
February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

The International Journal of Parallel, Emergent and Distributed Systems
Vol. 00, No. 00, January 2009, 1–20

RESEARCH ARTICLE

CPS Implementation of a BSP Composition Primitive with

Application to the Implementation of Algorithmic Skeletons

Ilias Garniera and Frédéric Gavab∗

aCEA, LIST, Mail Box 94, F91191 Gif-Sur-Yvette Cedex;
bLACL laboratory, University of Paris-East, France

(July 2009)

BSML is an ML based language designed to code Bulk Synchronous Parallel (BSP) algo-
rithms. It allows an estimation of execution time, avoids deadlocks and non-determinism.
BSML proposes an extension of ML programming with a small set of primitives. One of these
primitives, called parallel superposition, allows the parallel composition of two BSP programs.
Nevertheless, its past implementation uses system threads and has a serious drawback which
is the cost of managing threads in ML-like languages. This paper presents a new implementa-
tion of this primitive based on a continuation-passing-style (CPS) transformation guided by
a flow analysis. To test it and show its usefulness, we also have implemented the OCamlP3L’s
algorithmic skeletons and compared their efficiencies with the original ones. The work pre-
sented here is tightly related to the BSP model, but is not specific to ML. Hence, we reckon
there would be little work involved in translating it to, for instance, Java or Python.

Keywords: ML programming, BSP model, CPS transformation, flow analysis, skeletons

1. Introduction

1.1 Generalities

Since the paper “Go To Statement Considered Harmful”, structured sequential
programming is the norm. It is surprising to see that it is absolutely not the case
for parallel programming [26]. Besides compiler-driven automatic parallelisation,
programmers have kept the habit of using low-level parallel routines (as send/re-
ceive of e.g. MPI/PVM) or concurrent languages [32]. In this way, they, less or
more, manage the communications with the usual problems of (un)buffered or
(un)blocking sending, which are source of deadlocks and non-determinism. Fur-
thermore, programmers forbid optimisations that could be done if more high-level
structures as collective operators or skeletons were to be used instead.

High-level models, languages and tools are thus needed but sadly rarely used.
The main reason of this fact is that they do generally not offer a sufficiently wide set
of parallel structures (as skeletons [11]) for a practical and efficient programming.

This makes the design of new and robust parallel programming languages an
important area of research. The design of these languages is a tradeoff between
the possibility for the programmer to control parallel aspects necessary for pre-
dictable efficiency (but which make programs more difficult to write, to prove and

∗Corresponding author. Email: frederic.gava@univ-paris-est.fr

ISSN: 1744-5760 print/ISSN 1744-5779 online
c© 2009 Taylor & Francis
DOI: 10.1080/1744576YYxxxxxxxx
http://www.informaworld.com

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

2 Taylor & Francis and I.T. Consultant

to port) and the abstraction of such features which are necessary to make parallel
programming easier — but which hampers efficiency and performance prediction.

1.2 Introduction to BSML

An interesting compromise is bsml, an extension of ML (a family of high-
level programming languages: functional, modular and imperative) to code bulk-
synchronous (BSP) algorithms [6] which combines the high degree of abstraction of
ML (without poor performances because very often, ML programs are as efficient
as C ones) with the scalable and predictable performances of BSP.

It aims at providing the right balance between the two opposite approaches to
parallel programming: low-level programming which is subject to concurrency is-
sues, versus high-level one with its loss of flexibility and efficiency. In the former, we
find libraries such as MPI [40] generally used with Fortran or C; these approaches
are unsafe and leave the programmer responsible for deadlock or non-determinism
issues1. In the latter stand traditional algorithmic skeletons [11] where programs
are safe but limited to a restricted set of algorithms.

BSP is a parallel model which offers an high degree of abstraction and allows an
estimation of the execution time of its algorithms on a wide variety of architectures
as massively parallel machines (Cray, etc.), beowulf clusters of multi/single-core
PCs. This is particularly helpful in the design of efficient algorithms [4, 14] and
routines in APIs [25]. In fact, many programs fit the BSP model even if many
authors do not known it. For example, all the MPI programs that only use collective
routines can be considered as BSP ones.

bsml is an extension of ML to code this kind of algorithms using a small
set of primitives which are currently implemented as a parallel library (http:
//bsmllib.free.fr) for the ML programming language Objective Caml — OCaml.
Using a safe high-level language as ML to program BSP algorithms allows per-
formance, scalability and expressivity. bsml follows this paradigm to structure the
computation and communication between the processors in a data-parallel fashion.
All communications in bsml are collective (require all processes) and deadlocks are
avoided by a strict distinction between local and global computation.

BSP also provides a simple and efficient cost model which is particularly helpful
in the design of efficient algorithms [4, 6, 14] and that can be applied to bsml.

1.3 Superposition in BSML

The superposition primitive [33] is dedicated to the parallel composition of ex-
pressions (notably for divide-and-conquer algorithms) without any need of subset
synchronisation2. It is based on sequentially interleaved threads of BSP computa-
tions, called super-threads [43]. Informally, it is equivalent to pairing in bsml.

It was shown in [20] that the parallel superposition is not only useful to divide-
and-conquer BSP algorithms. This primitive can be used many times simultane-
ously in a single program and an efficient implementation is thus needed. To ensure
a deterministic execution3 of BSML programs, the semantics of the superposition
forces to have, at any time, only one active super-thread.

1These properties are justified for concurrent computations but clearly not for parallel algorithms.
2Subset synchronisation of processors is usually justified by the necessity of the recursive decomposition of
the computation into independent sub-problems; [43] argues that it is not really useful for BSP computing.
3Determinism guarantees that program behaviour is identical on all nodes; this essentially eliminates an
entire class of errors: data races.

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

Parallel, Emergent and Distributed Systems 3

Currently, the super-threads are implemented over the system threads [19].
Scheduling system threads is costly [32], especially for a garbage-collected (GC)
language as OCaml and when there are a lot of them. But we need to be able to
create thousands of super-threads without incuring the performance hit that sys-
tem threads cause. Otherwise, the superposition would lose its appeal. To overcome
this problem, we present a novel implementation of the superposition which uses a
global continuation-passing-style (CPS) transformation of BSML programs.

CPS is a classic style of programming in which control is passed explicitly in the
form of a continuation [2]. Instead of “returning” values, a function takes an extra
argument, the continuation which represents what should be done with the result
of the function and then passes it to another function. Programs can be translated
to semantically equivalent programs in CPS using a variety of algorithms [13]. As
a programming device, CPS enables programmers to define advanced, application-
specific control structures [42] such as co-routines [37, 45].

The main goal of this paper is a novel implementation of the superposition using
a non-classical CPS transformation of BSML programs. We followed a pragmatic
approach in the design of our global CPS transformation and efficiency was one of
our major concerns1. Currently it works on a large subset of OCaml. This trans-
formation is also driven by the use of a data flow analysis to introduce as less
as possible the performance overhead of CPS — which is still less expensive than
scheduling threads. Indeed, the superposition is transformed into CPS, whereas
most of the code does not have to be modified.

To benchmark our transformation, we have tested it to the implementation of
algorithmic skeletons, more precisely those of OCamlP3L [10] — http://camlp3l.inria.

fr/. Skeletons languages are generally defined by introducing a limited set of parallel
patterns to be composed in order to build easily a full parallel application [11]. Even
if the implementation is less efficient compared to a dedicated skeleton language (or
a MPI send/receive implementation [15]), the programmer can compose skeletons
when it is natural for him and use a BSP programming style when it is necessary.
Furthermore, as a performance test of our transformation, it has the advantage of
generating a large number of super-threads.

1.4 Outline

A good familiarity with ML programming and type systems is assumed. We refer to
the manual of OCaml (http://caml.inria.fr/, which also provides books for beginners)
for a tutorial introduction to the language and links to type system papers. The
approach we define here is not specific to ML though, and it could be applied to
many strict high-level languages. We think there would be little work involved in
adapting our system to Java or Python implementations of BSP [7, 27, 30].

