsx . oo .
|smallstepsem_oblsync_step :V envl il env2 i2 e v i r, I._e_mma 9'%hp and :}Lp are not mUtua"y exclusive.
O<=i<p — (ilI i) = sequenceHP (oglsync_HP e) r— Infinite reductions (and deadlocks) can occur for a some
= 1), = v— .
?iz .n;J " (rZ\f ue?]d_vc)oﬁm(e(l\ﬁ,\,l' )i )(r}emms,gz) i)l execution cases of a program and the same program can
(v n N> —»(envl1 i'1= env22 'i2) A (il =02 i) — terminate for other cases. For example, in the above pro-
smallstepsem envl i1 envZ | gram, if we loop on a test of equality gnandpid, we will
(x hpltlaut transitiboln , c?]n happe; anytime) have a case where it is an infinite loop for some processors.
t t o . L .
Lomalistensomoblsyneppyl _ Conjecture 1:There are some code optimisation func-
O<=i<p — (i1 i) = (i2 i) — tions Opt such that:
(envl i).(envc) = (chppwtHP j x y)::tl — . . .
eval i (envl i) (var x) v— 1) if = is defined for any program then for Opt(c)
updateputr (envl j) j vy (env2 j) — ' ;
(Y n, n>i —(envl i = env2 i) A (il i = i2 i)) — =hp YIVES the same environment .
smallstepsem envl il env2 i2. 2) if = is defined for any programthen it is also the

e case thaOpt(c) =,
A function that does not modify the code is a possible case

Now we have following lemmas: . .
(see Lemma 4) but not an interesting one.

Lemma 4:= and=,, (resp.=and=, ) are equivalent
for programs that do not used high-performance routines.
Lemma 5:{ and=-, (resp.|>° and%,w) are equivalent
for programs that do not used high-performance routines.
Programs that have been proved correct using the natur
semantics [11] are also correct if we executed them in

high-performance environment.

7. Related work

Simplicity (yet efficiency) of the BSP model allows to
fove properties and correctness of BSP programs. Differen
pproaches for proofs of BSP programs have thus been

_ o studied such as BSP functional programming using Coq [12]
Lemma 6:=, is deterministic for programs that do not o the derivation of BSP imperative programs using Hoare’s

used high-performancexroutines. _ axiom semantics [13], [14]. The main drawback of these
Lemma 7:=, and =, are mutually exclusive for approaches is that they use their own languages that are in
program that do not used high-performance routines. general not subsets of real programming languages. Also

Lemma 8:=, is not deterministic. they neither used any proof assistant (except [12]) nor



implemented dedicated tools which is a lack of safety: users[4] R. H. Bisseling,Parallel Scientific Computation. A structured
make hand proofs so they are just theoretical works.
Our work simplifies and extends for BSMP routines and

diverging programs the BSPLib small-steps semantics of[5]

[15]. Also, our Coq development ensures safety.
In [11], we presented a formal deterministic operational

semantics (a natural semantics) for BSP programs and
used it to prove the correctness of a classical numericall®

computation (the N-body problem which is considered to
be an important Dwarf [3]) and the divergence of some
programs.

8. Conclusion

In this paper, we have presented two formal deterministic

operational semantics for BSP programs: one for classi-
cal BSP operations and another which introduces high-

performance primitives. An originality of this paper is tha

all results were proved using a proof assistant (the Coq

system) which ensures a better trust in the results.
The authors know that proving correctness of BSP com-

putations only using this semantics is a too tedious work[10]

Instead, it is intended to be the basis for better tools fer th

proof of BSP programs. We are thinking about extendin
the theoretical work of [16] and its C application software
[17] which generates lemmas to be proved (using a proof

assistant) from Hoare’s assertions in C programs that ensur

correctness (using a formal semantics).
Our second semantics could be used to create a certified
software for optimisation (a certified version of [8]): tean
forming buffered operations to unbuffered ones and BS
synchronisations to oblivious ones. The semantics would

help to prove the equivalence of classical BSP programs
[14] A. Stewart, M. Clint, and J. Gabarro, “Axiomatic Frawarks

transformation to high-performance ones.
The main goal of this work is an environment where

programmers could prove correctness of their BSP programs
and at the end automatically get high-performance versiongs)

in a certified manner. Adapting it to MPI programs would
be an interesting challenge.
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