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Abstract. As any software, model-checkers are subject to bugs. They
can thus report false negatives or validate a model that they should
not. Different methods, such as theorem provers or Proof-Carrying Code,
have been used to gain more confidence in the results of model-checkers.
In this paper, we focus on using a verification condition generator that
takes annotated algorithms and ensures their termination and correct-
ness. We study four algorithms (three sequential and one distributed)
of state-space construction as a first step towards mechanically-assisted
deductive verification of model-checkers.
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1 Introduction

Motivation. Model-checkers (MCs for short) are often used to verify safety-
critical systems. The correctness of their answers is thus vital: many MCs pro-
duce the answer “yes” or generate a counterexample computation (if a property
of the model fails), which forces, in the two cases, to assume that the algorithm
and its implementation are both correct.

But MCs, like any software are subject to bugs and there exist surprisingly
few attempts to prove them correct. Three main reasons can explain this fact
[13]: (1) MCs involve complicated logics, algorithms and sophisticated state re-
duction techniques; (2) because efficiency is essential, MCs are often highly op-
timised, which implies that they may not be designed to be proved correct;
(3) MCs are often updated. But there is a more and more pressing need from
the industrial community, as well as from national authorities, to get not just
a boolean answer, but also a formal proof — which could be checked by an
established tool such as the theorem prover Coq. This is required in Common
Criteria certification of computer products at the highest assurance level EAL 7
— http://www.commoncriteriaportal.org/. And hand proofs are not sufficient for
EAL 7, mechanical proofs are needed. The author of [18] resumes the problem:
Quis custodiet ipsos custodes ? (Who will watch the watchmen? that is, who will
verify the verifier?). We want to be able to trust the results of model-checkers
with a high degree of confidence.

Different solutions for verifying model-checkers. For verifying model-
checkers, different solutions have been proposed. The first one is to prove MCs



inside theorem provers and use the extraction facilities to get pure functional
machine-checked programs such as in the works of [20] and [6]. The second and
more common approach, in the spirit of Proof-Carrying Code [14] (PCC for
short), is to generate a “certificate” during the execution of the MC that can
be checked later or on-the-fly by a dedicated tool or a theorem prover. This is
the so-called “certifying model-checking” [13]. In this way, users can re-execute
the certificate/trace and have some safety guarantees because even if the MC is
buggy, its results can be checked by a trustworthy tool.

But, any explicit MC may enumerate a very large state-spaces (the famous
state-space explosion problem), and mimicking this enumeration with proof rules
inside any theorem prover (or with PCCs) would be foolish even if specific tech-
niques and optimisations of the abstract machine of theorem provers [1] are used.
Note that this problem does not arise when finding a refutation of the logical
formula (the trace is generally short) but when the answer is “yes” since the
entire explicit state-space (or at least a symbolic representation) needs to verify
the checked properties. In this way, certificate generation could also hamstring
both the functionality and the efficiency of the automation that can be built
from theorem provers (functional programs can be too memory consuming) and
PCC tools (too big certificates) [18]. Only efficient, imperative and distributed
programs can override the state-space explosion problem.

Another solution, proposed in [22] for a MC call PAT, is to use coding as-
sumptions directly in the source code. They indeed use Spec# and a check
of the object invariants (the contracts) is generated. Nevertheless, they cannot
completely verify the correctness of PAT and they thus focus on some safety
properties (as no overflows, no deadlocks) of the underlying data structures of
PAT (which can run on a multi-core architecture) and check if some options may
conflict with each other.

The proposed solution and outline. Our contribution follows the approach
of [22] but by using the “verification condition generator” (VCG for short) WHY
[7] and by extending the verification to the correctness of the final result: has
the full state-space been well computed without adding unknown states?

Since the language of WHY is not immediately executable but a higher-level
algorithmic language, we only focus on algorithms. We can thus focus on which
formal properties need to be preserved and not be obstructed by problems spe-
cific to a particular programming language. Even if most of the bugs in MCs
will not be due to wrong algorithms but rather due to subtle errors in the imple-
mentation of some complex data structures and bad interactions between these
structures and compression aspects, we must first check the algorithms to get
an idea of the amount of work necessary to verify a true model-checker.