First, we briefly review in Section 2 the BSP model, the BSML language and
the past implementation of the superposition with its restrictions. We then give in
Section 3 the definition (and some semantics results) of our novel CPS transfor-
mation which is used to implement efficient and scalable super-threads which are
needed by the superposition. Implementation is described in Section 4. Section 5
is devoted to the benchmark of an implementation of OCamlP3L’s skeletons using
this transformation. Related work is discussed in Section 6.

1We know that OCaml code cannot be interrupted, so by adding an appropriate CPS in OCaml, we do
not have to introduce some (inefficient) mechanism to save the execution context.

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

4 Taylor & Francis and I.T. Consultant

2. BSP Programming in ML

2.1 The Bulk-Synchronous Parallel Model

In the BSP model, a computer is a set of uniform processor-memory pairs and a
communication network allowing the inter-processor delivery of messages [6, 39].

A BSP program is executed as a sequence of super-steps (see left scheme in
Fig. 1), each one divided into three successive disjoint phases: each processor only
uses its local data to perform sequential computations and to request data transfers
to other nodes; the network delivers the requested data; a global synchronisation
barrier occurs, making the transferred data available for the next super-step. The
execution time (cost) of a super-step is the sum of the maximum of the local
processing, the data delivery and the global synchronisation times.

The performance of the BSP machine is characterised by 4 parameters that can
be benchmarked [6] to determine the execution time of BSP programs: the local
processing speed r; the number of processors p; the time L required for a barrier;
and the time g for collectively delivering a 1-relation, a communication phase where
every processor receives/sends at most one word.

The network can deliver an h-relation (every processor receives/sends at most h
words) in time g×h. The execution time (cost) of a super-step s is the sum of the
maximal of the local processing, the data delivery and the global synchronisation
times. The cost of a program is the total sum of the cost of its super-steps.

On most of today’s distributed architectures, barrier synchronisations are often
expensive when the number of processors dramatically increases. However, future
shared memory architecture developments (such as multi-cores and GPUs) may
make them much cheaper. They have also a number of attractions: it is harder
to introduce the possibility of deadlock or livelock, since barriers do not create
circular data dependencies. Barriers also permit novel forms of fault tolerance [39].

The BSP model considers communication actions en masse. This is less flexible
than asynchronous messages, but easier to debug since there are many simultaneous
communication actions in a parallel program, and their interactions are typically
complex. Bulk sending also provides better performances since it is faster to send
a block of data than individual ones — less network latency.

2.2 Bulk-Synchronous Parallel ML (BSML)

2.2.1 General description

bsml is currently a library based on the Objective Caml (OCaml) language; this
choice was made among the different variants of ML available mainly for a reason
of efficiency, since we target high-performance computation. Other reasons include
the amount of libraries available and the tools provided. We plan a full language
implementation by generating adequate OCaml code.

The core syntax of bsml is that of OCaml — with few restrictions. bsml pro-
grams can mostly be read as OCaml ones, in particular, the execution order should
not seem unexpected to a programmer used to OCaml, even though the program is
parallel. Moreover, most normal OCaml programs can be considered as bsml pro-
grams that do not make use of parallelism: the programs are executed sequentially
on each processor of the parallel machine and return their results normally. That
allows the parallelisation to be done incrementally from a sequential program.

Few entry points are needed for parallelism. bsml is based on a datatype called
parallel vector which, among all OCaml types, enables parallelism. A vector has
type ’a par and embeds p values of type ’a at each of the p different processors of the

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

Parallel, Emergent and Distributed Systems 5

p0 p1 p2 p3

Local
computing

Communications

Barrier

Next
Super-step

Replicated
or global parts

Local parts

Global
communications

and barrier

p0 p1 p2

Figure 1. A BSP super-step (left) and BSML model of execution (right)

BSP machine. p is defined as a constant bsp p throughout the execution of the pro-
gram. We use the following notation to describe a parallel vector:〈x0, x1, . . . , xp−1〉.

2.2.2 Model of Execution

What distinguishes this structure from an usual vector of size p is that the
different values, that will be called local, are blind from each other, as it is only
possible to access the local value xi in two cases: first locally, on processor i (by
the use of a specific primitive) and second, after some communications.

These restrictions are inherent to distributed memory parallelism; here they are
enforced by the use of an opaque type. This choice also makes parallelism fully
explicit, BSP costs easier to analyse [21] and we think programs more readable.
Worth noting is that parallel vectors can not be embedded in themselves since the
BSP machine has only one level of parallelism. We refer to [22, 23] for discussions
on the problematic BSP implementation of nested parallel vectors.

Since a bsml program deals with a whole parallel machine and individual pro-
cessors at the same time, a distinction between the levels of execution that take
place will be needed (see right scheme in Fig. 1):

• Replicated execution is the default. Code that does not involve bsml primitives
(nor, as a consequence, parallel vectors) is run by the parallel machine as it would
be by a single processor. It is used to coordinate the work of each processors.

• Local execution is what happens inside parallel vectors, on each of their compo-
nents: the processor uses its local data to do computations that may be different
from the others. Replicated and Local execution are strictly disjoint, and typi-
cally, processors alternate between them.

The distinction between local and replicated is strict [22, 23]. Hence, the repli-
cated code can not depend on local information, and remains replicated.

2.2.3 Parallel primitives

Parallel vectors are handled through the use of different communications primi-
tives that constitute the core of bsml. Their implementation relies either on MPI,
PUB [8] or on the TCP/IP functions provided by OCaml. A toplevel is also pro-
vided where the user can define its number of processors: execution on the toplevel
or on a parallel machine gives the same results — except in time.

Fig. 2 subsumes the use of the primitives. Informally, primitives works as fol-
lows. Let ≪ x ≫ be the vector holding x everywhere — on each processor. The
≪ ≫ indicate that we enter a local section and pass to the local level. Replicated
information is available inside the vector. Now, to access local information, we add
the syntax x to open the vector x and get the local value it contains, which can
obviously be used only within local sections.

The proj primitive is the only way to extract a local value from a vector. Given a
vector, it returns a function such that applied to the pid of a processor, it returns

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

6 Taylor & Francis and I.T. Consultant

primitive type informal description
≪ e ≫ t par (if e : t) 〈e, . . . , e〉
pid (within a vector int i on processor i

v (within a vector) t (if v : t par) vi on processor i (if v = 〈v0, . . . , vp−1〉)
proj ’apar→ (int→ ’a) 〈x0, . . . , xp−1〉 7→ (fun i → xi)
put (int→ ’a)par→ (int→ ’a)par 〈f0, . . . , fp−1〉 7→ 〈(fun i → fi 0), . . . , (fun i → fi (p − 1))〉
super (unit→ ’a)→ (unit→ ’a)→ ’a∗’b fa 7→ fb 7→ (fa (), fb ())

Figure 2. Summary of bsml primitives

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

Barrier of synchronisation

Computations of
expression E1

Computations of
expression E2

Communications

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

Without super−threads With super−threads

Figure 3. The evaluation of the superposition for two super-threads on 3 processors

the value of the vector at this processor. proj performs communications to make
local results available globally within the returned function. Hence it establishes a
meeting point for all processors and, in BSP terms, ends the current super-step.

Note the choice of functions of type (int → ’a) in proj. Arrays of size p or lists
could have been chosen instead, but the interface is more functional and generic
this way. Furthermore, as seen in the examples, the conversion between one style
and the other is easy. Internally, our implementation relies on arrays.

The put primitive is the comprehensive communication primitive. It allows any
local value to be transferred to any other processor. As such, it is more flexible
than proj. It is as well synchronous, and ends the current super-step.

