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Abstract

We have designed a functional data-parallel language
called BSML for programming bulk-synchronous parallel
(BSP) algorithms in so-called direct mode. In a direct-
mode BSP algorithm, the physical structure of processes
is made explicit. The execution time can then be estimated
and dead-locks and indeterminism are avoided. This paper
outlines an extension of BSML and of the BSλ-calculus (a
calculus of functional bulk synchronous parallel programs)
with pattern matching of parallel values.

1. Introduction

Bulk Synchronous Parallelism (BSP) is a parallel pro-
gramming model introduced by Valiant [11, 10] to offer a
high degree of abstraction, in the same way as PRAM mod-
els, and yet to allow portable and predictable performance
on a wide variety of architectures.

Our previous works embedded the bulk synchronous
parallel model into functional languages. We obtained
a formal description as an extension of the λ-calculus
by a small set of parallel primitives called the BSλ-
calculus [9] which is confluent, and a library for the func-
tional programming language Objective Caml [2], called
the BSMLlib library [8].

This framework is a good tradeoff for parallel program-
ming because: we defined a confluent calculus so we de-
signed a purely functional parallel language from it. With-
out side-effects, programs are easier to prove [4], and to
re-use. An eager language allows good performances ; this
calculus is based on BSP operations, so programs are easy
to port, their costs can be predicted and are also portable
because they are parametrized by the BSP parameters of
the target architecture. The Objective Caml compiler is
very good and programs which use a lot a dynamic data
structures may be more efficient than a program in C (and
the Objective Caml program would be much simpler: for
example, memory management is automatic). Moreover if
a program needs performance improvements it is possible

to rewrite parts of it in C or Fortran and then easily embed-
ded them in the Objective Caml program.

Pattern matching is an important feature of high level
programming languages. It offers sub-term extraction and
function definition by cases. The present work aims at ex-
tending the BSλ-calculus and the BSMLlib library by pat-
tern matching facilities, especially the matching of parallel
values which are distributed tuples of values. The prob-
lems with the matching of such values are to define suit-
able patterns and to performe the matching (which requires
communications) as efficiently as possible.

The paper is organized as follows. In section 2 we
review the necessary background: the Bulk Synchronous
Parallel model, pattern matching in the Objective Caml
language and the BSMLlib library for functional BSP pro-
gramming. We then provide in section 3 examples to show
how pattern matching of parallel values can be done in
the current BSMLlib library. The different solutions are
not efficient. Thus we conclude the need for an extension
of the current library by a new primitive for parallel pat-
tern matching. Section 4 is devoted to the formalization
of this new primitive inside a calculus of functional BSP
programs. The BSMLlib library being a direct extension
of Objective Caml, we choose to write a simple calculus
which follows the evaluation strategy of this language and
which allows the matching of parallel values. Finally we
discuss some related work (section 5) and conclude (sec-
tion 6).

2. Preliminaries

2.1. Bulk Synchronous Parallelism

Bulk-Synchronous Parallelism (BSP) is a parallel pro-
gramming model introduced by Valiant [11, 10] to offer
a high degree of abstraction like PRAM models and yet
allow portable and predictable performance on a wide va-
riety of architectures. A BSP computer contains a set of
processor-memory pairs, a communication network allow-
ing inter-processor delivery of messages and a global syn-
chronization unit which executes collective requests for a



synchronization barrier. The BSP execution model repre-
sents a parallel computation on p processors as a sequence
of super-steps which are sequences of one computation
phase (p asynchronous computations) and one communi-
cation phase (data exchanges between processors) ended
by one global synchronization. The BSP cost model esti-
mates execution times by a simple formula. A computa-
tion phase takes as long as its longest sequential process,
a global synchronization takes a fixed, system-dependent
time L and a communication phase is completed in time
proportional to the arity h of the data exchange: the max-
imal number of words sent or received by a processor
during that super-step. The system-dependent constant g,
measured in time/word, is multiplied by h to obtain the es-
timated communication time. It is useful to measure times
in multiples of a Flop so as to normalize g and L w.r.t. the
sequential speed of processor nodes.

2.2. Pattern Matching in Objective Caml

Objective Caml [2] is a functional language with poly-
morphic type inference, imperative features, object ori-
ented extensions and a powerful module system. Programs
can be compiled to byte-code which can be interpreted by
a virtual machine which was ported to a large variety of ar-
chitectures or to native code. Programs can also be written
and run into an interactive top level.

Let us provide two small examples of user defined data
types and pattern matching.

Take, as an example, a polymorphic type which adds
the value “None” to any existing type:

type ’a option = None | Some of ’a

This program defines the type ’a option. A type vari-
able ’a can be replaced by any type. The right side of the
equality enumerates the two constructors of this type: the
0-ary constructor None and the unary constructor Some
which takes as argument a value of type ’a.