Our goal is then a mechanically-assisted proof that these annotated algo-
rithms terminate and indeed compute the expected finite state-space. This is
an interesting first step before verifying MCs themselves: it allows to test if
this approach is doable or not. This is also challenging due to the nature of
model-checking (critical system) and to the algorithmic complexity. The main



contribution of this paper is to demonstrate the ability of a VCG such as WHY
to tackle the wide range of verification issues involved in the proof of correctness
of imperative codes of MCs.

The remainder of this paper is structured as follows. The VCG WHY is pre-
sented in Section 2.1, then the full state-space if formally defined in Section 2.2;
we consider also verifying different algorithms formally: three sequential ones
(which correspond to those mainly used in explicit MCs; described in Section 2.3;
verified in Section 2.4) and one distributed — mainly used in explicit distributed
MCs; described in Section 3.3; verified in Section 3.4. The first three are rela-
tively simple to prove correct: it is thus a good basis for correctness of MCs.
For the last, we use our own extension of WHY called BSP-WHY [9], which
is presented in Section 3.2. Section 4 discusses some related work and finally,
Section 5 concludes the paper and gives a brief outlook to future work.

2 Verification of sequential state-space algorithms

We now introduce the VCG WHY, describe how we model the state space, and
present the verification of 3 well-known algorithms. The annotated source codes
are available at http://lacl.fr/gava/cert-mc.tar.gz.

2.1 Deductive verification of algorithms using WHY

WHY [7] is a framework for the verification of algorithms. Basically, it is com-
posed of two parts: a logical language with an infrastructure to translate it
to existing theorem provers; and an intermediate verification programming lan-
guage called WhyML with a VCG for deductive verification. The logic of WHY is
a polymorphic first-order logic with logical declarations: definitions and axioms.
The examples of the standard library propose finite sets of data and several op-
erations with their axiomatisation (which can be proved using Coq): a constant
empty set; functions add, remove, union, inter, diff, cardinal; a predicate for
emptiness, equality, subset, extensionality, etc. In the logical formula, x@ is the
notation for the value of x in the pre-state, i.e. at the precondition point and
x@label for the value of x at a certain point (marked by a label) of the algorithm.

WhyML is a first-order language with an ML flavored syntax and it provides
the usual constructs of imperative programming. All symbols from the logic can
be used in the algorithms. Mutable data types can be introduced, by means
of polymorphic references: a reference r to a value of type σ has type ref σ,
is created with the function ref, is accessed with !r, and assigned with r ←e.
Algorithms are annotated using pre- and post-conditions, loop invariants, and
variants to ensure termination. Verification conditions are computed using a
weakest precondition (wp) calculus and then passed to the back-end of Why
to be sent to provers. Notice that in WHY, sets are immutable (manipulated
only with purely functional routines) and thus only a reference on a set can be
modified and assigned to another set.



1 let normal () =
2 let known = ref ∅ in
3 let todo = ref {s0} in
4 while todo 6= ∅ do
5 let s = pick todo in
6 known←!known ⊕ s;
7 todo←!todo ∪ (succ(s) \ !known)
8 done;
9 !known

1 let main dfs () =
2 let known = ref ∅ in
3 let rec dfs (s:state) : unit =
4 known←!known ⊕ s;
5 let current = ref (succ(s) \ !known) in
6 while current 6= ∅ do
7 let new s = pick current in
8 if (new s 6∈ known) then dfs(new s)
9 done;

10 in dfs(s0); !known

Fig. 1. Sequential WhyML algorithms.

2.2 Definition of the finite state-space

Let us recall that the finite state-space construction problem is computing the
explicit graph representation (also known as Kripke structure) of a given model
from the implicit one. This graph is constructed by exploring all the states reach-
able through a successor function succ (which returns a set of states) from an
initial state s0. Generally, during this operation, all the explored states must be
kept in memory in order to avoid multiple explorations of a same state.