The parameter of put is a vector that, at each processor, holds a function of
type (int → ’a) returning the data to be sent to processor i when applied to i.
The canonical use of put is: (put ≪ fun sendto → e(pid, sendto, x) ≫) where
expression e computes (or usually, selects) the data that should be sent depending
on sender to sendto. The result of put is another vector of functions that return,
when applied to i, the value received from processor i.

BSP paradigm’s simplicity and elegance comes at a cost: the ability to synchro-
nise a subset of the processors would break the BSP cost model. Subset synchro-
nisation is generally used to recursively decompose computations into independent
tasks — the divide-and-conquer paradigm. However, [43] proposes a natural way to
fit divide-and-conquer algorithms into the BSP framework without subset synchro-
nisation and by using sequentially interleaved threads of BSP computation, called
super-threads. The last primitive called super allows the evaluation of two bsml

expressions E1 and E2 as super-threads [17, 34]. From the programmer’s point of
view, the semantics of the superposition is the same as pairing i.e., building the
pair (E1, E2) but of course the evaluation of super E1 E2 is different — see Fig. 3.

In the left, pairing is just the sequential evaluation of the two programs. In
the right, using the superposition, the phases of asynchronous computation of E1

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

Parallel, Emergent and Distributed Systems 7

and E2 are run. Then the communication phase of E1 is merged with that of E2.
The messages are obtained by simple concatenation of the messages of each super-
thread and only one barrier occurs. If the evaluation of E1 needs more super-steps
than that of E2 then the evaluation of E1 continues — and vice versa. The parallel
superposition is thus less costly than the evaluation of E1 followed by E2.

2.2.4 Other features

bsml can also be used to manage external memories (file systems) [18]. This
feature is necessary to have safe accesses to local files (on each processor) and
global ones — available to all processors as in MPI-I/O. Local files can not be
accessed in replicated environment and vice-versa for global ones. [24] presents
how to manage exceptions in bsml. Currently, we do not have extended this work
to handle the contents of this article. We will discuss this point in the conclusion.

2.3 Examples

Having a very small core of parallel operations is a great strength for the for-
malisation of the language. It makes the definitions clear and the proofs shorter.
However, the use of the primitives can sometimes become awkward. Defining some
useful libraries simplify the coding of the algorithms. In this section, we define a
few functions useful for BSP computing where some are given as additional bsml

libraries. They are typical examples of bsml programming.

2.3.1 Utility functions

It is often needed to split a dataset among the processors. The following function
is an example that selects a part of a list on every processor:

(∗ select list:’a list → ’a list par ∗)
let select list l = let len = List.length l

in ≪ cut list l (pid ∗ len / bsp p) ((pid + 1) ∗ len / bsp p))≫

where cut list l a b returns the sub-list of the elements of l from index a (inclusive)
to index b — exclusive. Now, to parallel map a function on a list (classical data-
parallel skeleton [1, 11]) scattered as above is as simple as:

(∗ parmap : (’a→ ’b)→ ’a list par → ’b list par ∗)
let parmap f parlist = ≪ (List.map f) $parlist$≫

The proj primitive is often used at the end of a parallel computation to gather
the computed results. For example, converting a parallel vector into a list:

(∗ proj list : ’a par → ’a list ∗)
let proj list v = List.map (proj v) procs list

where procs list is the list of pids: [0; 1; . . . p−1].

2.3.2 Parallel prefix computation

As a generalisation of the above, a simple one-step reduce (having ⊕p−1
k=0vk on

each processor from the parallel vector 〈v0, v1, . . . , vp−1〉) can be done with:

(∗ simple reduce: (’a→ ’a→ ’a)→ ’a→ ’a par → ’a
let simple reduce op e v = List.fold left op e (proj list v)

where e is a neutral element and op the associative operator ⊕.
The above reduce does not make use of parallelism. If the combination operator

⊕ has some cost, we may prefer to reduce in a multi-step manner (a classic
logarithmic way), doing the combinations locally. It is based on the classic paral-

lel prefix computation: scan e ⊕ v0 · · · vp−1 = e v0 ⊕ v1 v0 ⊕ v1 ⊕ v2 · · · ⊕p−1
k=0vk

This algorithm combines the values of processors i and i + 2n at processor i for
every super-step n from 0 to ⌈log2(p)⌉. Fig. 4 (left) gives the code.

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

8 Taylor & Francis and I.T. Consultant

(∗ scan’: int→ (’a→ ’a→ ’a)→ ’a→ ’apar→ ’apar ∗)
let rec scan’ step op e v =
if step >= bsp p then v else

let comm =
put ≪ fun j →

if (j mod (2∗step) = 0)
&& (pid = j + step)

then v
else e ≫

in let v’ =
≪ if pid mod (2∗step) = 0

then
if pid + step < bsp p

then op v ($comm$ (pid + step))
else v

else e ≫
in scan’ (step∗2) op e v’

(∗ reduce: (’a→ ’a→ ’a)→ ’a→ ’a par→ ’a ∗)
let reduce op e v = (proj (scan’ 1 op e v)) (bsp p−1)

(∗ inbounds: ’a→ ’a→ ’a→ bool ∗)
let inbounds first last n = (n>=first)&& (n<=last)
(∗ mix: int→ ’a par ∗ ’a par→ ’a par ∗)
let mix m (v1,v2) = ≪ if pid<=m then $v1$ else $v2$ ≫

(∗ scan super: (’a→ ’a→ ’a)→ ’a→ ’a par→ ’a par ∗)
let scan super op e vec =
let rec scan’ fst lst vec =
if fst>=lst then vec
else
let mid = (fst+lst)/2 in

let vec’= mix mid (super (fun()→ scan’ fst mid vec)
(fun()→ scan’(mid+1) lst vec)) in

let send = put ≪ if pid=mid
then (fun dst→ if inbounds (mid+1) lst dst

then Some $vec’$
else None)

else (fun dst→ None)≫ in
≪ match ($send$ mid) with

| None → $vec’$
| Some v → op v $vec’$ ≫

in scan’ 0 (bsp p()−1) vec)

Figure 4. Parallel reduce computation (left) and its Divide-and-conquer version (right)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(i
n

se
co

n
d
)

Size of the polynomials (number of floats)

Differents reducing algorithms

Binary Version
One-step Version
With Superposition

Figure 5. Benchmarking of reducing algorithms (addition of polynomials)

The program (scan’ 1) gathers data at every even processor, then at multiples of
4, 8, etc. Communication is the first step: the argument of put returns the operator’s
unit unless sending from processor (2× step+1)× i to 2× step× i for any i. Then,
the combination is done at processor 2 × step × i using op.

In the same manner, the parallel prefix computation can be done using a divide-
and-conquer BSP algorithm (with super) where the processors are divided into
two parts and the scan is recursively applied to those parts; the value held by the
last processor of the first part is broadcast to all the processors of the second part,
then this value and the values held locally are combined together by the associative
operator ⊕ on the second part. Fig. 4 (right) gives the code of this method.

Fig. 5 presents some experiments on a cluster with 10 Pentium IV nodes (1 GB
of RAM each) interconnected with a Gigabyte Ethernet network and Open-MPI.
The binary version is the one presented in Fig. 4 (left) and superposition is the one
in the right of Fig. 4. The values were arrays of floats representing polynomials and
the binary operation is the sum. Diagrams show the average of the results with
increasing size of polynomials. Note that the performances for the superposition
version were done using both past and new implementations and no difference was
found here due to a too small number of super-threads.

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

Parallel, Emergent and Distributed Systems 9

2.4 Older superposition implementation

In ML-like languages, it is straightforward to add imperative features that can
introduce non-deterministic results (deadlocks) in BSML. To avoid this, a strategy
for the choice of the unique active super-thread has been added [19]: the active
super-thread is evaluated until it ends its computations or it needs communications.
When communications are done, the first super-thread which has finished “its past
super-step” is re-evaluated, i.e., it becomes the new current active super-thread.

Currently, based on a semantics study, the superposition is implemented using
system threads [19]. Each time a superposition is called, a new thread is created
and share locks are used each time a communication primitive is called.

There is an important drawback to this method. System threads slow down the
running of an OCaml program: a global lock is used due to the GC of OCaml. When
using many threads (e.g. > 100), the performance of the program totally collapses.
This greatly limits the usefulness of the superposition when a large number of
super-threads are run simultaneously. We now present another implementation
which uses a global continuation-passing-style (CPS) transformation.

3. CPS transformation and flow analysis

First, we present a naive CPS transformation and the core source language which
is CoreML with the adjunction of two primitives: yield and super — the tar-
get language is the same minus these primitives. Here, yield replaces communi-
cation primitives, abstracting away communication handling. yield suspends the
currently executing super-thread (called thread in the next) and schedules the ex-
ecution of the next thread, as defined by the semantics of super. We then define
our novel CPS transformation which aims to preserve as much code as possible.

3.1 Continuation Passing Style

The original CPS transform [35] was designed to study the various evaluation
strategies for the lambda-calculus by making the control explicit, as a continua-

tion: a function representing the evaluation context. It was then discovered that
giving to the programmer or the compiler writer the ability to explicitly manipu-
late continuations was an expressive tool to perform various analysis or to encode
various high-level constructs, such as exceptions or light-weight threads [37]. Below
is the original CPS transformation, as defined in [35] for λ-calculus:

JxK = λk.(k x)
Jλx.MK = λk.(k (λx.JMK))
J(M N)K = λk.(JMK (λm.(JNK (λn.(m (n k))))))

3.2 Core language and naive CPS transformation

Expressions are as follow (values v are defined as the usual subset):
e ::= x variables

| c constants
| λv.e functional values
| fix f λx.e recursive functions
| e1 e2 applications
| let v = e1 in e2 local definitions
| (e1, e2) couples

| κ e constructor application
| op e1 e2 arithmetic operators
| super e1 e2 superposition
| 〈e〉 parallel vector
| x get the local value of a vector
| yield simulates put and proj

| match e with m1 | ... | mn pattern matching
m ::= κ x → e matching branch

Monads allow to extend a language while enforcing a correct operational be-
haviour [44]. A monad is the data of three primitives: run, ret and bind, operating

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

10 Taylor & Francis and I.T. Consultant

T0JxK = ret x
T0JxK = ret x
T0JcK = ret c
T0Jλv.eK = ret λv.T0JeK
T0J〈e〉K = ret 〈T0JeK〉

T0Jfix f λx.eK = ret (fix f λx.T0JeK)
T0Je1 e2K = bind T0Je1K (λv1.bind T0Je2K (λv2.v1 v2))
T0Jlet v = e1 in e2K = bind T0Je1K (λv.T0Je2K)
T0J(e1, e2)K = bind T0Je1K (λv1.bind T0Je2K (λv2.(v1, v2)))
T0Jκ eK = bind T0JeK (λve.κ ve)
T0Jop e1 e2K = bind T0Je1K (λv1.bind T0Je2K (λv2.op v1 v2))

T0Jmatch e with | κi xi → ei K = bind T0JeK (λve.match ve with | κi xi → T0JeiK)

yield = λk.Waiting k
super = let loop = fix loop λr1.λr2.bind yield (λ () .match (r1, r2) with

| (Terminated x1, Terminated x2) → ret (x1, x2)
| (Terminated , Waiting s) → loop r1 (s ())
| (Waiting s, Terminated) → loop (s ()) r2

| (Waiting s1, Waiting s2) → loop (s1 ()) (s2 ())) in

ret λf1.ret λf2.
let r1 = ((ret f1)@ (ret ())) (λx.Terminated x) in

let r2 = ((ret f2)@ (ret ())) (λx.Terminated x) in

loop r1 r2

Figure 6. Monadic transformation

on a type M α. run has type ∀α.M α→α and executes a monadic program. ret, of
type ∀α.α→M α transforms a base value into a monadic one. Finally, bind allows
chaining monadic computation as reflected by its type ∀α, β.M α→(α→M β)→M β .

Our threads are modelled as resumptions, meaning that they are in a suspended
state or terminated: type ’a thread=Terminated of ’a | Waiting of (unit→ ’a thread) The monadic
type is always thread: M α = ∀ β.(α → thread β) → thread β. The monadic
primitives are thus defined as follow:

ret x = λk.kx
bind m f = λk.m(λv.fvk)
run = λx.((fix loop λt. match t with

| Terminated x → x
| Waiting s → loop (s ())) (x (λx.Terminated x)))

They must at least satisfy these three monadic laws:
bind (ret a) f ≈ f a
bind a λx.ret x ≈ a
bind (bind a (λx.b)) (λy.c) ≈ bind a (λx.bind b (λy.c))

where ≈ is defined as ∀a1, a2, k ∃a (a1 k⇒a)∧(a2 k⇒a) and ⇒ is a simple big-step
semantics [16]. In our case, these laws were mechanically proved using the Coq
proof assistant — see [16] for the proof script and for all other proofs.

We now straightforwardly proceed to the definition of the monadic transforma-
tion on expressions T0JeK, defined in Fig. 6 — left part. The primitives yield and
super are then defined using first class continuations in Fig. 6 (right part) where
a @ b ≡ bind a (λva.bind b (λvb.(va vb))).

The operational behaviour of these primitives is clear: yield captures its own
continuation, and stores it into a suspension for further evaluation; super first
suspends its own execution (using yield), then schedules the execution of its two
sub-threads until they are terminated. We have the following correction result:

Theorem 3.1 If e ⇒ v then T0JeK ≈ ret v.

3.3 Flow analysis for performance issues

To illustrate the problem of this naive transformation, we give this trivial example:
apply = λf.λx.fx
T0JapplyK = λk0.k0λf.λk1.k1λx.(λk2.(λk3.k3f)(λv.(λvf .λk4.(λk5.k5x)(λv.(λvx .vf vx)vk4))vk2))

It is obvious that this transformation can not be used as is. Moreover, this code
did not need to be converted to CPS at all: it does not contain any concurrency
primitive. The full transformation of a program to CPS considerably impedes
performance. This overhead is usually alleviated using transformation-time

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

Parallel, Emergent and Distributed Systems 11

reductions to eliminate these so-called “administrative redexes” on the programs.
However, that does not suffice. Aiming at numerical computing, we can not

afford to transform unnecessary expressions. Preserving these kind of expression
from being converted is the aim of the transformation which is now presented.
Observing how some very limited parts of the program need continuations, it seems
natural to try to convert only the required expressions — in our case, only yield and
super need them. We thus need a partial CPS transformation [31]. The expressions
to be transformed are those susceptible to reduce a yield or super expression.

Since we must cope with higher-order functions, the partial CPS transforma-
tion is guided by a flow analysis which yields a straightforward flow inference
algorithm whose purpose is to decide if an expression is susceptible to reduce a
yield: we tag it as impure — pure otherwise. Our type system is derived from
the type system for CFA defined in [28] and the rules can be found in Fig. 7
where τ are classic ML types, and flows F ::= P | I — pure or impure where
I < P. We also suppose that the nesting of parallel vectors is impossible after
the analysis described in [23]. We use ground, simple types τ annotated by flows F :

τ ::= 〈F, CstT 〉
| 〈F, TName〉 user-defined sum types
| 〈F, τ0 → τ1〉 functions

| 〈F, τ0 ∗ τ1〉 couples
| 〈F, τ par〉 type of vectors

CstT ::= unit | int constants

Each constructor κ has a domain type (the type of its argument) and a codomain
type — the typename to which κ belongs. These are denoted κdom and κcodom. We
also define two projection functions on types : annot(〈f, x〉) = x and flow(〈f, x〉) =
f . These functions are readily extended to typed source terms. For any expressions
a and b, we define a ∨ b = min(flow(a), f low(b)).