In this paper, all algorithms only compute the state-space, noted StSpace.
This is done without loss of generality and it is a trivial extension to compute
the full Kripke structure — usually preferred for checking temporal logic for-
mulas. To represent StSpace in the logic of WHY, we used the following axiom
contain state space (for consistency, it has been proved in Coq using an inductive
definition of the state-space, also available in the source code):

1 logic s0: state logic succ: state → state set logic StSpace: state set
2 axiom contain state space: ∀ss:state set. StSpace ⊆ ss ↔
3 (s0 ∈ ss and (∀ s:state. s ∈ ss → s ∈ StSpace → succ(s) ⊆ ss))

i.e. defines which sets can contain the state-space. Now ss is the state-space
(ss=StSpace) if and only if, the two following properties holds: (A) ss ⊆ StSpace
and (B) StSpace ⊆ ss; that is equality of sets using extensionality. Note that us-
ing this first-order definition makes the automatic (mainly SMT) solvers prove
more proof obligations than using an inductive definition for the state-space.

2.3 Sequential algorithms for state-space construction

Fig. 1 gives two common algorithms in WhyML using an appropriate syntax
for set operations — a “Breadth-first” algorithm is also fully available in the
source code but not presented here due to lack of space. All computations in
these programs are set operations where a set call known contains all the states
that have been processed and would finally contain StSpace.

The first one, called “Normal”, corresponds to the usual sequential construc-
tion of a state-space —random walk. It involves a set of states todo that is used
to hold all the states whose successors have not been constructed yet; each state
s from todo is processed in turn (lines 4− 5) and added to known (line 6) while
its successors are added to todo unless they are known already — line 7.

The second one is the standard recursive algorithm “Dfs”. At each call of
dfs(s), the state s is added (side-effect) to known (line 3) and dfs is then recur-
sively called (lines 5−8) for all the successors of s unless they are already known



— which is an optimization since these states would anyway be filtered out later
on. Note the use of a conditional (line 8) within this loop: this is due to the fact
that during the exploration of the successors of s, known can be increased and
thus this prevents the re-exploration of these states

Note that the “Normal” algorithm can be made strictly depth-first by choos-
ing the most-recently discovered state (i.e. todo as a stack), and breadth-first
by choosing the least-recently discovered state. This has not been studied here.

2.4 Verification of these algorithms

For correctness, the previously presented codes need three properties: (1) they
do not fail (no rule of reduction); (2) they indeed compute the state-space; (3)
and they terminate. The first property is immediate since the only operation
that could fail is pick (where the precondition is “not take any element from an
empty set”) and this is assured by the guard of the while loop. Let us now focus
on the specification of the above algorithms.

Annotations. Fig. 2 gives the full annotated code of the “Dfs” algorithm and
“Normal” needs only adding the following invariants in the loop (and final post-
condition {result=StSpace}):
1 invariant (1) (known ∪ todo) ⊆ StSpace
2 and (2) (known ∩ todo)=∅
3 and (3) s0 ∈(known ∪ todo)
4 and (4) (∀ e:state. e ∈known → succ(e) ⊆ (known ∪ todo))
5 variant |StSpace \ known|

These four invariants are: (1) known and todo are subsets of StSpace; at the
end, (3) and (4) known is a subset of StSpace and has the “same” inductive prop-
erty; and when todo will be empty, then known contains StSpace — property (B).

“Dfs” is more subtle. We need to introduce ghost codes1, notably a set nofinish
(line 3) which has the following rule: each state s in nofinish has been processed
by the dfs function but not completely that is, s is in known and not all its
direct successors have been processed by dfs — in the loop. It is used in the
pre-condition (lines 8-9) and post-condition (lines 31-34) of dfs since not all the
direct successors have been processed since it is a depth-first algorithm.

Also nofinish is a subset of known since all the time, each state s will be
finally completely processed. That also forces us to add this fact in pre- and
post- conditions. The post-conditions (1) and (2) are used for (A) and (B). Note
the use of nofinish since some states can not be fully processed but nofinish is
empty at the end of the computation, ensuring (B). The two post-conditions (5)
and (7) say that nofinish is the same before and after dfs (thus empty when s0
is fully processed) but known was able to increase.

Now the invariants (lines 18 − 22) of the loop are the following: (1) and
(2) as in “Normal”, the set known is a subset of StSpace (current is the set

1 Additional codes not participating in the computation but accessing the program
data and allowing the verification of the original code.



1 let main dfs () =
2 let known = ref ∅ in
3 let nofinish = ref ∅ in (∗ ghost ∗)
4 let rec dfs (s:state) : unit
5 variant |Stspace \ known|
6 =
7 {
8 (1) s ∈StSpace and (2) known ⊆ StSpace and (3) s 6∈ known and (4) s 6∈ nofinish
9 and (5) (∀ e:state. e ∈known→ ¬(e ∈nofinish)→ succ(e) ⊆ known) and (6) nofinish ⊆ known

10 }
11 known←!known ⊕ s;
12 nofinish←!nofinish ⊕ s;
13 let current = ref (succ(s) \ !known) in
14 let ghost diff=ref ∅ in
15 L:while current 6= ∅ do
16 {
17 invariant
18 (1) (known ∪ current) ⊆ StSpace
19 and (2) (∀ e:state. e ∈known→ ¬(e ∈nofinish)→ succ(e) ⊆ known)
20 and (3) succ(s) ⊆ (known ∪ current) and (4) known@L ⊆ known
21 and (5) current@L= (ghost diff ∪ current) and (6) (ghost diff ∩ current)=∅
22 and (7) nofinish=nofinish@L and (8) nofinish ⊆ known
23 variant |current|
24 }
25 let new s = pick current in
26 ghost diff←!ghost diff ⊕ new s;
27 if (new s 6∈ known) then dfs(new s)
28 done;
29 nofinish←!nofinish 	 s
30 {
31 (1) known ⊆ StSpace
32 and (2) (∀ e:state. e ∈known → ¬(e ∈nofinish) → succ(e) ⊆ known)
33 and (3) s ∈known and (4) s 6∈ nofinish and (5) nofinish=nofinish@
34 and (6) known@ ⊆ known and (7) nofinish ⊆ known
35 }
36 in dfs(s0); !known {result=StSpace}

Fig. 2. “Dfs” sequential annoted algorithm.

succ(s)−known used in the foreach statement) and known works as StSpace; (3)
all the direct successors of s are in known or are currently processed; (4) known
can increase; (5 − 6) current works well as an iteration over a set using a ghost
set which ensures that no elements are lost during the iteration; (7) nofinish is
not modified by the loop but before the loop (and the post-condition ensures
that it returns as in the beginning of dfs); (8) nofinish remains a subset of known.

Termination. For all the algorithms, termination is ensured by the following
variants: |StSpace \ known| and by |current| when an iteration on each state of
a set is performed. Each algorithm ensures this first variant at every step using
the following properties:

– “Normal” only adds a new state s since (known ∩ todo)=∅;
– “Dfs” only recursively adds a new state (line 29) since the pre-condition of

the function is s 6∈ known (line 8) and the boolean condition of the conditional
is new s 6∈ known in the loop for the successors;



Mechanical proof. All the obligations produced by the VCG of WHY are
automatically discharged by a combination of automatic provers: CVC3, Z3,
Simplify, Alt-Ergo, Yices and Vampire. For each prover, we give a timeout of
10 seconds — otherwise some obligations are not proved. In the following table,
for each algorithm, we give the number of generated obligations (column Total)
and then how many are discharged by the provers:

algo/Solvers Total Alt-Ergo Simplify Z3 CVC3 Yices Vampire

Normal 11 2 10 11 7 3 3
Breadth 31 9 31 28 21 10 10
Dfs 49 22 48 47 40 23 26

One could notice that the SMT solvers Simplify and Z3 give the best results. In
practice, we mostly used them. Simplify is the faster and Z3 sometime verified
some obligations that had not be discharged by Simplify. We also have worked
with the provers as black-boxes and we have thus no explanation for this fact.
It also took few days for the first author to annotate all the algorithms. Proof
obligations are as usual when working with a VCG such as WHY.

3 Verification of a distributed state-space algorithm

Parallelize the construction of the state-space on several machines is a standard
method [2, 11]. In this section, we give an example of how to verify a parallel
algorithm and show that it is more challenging but feasible. We first present our
model of parallel computation called BSP then our own extension of WHY for
BSP algorithms and finally the verification of a BSP state-space algorithm.

3.1 The bulk-synchronous parallel (BSP) model

In the BSP model, a computer is a set of uniform processor-memory pairs and a
communication network allowing the inter-processor delivery of messages [19, 4].