Before stating the soundness theorem, we will state the usual lemma on type-
preserving (and thus flow preserving) substitutions:

Lemma 3.2 (Typings are stable by substitution)
Let e be an expression such that Γ, x : τ ⊢ e : τ ′ holds, and let v be an expression

such that Γ ⊢ v : τ . Then Γ ⊢ [v/x]e : τ ′.

Theorem 3.3 (Soundness w.r.t. yield reductions)
If Γ ⊢ e : τ and e ⇒ v then Γ ⊢ v : τ . If e contains yield then flow(e) = I.

3.4 Partial CPS transformation

The flow-directed partial CPS transformation aims to preserve “pure” expressions,
while CPS-converting “impure” ones. To preserve the operational equivalence, some
code must be generated between CPS and non-CPS terms.

The partial transformation is simple, parallel primitives are directly replaced
by their definitions, and the operators are always pure. Therefore pure expres-
sions are preserved from being transformed. On real-world programs, most of the
computation takes place in pure expressions, making the CPS part less of a burden:

T1JxK = ret x
T1JxK = ret x
T1JcK = ret c

T1Jλv.eI K = ret λv.T1JeK
T1J(fix h λx.e)IK = ret fix h λx.T1JeK

T1J(e1 eP
2

)IK = T1Je1K(ret e2)
T1J(let v = eI

1
in e2)IK = bind T1Je1K (λv.T1Je2K)

T1J(κ e)IK = bind T1JeK (λve.ret κ ve)
T1J(let v = eP

1
in e2)IK = let v = e1 in T1Je2K

T1JePK = ret e

T1J〈eP 〉K = ret 〈e〉

T1J(e1 eI
2
)IK = bind T1Je1K (λv1.bind T1Je2K (λv2.v1v2))

T1J(e1, e2)IK = bind T1Je1K (λv1.bind T1Je2K (λv2.ret (v1,v2)))
T1Jmatch e with | κi xi → ei K = bind T1JeK (λve.match ve with | κi xi → T1JeiK)

We observe that an impure expression is never embedded into a pure one. This
property is induced by the type system: if any sub-expression ei of an expression

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

12 Taylor & Francis and I.T. Consultant

x : τ ∈ Γ

Γ ⊢ x : τ

x : τ par ∈ Γ

Γ ⊢ x : τ Γ ⊢ c : 〈P, CstT 〉 Γ ⊢ op :τop

Γ ⊢ e : 〈P, τ〉

Γ ⊢ 〈e〉 : 〈P, τ par〉

Γ, x : τ1 ⊢ z : τ2 if f =x ∨ z

Γ ⊢ λx.z : 〈f, τ1 → τ2〉

Γ ⊢ z Γ ⊢ z′ : τ1 if annot(z)=τ1 → τ2 and f =z ∨ z′

Γ ⊢ (z z′) : 〈f, annot(τ2)〉

Γ ⊢ z : τ1 Γ ⊢ z′ : τ2 if if =z ∨ z′

Γ ⊢ (z, z′) : 〈f, τ1 ∗ τ2〉

Γ ⊢ z : τ1 Γ, x : τ1 ⊢ z′ : τ2 if flow(τ2) ≤F flow(τ1)

Γ ⊢ letx = z in z′ : τ2

Γ, h : 〈f, τ0 → τ1〉, x : τ0 ⊢ z : τ1 if f =x ∨ z

Γ ⊢ fix h λx.z : 〈f, τ0 → τ1〉

Γ ⊢ e : τκ κ : τκ → 〈flow(τκ), µ α . ⊕n
i=1τκi

〉

Γ ⊢ κ e : 〈flow(τκ), µ α . ⊕n
i=1 τκi

〉

Γ ⊢ e : 〈F, µ α . ⊕n
i=1 τκi

〉 Γ, xi : τκi
⊢ ei : τ i ∈ [1 · · ·n]

Γ ⊢ match e with | κi xi → ei : τ

if f =min(flow(τ0), flow(τ1))

Γ ⊢ super : 〈I, 〈I, 〈P, unit〉 → τ0〉 → 〈I, 〈I, 〈P, unit〉 → τ1〉 → 〈f, τ0 ∗ τ1〉〉〉 Γ ⊢ yield : 〈I, unit〉

Figure 7. Inference rules

e is impure, so is e. We use this fact in the transformation: when encountering a
pure expression, we simply wrap it into a ret. Our type system enforces that all
variables bound to the same binder have the same flow, ensuring the soundness of
our framework. This allows us to prove some useful lemmas on substitutions that
make the following soundness theorem provable:

Theorem 3.4 If t ⇒ v then T1JtK ≈ ret v.

4. New implementation of the superposition

For lack of space, we do not give all the details. The full implementation (which
works as a source-to-source code transformer) is available at http://lacl.univ-paris12.

fr/gava/cps-super-bsml-comp.tar.gz. Currently our implementation works on a large
subset of OCaml without objects, labels and functors.

4.1 Treatment of OCaml expressions

4.1.1 Imperative features, Sum type and records

We did not treat imperative features here, suffice to say that every expression
involved in an imperative operation is constrained to have the flow of its sub-
expressions. When encountering an impure loop, we must convert it into its tail-
recursive equivalent form. OCaml handles tail-recursion fine, so there is no added
risk of stack overflow. The soundness of this transformation was not proved, but
we have not encountered any problems with them so far.

Our type-based flow analysis handles sum types and records. The possible issues
arise when we want to transform them: our backend language, OCaml, is strongly
typed, and our transformation totally changes the types of impure expressions. Two
solutions were envisioned: effectively disabling the type-checker by using type casts
on each data constructor or modifying the type declarations accordingly, which has
as an added advantage the possibility of having better performances thanks to more
precise type information. We chose the second solution.

4.1.2 Defunctorisation

OCaml provides parametric modularity (known as functors), but our transfor-
mation does not handle them. In order to apply our transformation, we have to
defunctorise the whole program. To this end, we use the technique described in [38].
A nice side-effect is the increased possibilities in inlining and code specialisation.

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

Parallel, Emergent and Distributed Systems 13

4.2 Generation of the code

4.2.1 Monomorphisation

Our partial CPS transformation needs simple types. Thus, we need to monomor-
phise the whole program. After type inference, the syntax tree is annotated with ei-
ther ground types or type schemes, which are introduced only at let bindings. Each
of these bindings is possibly instantiated with different types. Monomorphisation
is the act of duplicating these bindings for each instantiation type — duplicating
polymorphically typed functions for each needed domain type. We must also spe-
cialise type declarations to take into account impure functions: we scan the whole
program, registering each type used inside algebraic data constructors or records
and instantiate declarations accordingly. We must then perform a topological sort
to take into account the fact that a polymorphic type may be used with a type
declared after. Monomorphisation can potentially make the size of the program
grow exponentially, but actual implementations (as MLton, http://mlton.org/) shows
that practically, the size growth is manageable — about 30 %.

4.2.2 Monoflowisation

In fine, to maximize the efficiency of the generated code, we use a similar process
for flows: instead of duplicating functions based on types, we duplicate them based
on flows. This is of utmost importance for widely used functions: if they are used
with an impure argument throughout the code, they are flagged as impure for every

call site even with pure arguments. This is a consequence of our flow analysis being
monovariant. The monoflowisation is performed directly during the monomorphi-
sation. Another solution would be to use a polyvariant flow analysis, but it would
be extremely heavy, both in algorithmic complexity and in implementation.