A BSP program is executed as a sequence of super-steps, each one divided
into three successive disjoint phases: each processor only uses its local data to
perform sequential computations and to request data transfers to other nodes;
the network delivers the requested data; a global synchronisation barrier oc-
curs, making the transferred data available for the next super-step. The BSP
model considers communications en masse — as MPI’s collective operations,
Message Passing Interface http://www.mpi-forum.org/. This is less flexible than
asynchronous messages, but easier to debug and prove since interactions of si-
multaneous communication actions are typically complex.

3.2 Deductive verification of BSP algorithms

Our tool BSP-WHY extends the syntax of WhyML with BSP primitives (mes-
sage passing and synchronisation) and definitions of collective operations. BSP-
WhyML codes are written in a Single Program Multiple Data (SPMD) fashion.
We used the WhyML language as a back-end of our own BSP-WhyML language.



Fig. 3. Example of the BSP-WHY’s block decomposition of a BSP code.

In this way, BSP-WhyML programs are transformed into WhyML ones and then
the VCG of WHY is used to generated the appropriate conditions for the de-
ductive verification of the BSP algorithm.

A special constant nprocs (equal to p the number of processors) and a special
variable bsp pid (with range 0, . . . ,p−1) were also added to WhyML expressions.
A special syntax for BSP annotations is also provided which is simple to use and
seems sufficient to express conditions in most practical programs: we add the
construct t < i> which denotes the value of a term t at processor id i, and
<x> denotes a p-value x (represented by fparray, purely applicative arrays
of constant size p) that is a value on each processor as opposed to the simple
notation x which means the value of x on the current processor.

The transformation of BSP-WhyML codes into WhyML ones is based on
the fact that, for each super-step, if we execute sequentially the code for each
processor and then perform the simulation of the communications by copying
the data, we have the same results as in really truly doing it in parallel.

The first step of the transformation is a decomposition of the program into
blocks of sequential instructions — Fig. 3. Once that is done for each code block,
we create a “for” loop to execute sequentially the block. That is the block is ex-
ecuted p times, once for each processor. Finally, we generate invariants to keep
track of which variables are modified: since we are using arrays to represent the
variables local to every processor and programs are run in a SPMD fashion,
it is necessary to say that we only modify a variable on the current processor
and that the rest of the array stays unchanged. Also, when transforming a if

or while structure, there is a risk that a global synchronous instruction (a col-
lective operation) might be executed on a processor and not on the other. We
generate an assertion to forbid this case, ensuring that the condition associated
with the instruction will always be true on every processor at the same time —
thus forbidding deadlocks. The details and some examples are available in [9].
The trustworthiness of this tool is discussed in the conclusion.

3.3 BSP state-space construction

Algorithm “Normal” can be easily parallelised using a partition function cpu
that returns for each state a processor id, i.e., the processor numbered cpu(s) is
the owner of s: logic cpu: state → int axiom cpu range: ∀s:state. 0≤ cpu(s)<nprocs



1 let naive state space () =
2 let total = ref 1 in
3 let known = ref ∅ in
4 let todo = ref ∅ in
5 let pastsend = ref ∅ in
6 if cpu(s0) = bsp pid then
7 todo←!todo ⊕ s0;
8 while total>0 do
9 let tosend = (local successors

10 known todo pastsend) in
11 exchange todo total !known
12 pastsend !tosend
13 done;
14 !known

1 let local successors (...) =
2 let tosend = ref (init send ∅) in
3 while todo 6= ∅ do
4 let s = pick todo in
5 known←!known ⊕ s;
6 let new states = ref ((succ s) \ !known \ !pastsend) in
7 while new states 6= ∅ do
8 let new s = pick new states in
9 let tgt=cpu(new s) in

10 if tgt=bsp pid
11 then todo←!todo ⊕ new s
12 else tosend<tgt>←tosend<tgt> ⊕ new s
13 done
14 done;
15 !tosend

Fig. 4. Parallel (distributed) BSP-WhyML algorithm for state-space construction.

The idea is that each process computes the successors for only the states it
owns. This is rendered as the BSP algorithm of Fig. 4. Sets known and todo are
still used but become local to each processor and thus provide only a partial
view on the ongoing computation.

Function local successors computes the successors of the states in todo where
each computed state that is not owned by the local processor is recorded in a
set tosend together with its owner number. The set pastsend contains all the
states that have been sent during the past super-steps — the past exchanges.
This prevents returning a state already sent by the processor: this feature is not
necessary for correctness and consumes more memory but it is generally more
efficient mostly when the state-space contains many cycles.