4.2.3 Code duplication

Since we are typing the whole program, we know exactly each instantiation type
for each binding, allowing us to create as many ground versions of them as we
need. In order to avoid variable capture problem, we bind each specialised code
to a fresh name, and update the instantiation points accordingly. The freshness
is ensured by performing an alpha-conversion pass on the whole program before
monomorph(flow)isation. Monomorphisation produces a mapping from contexts to
usages. This is to handle the fact that the type of a let-binding may depend on
the type of its surroundings, e.g. a polymorphically typed function. A context is
thus a mapping from variables to types, and usages record for each let-binding the
types used to instantiate it. The duplication algorithm proceeds as follows: when
encoutering a let-binding we make one copy of it per usage of this binding. We
proceed in a recursive fashion on the sub-expressions, choosing the current context
according to the various usages we duplicate.

4.2.4 Partial CPS transformation

Once the program is transformed into simply-typed form, we can apply our par-
tial CPS transformation, as defined earlier. But this CPS transformation generates
too many administrative redexes, which may greatly hamper the performance of
the resulting program. Take the example from the previous section. It is simply
wrapped into an abstraction for pure expressions:

applyP = λf.λx.fx
T1JapplyPK = ret applyP

Assuming that f and x are always applied to pure arguments, i.e.

flow(f) = flow(x) = flow(f x) = P, then we have this variation:
applyI = λf.λx.let () = yield in fx
T1JapplyIK = λk0.k0λf.λk1.k1λx.λk2.(λk3.Waiting k3)(λ().(λ().λk4 .k4(f x)) () k2)

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

14 Taylor & Francis and I.T. Consultant

There is still many administrative redexes, but pure expressions are preserved from
being transformed. On real-world programs, most of the computation takes place
in pure expressions, making the CPS part less of a burden. We thus defined an
optimizing CPS transform which creates no administrative redex (adapted from
[12, 13]) and which is equivalent to the initial one.

4.3 Polymorphic type inference

Monomorphisation operates on a typed source tree. To this end, we extended our
type system to handle a caml-like language. Instead of modifying OCaml’s type
inference code, we chose to code from scratch a full-blown type inference system,
handling let-polymorphism. Drawing upon [36], we decided to use a constraint-
based inference algorithm. We use the (non-relaxed) value restriction to ensure the
soundness of our analysis in presence of references.

As in [36], polymorphism is handled using constrained type schemes, whose mean-
ing is roughly the set of all ground types admitted by the underlying expression.
The constraint generation is defined inductively on expressions and is a quite nat-
ural encoding of the typing rules into the constraint language. This is no surprise
since our type system is syntax-directed. It is also parameterised by the expected
type of the expression. A formal definition of this algorithm can be found in [16].

4.4 Performances issues

For programs that use a small number of super-threads, this new implementation
of the superposition does not improve the performances. This is mainly due to the
fact that most of the computations are done within parallel vectors: replicated code
is most of the time used to coordinate the works of the processors.

Thus expressions within vectors are pure and are not transformed: our type in-
ference allows that. The performances should clearly improve whenever the number
of super-threads is great. This is the subject of the next section.

5. Application to algorithmic skeletons

Anyone can observe that many parallel algorithms can be characterised and clas-
sified by their adherence to a small number of generic patterns of computation —
farm, pipe, etc. Skeletal programming proposes that such patterns be abstracted
and provided as a programmer’s toolkit with specifications which transcend archi-
tectural variations but implementations which recognise them to enhance perfor-
mance [11]. The core principle of skeletal programming is conceptually straightfor-
ward. Its simplicity is its strength.

A well know disadvantage of skeleton languages is that the only admitted paral-
lelism is usually that of skeletons while many parallel applications are not obviously
expressible as instances of skeletons. Skeletons languages must be constructed as to
allow the integration of skeletal and ad-hoc parallelism in a well defined way [11].

In this light, having skeletons in BSML would have the advantage of the BSP
pattern of communications (collective ones) and the expressivity of the skeleton
approach. For our purposes and to have interesting benchmarks, we take for model
the implementation of the OCamlP3L skeletons language (P3L’s set of skeletons
for OCaml) and base them on our parallel superposition primitive.

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

Parallel, Emergent and Distributed Systems 15

val seq : (unit → ’a → ’b) → unit → ’a stream → ’b stream
val loop:(’a→ bool)∗(unit→ ’a stream→ ’a stream)→ unit→ ’a stream→ ’a stream
val farm : (unit → ’b stream → ’c stream) ∗ int → unit → ’b stream → ’c stream
val pipe (|||) : (unit → ’a stream → ’b stream) → (unit → ’b stream → ’c stream) → unit → ’a stream → ’c stream
val mapvector : (unit → ’b stream → ’c stream) ∗ int → unit → ’b array stream → ’c array stream
val reducevector : (unit → (’b ∗ ’b) stream → ’b stream) ∗ int → unit → ’b array stream → ’b stream

Figure 8. The types of the OCamlP3L skeletons

5.1 The OCamlP3L Skeletons

Fig. 8 [10] subsumes the ML type of the OCamlP3L skeletons. They work as follow.
The seq skeleton encapsulates an OCaml function f into a stream process which

applies f to all the inputs received on the input stream and sends off the results on
the output stream. loop computes a function f over all the elements of its input
stream until a boolean condition g is verified.

The farm computes in parallel a function f over different data items appearing
in its input stream. Parallelism is gained by having n independent processes.

The pipeline skeleton performs in parallel the computations relative to different
stages of a function composition over different data items of the input stream.

mapvector computes in parallel a function over all the data items of a vector,
generating the new vector of the results. The reducevector works in the same
manner but doing an array folding with a binary operator as argument.

5.2 BSML Implementation

There are already some advantages to using BSML-based skeletons: BSML can
be used on a wide variety of communication libraries, such as BSPlib, MPI and
TCP/IP whereas OCamlP3l is currently stuck with TCP/IP.

We do not present how all skeletons and utility functions are implemented. We
refer to [16] for more details.

5.2.1 Execution of process networks

The combination of P3L’s skeletons generates a process network. This network
takes in input a stream of data. Then each datum is transformed by the network
independently of other data and finally the output is another stream of the same
arity. In this way, these computations can be composed: supposing a n data stream,
the execution of the network will be composed n times using the superposition.

For each execution of a network, we use a counter (place) that stores the place-
ment of tasks and data in a round robin fashion. We then define a triplet which
represent the network (input CPU, output CPU and the parallel stream node com-

putation):
in out

node

where “node” is a function that takes a data from CPU “in” and
return a data to CPU “out”.

That will be implemented in BSML as a triplet where the P3L stream is im-
plemented as a parallel vector of option values where only one processor keeps a
non empty value — the data of the stream. The full stream is thus a list of these
vectors. Now, to produce the process network we recursively generate a BSML code
from a skeleton expression in meta fashion.

5.2.2 Implementation of the skeletons

The generated code of seq(f) is the network (pl,pl,(fun data → new data)) where
the function f only executes itself on the designated CPU pl (designated by the
counter), returning None elsewhere.

For the pipeline(s1,s2) skeleton, we directly compose them: the input of the
resulting network is the input of the network of s1 whose output is the input of s2.

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

16 Taylor & Francis and I.T. Consultant

If they are on distinct CPUs, we perform a sending function to connect the output
of s1 to the input of s2.

Note that for a BSP machine with p processors and a pipe of two sequential
processus, the tasks would be distributed on all processors — we suppose a typical
stream of more than p elements. Then, a single barrier would occur sending data
from a processor to another one. This is clearly not the most efficient manner to
execute the whole program but this is also clearly not an inefficient one.

For the farm(n,s) skeleton, because we have a fixed number p of processors, we
ignore the n parameter which represents the “number of workers”. The parallelism
degree is thus all the time p. In this way, the code generated for farm(n, s) is
simply the code generated for the sub-skeleton s.

Our implementation of the loop(s,f) skeleton is a simple recursive function,
which executes the s skeleton until the f condition holds true.

The mapvector(n,s) skeleton is probably the most interesting one. Once again,
the parallelism degree n is unused. The method is as follow.

First, a new task is dynamically created for each element of the input vector of
the stream and stored in a list of tasks, called ntasks. The BSML code for these
tasks (produced by the sub-skeleton s) is generated from an inductive call.

Then, once all the tasks created, their execution are superposed using the su-
perposition — super list utility function. For each execution, the input processor
of the network sends a data of the vector to the processor that has been dynami-
cally designated to execute the sub-network. The parallelism arises from data being
distributed over all superposed tasks.

Finally, we gather the results to the network output processor — rebuild utility
function. This is exactly what is reflected in the code:

let pl=(!place) in (pl,pl,(fun data → let ntasks = ref [] in
let size = noSome ((proj (applyat pl (fun t → Some (Array.length (noSome t))) (fun → Some 0) data)) pl) in
for j=0 to (size−1) do

incr place ();
let i,o,task= .<Code(s)>. in

let new task= (fun () → sendto o pl (task (sendto pl i (parfun
(function Some t→ Some t.(j) | None→ None) data)))) in

ntasks:=new task::(!ntasks);
done;
rebuild pl (super list !ntasks)))

where .<Code(s)>. would be the BSML code of sub-skeleton s. This figure sub-
sumes the idea of the implementation:

in 0 out 0
task 0

in out

task m

out min m

where m+1 is the size of the input vector. This skeleton
is a good sample: the size of typical data (arrays) would
make the past implementation (using system threads) of
the superposition unusable in practice.

5.3 Benchmark

Our example is a parallel PDE solver which works on a set of subdomains, taken
from [10]. On each subdomain it applies a fast Poisson solver written in C. The
skeleton expression of the code is shown in Figure 9 and the coupling technique
(and full equations) can be found in [10].

All the tests were run on the new LACL cluster composed of 20 Pentium dual
core 2Ghz with 2GB of RAM interconnected with a Gigabyte Ethernet network.

We present the benchmarks when the interface meshes match using randomly
generated sub-domains — real life inputs are described in [10]. The principle of this
extensibility test is as follow: increase number of processors as well as size of data.

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

Parallel, Emergent and Distributed Systems 17

let PDE solver = parfun (fun () →
(loop ((fun (v,continue) → continue),seq(fun → fun (v,) → v) ||| mapvector(seq(fun → compute sub domain),3)

||| seq(fun → projection) ||| seq(fun → bicgstab) ||| seq(fun → plot))))

Figure 9. Skeleton code fragment from a Poisson solver

In this context, for each input, one processor is associated with one sub-domain
and the global domain is divided into 1, then into 2, 4, etc. sub-domains.

Various manners of decomposing the global domain in a structured way are ex-
plored. The number of sub-domains along the axis is denoted by Nx (resp. Ny,
Nz) and each sub-domain possesses approximately 50000 cells — time to sequen-
tially decompose a sub-domain is approximately linear. The number of generated
super-threads would be too big for our past implementation.

Performances (minutes and seconds) of OCamlP3L and BSML (using its MPI
implementation) are summarised in the following table:

(Nx, Ny, Nz) Nb procs OCamlP3L BSML

1 × 1 × 1 1 20.56 21.29
1 × 1 × 2 2 24.06 27.63
1 × 1 × 4 4 24.78 28.23
1 × 1 × 8 8 25.05 28.97
1 × 1 × 16 16 26.53 30.67

1 × 2 × 2 4 20.78 25.14
1 × 2 × 4 8 24.45 28.36
1 × 2 × 8 16 25.56 29.84

1 × 4 × 4 16 26.89 29.89

2 × 2 × 2 8 25.88 27.21
2 × 2 × 4 16 27.89 32.75

As might be expected, OCamlP3L is faster than our naive implementation but
not much. Barriers slow down the whole program but bulk-sending accelerates the
communications: in the P3L run there exists a bottleneck due to the fact that
sub-domains are centralised and therefore the amount of communication treated
by one process may cause an important overhead. In BSML, the data are each time
completely distributed, which reduces this overhead but causes a loss of time.

We did not benchmark the old implementation against the newer, because the
older could not handle the number of concurrent threads. Our aim was not to beat
OCamlP3L, whose implementation is far more complicated than ours but have
both BSML and OCamlP3L and to not be stuck with TCP/IP as OCamlP3L is.

6. Related works

6.1 Divide-and-conquer and skeletons paradigms

A general data-parallel formulation for a class of divide-and-conquer problems was
evaluated in [3]. But those techniques are only defined for a low-level parallel lan-
guage, High Performance Fortran. In [25], the authors present a new data-parallel C
library for Intel’s core-processors which has a divide-and-conquer primitive. Some
optimisations in the implementation have been done using the BSP model.

The approach of [29] distinguished two levels of abstraction: (1), a small skeleton
language defines the static parallel parts of the programs; (2), an implementation of
a divide-and-conquer skeleton demonstrates how meta-programming can generate
the appropriate set of communications. However, no cost prediction nor efficient
code generation are possible. For efficient code, [15] proposes using C++ templates
but no divide-and-conquer skeleton is at this time provided.

[11] described how to add skeletons in MPI as well as some experiments — the
eskel library. It also gives convincing and pragmatic arguments to mixed message

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

18 Taylor & Francis and I.T. Consultant

passing and skeleton programming, using C. We think that using OCaml for par-
allel programming (high-performance applications) is not a bad choice since the
generated code is often very competitive with the C counterparts.

6.2 CPS transformations

The original CPS was the most simple one: it introduces too many unnecessary
administrative redexes and more efficient CPS were defined latter in [12, 13]. CPS
were massively used for various implementations of ML languages [2]. Historically,
the idea of using CPS or a call-cc operator (call-with-current-continuation) for
thread implementation comes from [45]. These techniques were then used to im-
plement some concurrent extensions of sequential languages [5, 9, 41].

7. Conclusion and future works

7.1 Conclusion

In this paper we have defined a new implementation of a multi-threading primitive,
called parallel superposition, for a high-level BSP and data-parallel language. This
implementation uses a global CPS transformation which has been optimised using
a flow analysis. Our presentation of the CPS transformation abstracts away from
the details of BSP communications, as they are irrelevant to the semantics study.
Different optimisations such as monomorphi(flow)sation have also been added for
performance issues. Our implementation relies on semantics investigations, allowing
us to better trust it. Furthermore, it works on an important subset of OCaml.

The presented techniques are not novel, except our CPS transformation and the
monoflowisation. We would like to emphasise that this transformation is not a
subset of the one in [31]. More precisely, we do not constrain the flow of a binding
variable to be the same as its binding expression, allowing impure functions to take
pure arguments. Moreover, we find that the combination of all our transformations
on a large subset of OCaml is quite new, if not on the pure theoretical front, at
least as a tool (we think that it could be adapted to handle other constructs such
as call/cc) and it could be applied to many strict BSP high-level language such as
ones of [7, 27, 30]. Also, we are not aware of any implementation of P3L skeletons
using the pure BSP paradigm: they only use pre-existing low level libraries.

7.2 Future works

The ease of use of this new implementation of the superposition will be experi-
mented by developing less naive implementations of the OCamlP3l’s skeletons and
using a smarter heuristic for load balancing computations which will depend of the
BSP’s architecture parameters. We will also investigate a realistic polyvariant flow
analysis to generate less CPS code.

In [24], we present how to manage exceptions in bsml. The case where a local
exception inside a parallel vector is not caught makes that one (or more) processor
can execute a different replicated code than other ones, which is not allowed in
our model of execution: replicated parts of the code are done by all processors
else deadlocks can occur. Each time a local exception is not locally caught, we
dynamically forbid the creation of parallel vectors and broadcast the exception
to the other processors. In case of exceptions in two super-threads, we take into
account only one of the exceptions [23]. This management is thus currently not

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

REFERENCES 19

compatible with the current CPS transformation of the code. We think that just
adding in the continuation the potential exception that was not caught inside a
parallel vector is sufficient. We did not found any counter-example, but the proof
has to be done using the semantics of [23].