Function exchange is responsible for performing the actual communications:
it returns the set of received states that are not yet known locally together with
the new value of total — it is essentially the MPI’s alltoall primitive.

To ensure termination of the algorithm, we use the additional variable total
in which we count the total number of sent states. We have thus not used any
complicated methods as the ones presented in [2]. It can be noted that the value
of total may be greater than the intended count of states in todo sets. Indeed,
it may happen that two processors compute a same state owned by a third
processor, in which case two states are exchanged but then only one is kept
upon reception. In the worst case, the termination requires one more super-step
during which all the processors will process an empty todo, resulting in an empty
exchange and thus total = 0 on every processor, yielding the termination.

3.4 Verification of the parallel algorithm

For lack of space, we only present the verification of the parallel part of this
algorithm and not the sequential local successors (similar to “Normal” but with
many additional invariants on states to send) nor exchange — which is more
technical and without really interesting properties and still available in the source
code: the exchange procedure is only a permutation of the states that is, from
a global point of view, only states in arrays have moved and there is no loss of



states and a state has not magically appeared during the communications. Fig. 5
gives the annotated parallel algorithm. We also use the following predicates:

– isproc(i) is defined what is a valid processor’s id that is 0≤ i<nprocs;
–

⋃
(<p set>) is the union of the sets of the p-value p set that is

⋃p
i=0p set<i>;

– GoodPart(<p set>) is used to indicate that each processor only contains the
states it owns that is ∀i:int. isproc(i) → ∀s:state. s ∈p set<i> → cpu(s)=i;

– comm send i(s,j) is the set of sent states from processor i to processor j.

As before, we need to prove that (1) the code does not fail; (2) indeed com-
putes the entire state-space and (3) terminates. The first property follows imme-
diately since only the routine pick is used as before; and to also prove that the
code is deadlock free (the loop contains exchange which implies a global synchro-
nisation of all the processors), we can easily maintain that total (which gives the
condition for termination) has the same value on all the processors during the
entire execution of the algorithm. Let us now focus on the two other properties.

Correctness of the parallel loop (Fig. 5). The invariants (lines 9−18) of the
main parallel loop work as follows: (1) as in “Normal”, we need to maintain that
known (even distributed) is a subset of StSpace which finally ensures (A) when
todo is empty; (2) as usual, the states to be treated are not already known; (3) our
sets are well distributed (there is no duplicate state that is, each state is only kept
in a unique processor); (4) total is a global variable, we thus ensure that it has
the same value on each processor; (5) ensures that no state remains in todo (to
be treated) when leaving the loop since total is at least as big as the cardinality
of todo, total is an over-approximation of the number of sent states; (6–8), as
usual, ensure property (B); (9) past sending states are in the state-space; (10)
pastsend only contains states that are not owned by the processor and (11) all
these states, that were sent, are finally received and stored by a processor.

In the post-condition (line 26), we can also ensures that the result is well
distributed: the state-space is complete and each processor only contains the
states it owns according to the function “cpu”.

Termination (Fig. 5). For the local computations, the termination is ensured
as in the “Normal” algorithm since known can only grow when entering the loop.

The main loop is more subtle: total is an over-approximation and thus could
be greater to 0 whereas todo is empty. This happens when all the received states
are already in known. The termination has thus two cases: (a) in general the set
known globally (that is, from a global point of view, of all processors) grows and
we have thus the cardinality of StSpace minus known which is strictly decreasing;
(b) if there is no state in any todo of a processor (case of the last super-step),
no new states would be computed and thus total would be equal to 0 in the last
stage of the main loop.