References

[1] M. Alt. Using Algorithmic Skeletons for Efficient Grid Computing with Predictable Performance.
PhD thesis, Universität Münster, 2007.

[2] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.
[3] M. Aumor, F. Arguello, J. Lopez, O. Plata, and L. Zapata. A data-parallel formulation for divide-

and-conquer algorithms. The Computer Journal, 44(4):303–320, 2001.
[4] M. Bamha and M. Exbrayat. Pipelining a Skew-Insensitive Parallel Join Algorithm. Parallel Pro-

cessing Letters, 13(3):317–328, 2003.
[5] E. Biagioni, K. Cline, P. Lee, C. Okasaki, and C. Stone. Safe-for-space threads in standard ml.

Higher-Order and Symbolic Computation, 11(2):209–225, 1998.
[6] R. H. Bisseling. Parallel Scientific Computation. A structured approach using BSP and MPI. Oxford

University Press, 2004.
[7] O. Bonorden, J. Gehweiler, and F. Meyer auf der Heide. A Web Computing Environment for Parallel

Algorithms in Java. Scalable Computing: Practice and Experience, 7(2):1–14, 2006.
[8] O. Bonorden, B. Juurlink, I. Von Otte, and O. Rieping. The Paderborn University BSP (PUB)

library. Parallel Computing, 29(2):187–207, 2003.
[9] J. Chroboczek. Continuation Passing for C: A space-efficient implementation of concurrency. Tech-

nical report, PPS (University of Paris 7), 2005.
[10] F. Clment, V. Martin, A. Vodicka, R. Di Cosmo, and P. Weis. Domain Decomposition and Skeleton

Programming with OCamlP3l. Parallel Computing, 32:539–550, 2006.
[11] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel Program-

ming. Parallel Computing, 30(3):389–406, 2004.
[12] O. Danvy and L. R. Nielsen. Cps transformation of beta-redexes. Information Processing Letterseses,

94(5):217–225, 2005.
[13] Z. Dargaye and X. Leroy. Mechanized verification of CPS transformations. In Logic for Programming,

Artificial Intelligence and Reasoning, (LPAR), volume 4790 of LNAI, pages 211–225. Springer, 2007.
[14] F. Dehne. Special issue on coarse-grained parallel algorithms. Algorithmica, 14:173–421, 1999.
[15] J. Falcou, J. Serot, T. Chateau, and J. T. Lapreste. QUAFF : Efficient C++ Design for Parallel

Skeletons. Parallel Computing, 32(7-8):604–615, 2006.
[16] I. Garnier and F. Gava. New Implementation of a Parallel Composition Primitive for a Functionnal

BSP Language. Technical Report 5, LACL, University of Paris East, 2008.
[17] F. Gava. Approches fonctionnelles de la programmation parallèle et des méta-ordinateurs ;

Sémantiques, implantation et certification. PhD thesis, University of Paris-East, 2005.
[18] F. Gava. External Memory in Bulk Synchronous Parallel ML. Scalable Computing: Practice and

Experience, 6(4):43–70, 2005.
[19] F. Gava. Implementation of the Parallel Superposition in Bulk-Synchronous Parallel ML. In Y. Shi,

G.D.v. Albada, J. Dongarra, and P.M.A. Sloot, editors, The International Conference on Computa-
tional Science (ICCS), Part I, volume 4487 of LNCS, pages 611–619. Springer-Verlag, 2007.

[20] F. Gava. A Modular Implementation of Parallel Data Structures in BSML. Parallel Processing
Letters, 18(1):39–53, 2008.

[21] F. Gava. BSP Functional Programming; Examples of a cost based methodology. In M. Bubak et al.,
editor, ICCS, volume 5101 of LNCS, pages 375–385. Springer-Verlag, 2008.

[22] F. Gava and F. Loulergue. A Static Analysis for Bulk Synchronous Parallel ML to Avoid Parallel
Nesting. Future Generation Computer Systems, 21(5):665–671, 2005.

[23] L. Gesbert. Développement systématique et sureté d’exécution en programmation parallèle structurée.
PhD thesis, University of Paris-East, 2009.

[24] L. Gesbert, F. Gava, F. Loulergue, and F. Dabrowski. Bulk Synchronous Parallel ML with Exceptions.
Future Generation Computer Systems, 2009. to appear.

[25] A. Ghuloum, E. Sprangle, J. Fang, G. Wu, and X. Zhou. Ct: A Flexible Parallel Programming Model
for Tera-scale Architectures. Technical report, Intel Research, 2007.

[26] Sergei Gorlatch. Send-receive considered harmful: Myths and realities of message passing. ACM
TOPLAS, 26(1):47–56, 2004.

[27] Y. GU, B.-S. Le, and C. Wentong. Jbsp: a bsp programming library in java. Journal of Parallel and
Distributed Computing, 61(8):1126–1142, 2001.

[28] N. Heintze. Control-Flow Analysis and Type Systems. In A. Mycroft, editor, Static Analysis Sym-
posium (SAS), number 983 in LNCS. Springer, 1995.

[29] C.A. Herrmann. Generating message-passing programs from abstract specifications by partial evalu-
ation. Parallel Processing Letters, 15(3):305–320, 2005.

[30] K. Hinsen. Parallel scripting with Python. Computing in Science & Engineering, 9(6), 2007.
[31] J. Kim and K. Yi. Interconnecting between CPS terms and non-CPS terms. In A. Sabry, editor, Third

ACM SIGPLAN Workshop on Continuations, Technical Report, number 545. Computer Science
Department, Indiana University, 2001.

[32] E. A. Lee. The Problem with Threads. Technical Report UCB/EECS-2006-1, Electrical Engineering
and Computer Sciences University of California at Berkeley, 2006.

[33] F. Loulergue. Parallel Superposition for Bulk Synchronous Parallel ML. In Peter M. A. Sloot et al.,
editor, ICCS, number 2659 in LNCS, pages 223–232. Springer, 2003.

February 20, 2010 23:29 The International Journal of Parallel, Emergent and Distributed Systems
article

20 REFERENCES

[34] F. Loulergue. Parallel Superposition for Bulk Synchronous Parallel ML. In Peter M. A. Sloot and
al., editors, ICCS, number 2669 in LNCS. Springer Verlag, june 2003.

[35] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical Computer Science,
1(2):125–159, 1975.

[36] F. Pottier and D. Rémy. The Essence of ML Type Inference. In Benjamin C. Pierce, editor, Advanced
Topics in Types and Programming Languages, chapter 10, pages 389–489. MIT Press, 2005.

[37] O. Shivers. Continuations and threads: Expressing machine concurrency directly in advanced lan-
guages. In Second ACM SIGPLAN Workshop on Continuations, 1997.

[38] Julien Signoles. Calcul statique des applications de modules paramétrés. In JFLA, pages 21–36, 2003.
[39] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about BSP. Scientific

Programming, 6(3):249–274, 1997.
[40] M. Snir and W. Gropp. MPI the Complete Reference. MIT Press, 1998.
[41] S. Srinivasan. A thread of one’s own. In New Horizons in Compilers Workshop, 2006.
[42] H. Thielecke. From control effects to typed continuation passing. ACM SIGPLAN Notices, 38(1):139–

149, 2003.
[43] A. Tiskin. A New Way to Divide and Conquer. Parallel Processing Letters, 11(4):409–422, 2001.
[44] P. Wadler. Monads and composable continuations. Lisp and Symbolic Computation, 7(1):39–56, 1994.
[45] M. Wand. Continuation-based multiprocessing. In Lisp Conference, pages 19–28. ACM, 1980.