We thus used a lexicographic order (this is well-founded ensuring termina-
tion) on the two values: sum of known across all processors; and total (which is the
same on all processors) when no new states are computed and thus when no state



1 let naive state space () =
2 let known = ref ∅ in let todo = ref ∅ in
3 let pastsend = ref ∅ in let total = ref 1 in
4 if cpu(s0) = bsp pid then
5 todo ←s0 ⊕ !todo;
6 while total>0 do
7 {
8 invariant
9 (1)

⋃
(<known>) ∪

⋃
(<todo>) ⊆ StSpace

10 and (2) (
⋃

(<known>) ∩
⋃

(<todo>))=∅
11 and (3) GoodPart(<known>) and GoodPartt(<todo>)
12 and (4) (∀ i,j:int. isproc(i) → isproc(j) → total<i> = total<j>)
13 and (5) total<0> ≥ |

⋃
(<todo>)|

14 and (6) s0 ∈(
⋃

(<known>) ∪
⋃

(<todo>))
15 and (7) (∀ e:state. e ∈

⋃
(<known>) → succ(e) ⊆ (

⋃
(<known>) ∪

⋃
(<todo>)))

16 and (8) (∀ e:state. ∀i:int. isproc(i) → e ∈known<i> → succ(e) ⊆ (known<i> ∪ pastsend<i>))
17 and (9)

⋃
(<pastsend>) ⊆ StSpace

18 and (10) (∀ i:int. isproc(i) → ∀e:state. e ∈pastsend<i> → cpu(e) 6= i)
19 and (11)

⋃
(<pastsend>) ⊆ (

⋃
(<known>) ∪

⋃
(<todo>))

20 variant pair(total<0>,| S \
⋃

(known) |) for lexico order
21 }
22 let tosend=(local successors known todo pastsend) in
23 exchange todo total !known !tosend
24 done;
25 !known
26 {StSpace=

⋃
(<result>) and GoodPart(<result>)}

Fig. 5. Parallel annotated algorithm.

would be sent during the next super-step. At least, one processor cannot received
any state during a super-step. We thus need an invariant in the local successors
for maintaining the fact that the set known potentially grows with at least the
states of todo. We also maintain that if todo is empty then no state would be
sent (in local successors) and received, making total equal to 0 — in exchange.

Mechanical proof. With some obvious axioms on the above predicates (such
as

⋃
<∅,...,∅>=∅) so that solvers can handle the predicates, all the produced

obligations are automatically discharged by a combination of the solvers. In the
following table, for each part of the parallel algorithm, we give the number of
obligations and how many are discharged by the provers (some proof obligations
require long timeouts e.g. 10 mins):

part/Solvers Total Alt-Ergo Simplify Z3 CVC3 Yices Vampire

main 106 74 98 101 0 54 78
successor 46 16 42 41 24 14 32
exchange 24 20 22 23 0 16 15

Now the combination of all provers is needed since none of them is able to prove
all the obligations. This is certainly due to their different heuristics. We also
note that Simplify and Z3 remain the most efficient. Some obligations are hard
to follow due to the parallel computations. But reading them carefully, we can
find the good annotations. An interesting point is that the first author with
the help of an undergraduate student was able to perform the job (annotate this
parallel algorithm) in three months. Based on this fact, it seems conceivable that
a more seasoned team in formal methods can tackle more substantial algorithms
(of model-checking) in a real programming language.
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Fig. 6. Different ways for proving model-checking algorithms.

4 Related work

Other methods for proving the correctness of model-checkers. Fig. 6
summarises different methods that have been used for verifying MCs where each
arrow corresponds to a proof of correctness (using a theorem prover or a PCC
approach) and the papers related to the work.

The state-space explosion can be a problem for MCs extracted from theorem
provers. They are pure functional programs such as the ones of [20, 6]. They
certainly would be too slow for big models even if there work on obtaining
imperative programs from extracted (pure) functional programs.

The “certifying model-checking” is an established research field [15, 23]. But,
the performance issue of PCC is discussed in [26] and [16] where the authors
present developments (and model-checking benchmarks) of BDDs and tree au-
tomata using theorem provers: BDDs are common data-structures used by MCs
and tree automata is an approach for having a formal successor function. PCC
only focuses on the generation of independently-checkable evidences as the com-
piled code satisfies a simple behavioural specification such as memory safety; the
evidence can then be checked efficiently. Using PCC for state-space is the same
as computing it a “second time”. In fact, the drawback of proof certificates is
that verification tools have to be instrumented to generate them, and the size
of fully expanded proofs may be too large. Authors of [26, 16] conclude that
PCCs are here inadequate and we can conclude that MCs themselves need to be
proved. It is also the conclusion of [8] where the authors note that “to avoid the
inefficiency of fully expansive proof generations, a number of researchers have
advocated the verification of decision procedures”.

Using annotations in source codes (programs or algorithms) and a VCG has
the advantage that realistic and efficient codes (mainly imperative ones) may be
verified which could be difficult using theorem provers. And it will not be worth
checking all the execution results of the MCs (which can take time) as in the
PCC approach because the results will be guaranteed.

In our work, we also only use automatic solvers for proving the generated
goals of the VCG WHY and thus we do not use any “elaborate” theorem prover
such as Coq. The correctness of our results depends on the correctness of (1)



the WHY tool (correct generation of goals) and (2) the results of the solvers.
Relying on modules like SMT solvers has the advantage that these tools would
certainly be verified in a close future. The work of [12] is a first approach for (1)
and the work of [5] is a PCC approach for (2). Moreover, a SMT solver has been
proved using a theorem prover [21]. In a close future, we can hope to achieve
the same confidence in our codes as the MCs extracted from [20, 6], as well as
better performances since our codes are realistic imperative codes — and not
functional ones from theorem provers. Finally, we think that using annotations
(and a VCG tool) has the advantage of being “easy”. And we can prove the
correctness of programs or limit the work to some safety properties if the full
correctness is too difficult to obtain. And it extends to parallel programs which
is not easy using PCCs or theorem provers.

Other various works. There are also interesting examples of verified algo-
rithms on WHY’s web page: Dijkstra shortest path, sorting, Knuth-Morris-Pratt
string searching, etc. A mechanically assisted proof using Isabelle of how LTL
formulae can be transformed into Büchi automata is presented in [17]. CTL*
temporal logic is also available in Coq [24]. All these works are interesting since
logical theories may be axiomatised in WHY.

Model compilation is one of the numerous techniques to speedup model-
checking: it relies on generating source code (then compiled into machine code) to
produce a high-performance implementation of the state-space exploration prim-
itives, mainly the successor function. In [10], authors propose a way to prove the
correctness of such an approach. More precisely, they focus on generated Low-
Level Virtual Machine (LLVM) code from high-level Petri nets and manually
prove that the object computed by its execution is a representation of the com-
piled model. If such a work can be redone using a theorem prover, we will have
a machine-checked successor function which is currently axiomatised in WHY.

5 Conclusion

Model checkers are specialised software, using sophisticated algorithms, whose
correctness is vital. In this work, we focus on correctness of well-known sequential
algorithms for finite state-space construction (which is the basis for explicit
model-checking) and on a distributed one designed by the authors. We annotated
the algorithms for finite sets operations (available in Coq) and used the VCG
WHY (certifying in Coq [12]) to obtain goals that were entirely checked by
automatic solvers. These goals ensure the termination of the algorithms as well
as their correctness for any successor function — assumed correct and generating
a finite state-space. We thus gained more confidence in the code. We also hope to
have convinced the reader that this approach is humanly feasible and applicable
to real (parallel or sequential) model-checking algorithms.

Future goals are clear. First, adapt this work for true MC algorithms — as
those for LTL/CTL* mostly Tarjan/NDFS like algorithms. This is challenging in
general but using an appropriate VCG, we believe that a team can “quickly” do



it. Second, we are currently proving algorithms and not real codes. Regarding the
code structure, this is not really an issue and translating the resulting proof into a
verification tool for true programs should be straightforward, mostly if high level
data-structures are used: the WHY framework allows a user to generate �WhyML
code from Java using a tool call Krakatoa. Third, the successor function (compu-
tation of the transitions of the state-space) is currently an abstract function. We
think to prove (mechanically) the work of [10] to compensate for this deficiency.
Fourth, compressions aspects (symmetry, partial order, etc.) must be studied.
The work of [25] which uses the B method could be a good basis. And to finish,
the transformation of BSP-WhyML into WhyML is potentially not correct. The
second author is working on this. The effort for all these works and thus verifying
the whole stack of Fig. 6 is not at all within the reach of a single team. But our
guess is that each of these stages is largely feasible. Also, machine-checked MCs
would certainly be less efficient than traditional ones. But they could be used
in addition when it comes to giving greater confidence in the results. We also
believe that another interesting application of a verified tool (such as we are envi-
sioning) would be to serve as a reference implementation that is used to compare
the results of an efficient implementation over a set of benchmark problems.
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