If we ask the interactive top level to evaluate the ex-
pression None, it answers -: ’a option = None:
the unnamed expression (-) has type ’a option and its
value is None. If we ask the interactive top level to eval-
uate the expression Some (1+1), it answers -: int
option = Some 2: the unnamed expression (-) has
type int option and its value is Some 2.

The following function takes two optional integers (type
int option) and sums them:

let optadd v1 v2 = match (v1,v2) with
| (None,None) -> None
| (Some v, None) -> Some v
| (None, Some v) -> Some v
| (Some v1, Some v2) -> Some (v1+v2)

The top level systems answers:

val optadd: int option -> int option ->
int option = <fun>

optadd has type int option -> int option
-> int option which is the type of a function which
takes two values of type int option and returns a value
of type int option (but it can also be partially applied
to only one value. As an illustration (optadd None),
the application of the function optadd to the value None,
is a function whose type is int option -> int
option). The optadd function uses pattern match-
ing: the expression (v1,v2) is matched against four
possible patterns: (None,None), (Some v,None),
(None,Some v) and (Some v1,Some v2).

The matching is sequential, i.e. if the expression is not
matched by the first pattern then the second is tried, etc. In
our example the matching is complete: all possible values
of the expression can be matched against at least one of the
patterns. If one of the cases was removed, the matching
would be incomplete: warning messages indicate incom-
plete matching to the programmer. If a matching is incom-
plete it is possible that no pattern matches the expression.
In this case an exception Match_failure, which can be
caught, is raised. Patterns must be linear: a variable cannot
appear twice in a pattern. This restriction is necessary to
have a pattern matching algorithm with linear complexity.

To end with this short presentation, let us write a func-
tion which returns the length of a list. The polymorphic
and recursive type for lists can be defined by:

type ’a list = Nil | Cons of ’a*’a list

It is predefined in Objective Caml. The empty list is noted
[] and to put an element h at the beginning of a list t,
one writes h::t. The list e1 :: e2 :: ... :: en :: [] can also
be written [e1; e2; ...; en]. The recursive length function
can be defined by:

let rec length l = match l with
| [] -> 0
| h::t -> 1 + length t

Its type is ’a list -> int. A shorter version is:

let rec length = fun
| [] -> 0
| h::t -> 1 + length t

In the following sections we will also use two other pat-
terns: variables and the wild-card pattern _ which matches
any value.



2.3. The BSMLlib library

There is currently no implementation of a full Bulk Syn-
chronous Parallel ML language but rather a partial imple-
mentation: a library for Objective Caml [2]. The so-called
BSMLlib library is based on the following elements.

It gives access to the BSP parameters of the under-
lying architecture. In particular, it offers the function
bsp_p:unit->int such that the value of bsp_p() is
p, the static number of processes of the parallel machine.
The value of this variable does not change during execu-
tion. There is also an abstract polymorphic type ’a par
which represents the type of p-wide parallel vectors of ob-
jects of type ’a, one per process. The nesting of par types
is prohibited. Our type system enforces this restriction [5].

The parallel constructs of BSML operate on parallel
vectors. Those parallel vectors are created by:

mkpar: (int -> ’a) -> ’a par

so that (mkpar f) stores (f i) on process i for i be-
tween 0 and (p− 1). We usually write f as fun pid->e
to show that the expression emay be different on each pro-
cessor. This expression e is said to be local. The expres-
sion (mkpar f) is a parallel object and it is said to be
global. For example the expression mkpar(fun i->i)
will be evaluated to the parallel vector 〈0, 1, . . . , p − 1〉1

Note that Objective Caml is an eager language: the argu-
ments are first evaluated, from right to left, then the ex-
pression which is applied to the arguments and finally the
application is performed. A BSP algorithm is expressed
as a combination of asynchronous local computations (first
phase of a super-step) and phases of global communication
(second phase of a super-step) with global synchroniza-
tion (third phase of a super-step). Asynchronous phases
are programmed with mkpar and with:

apply:(’a -> ’b)par ->’a par ->’b par

apply (mkpar f) (mkpar e) stores (f i) (e
i) on process i. Neither the implementation of BSMLlib,
nor its semantics prescribe a synchronization barrier be-
tween two successive uses of apply.

One can observe that we ignore the distinction between
a communication request and its realization at the barrier.
The communication and synchronization phases are ex-
pressed by:

put:(int->’a option)par->(int->’a
option)par

Consider the expression: put(mkpar(fun i->fsi))
(*)

To send a value v from process j to process i, the func-
tion fsj at process j must be such as (fsj i) evaluates

1.

to Some v. To send no value from process j to process i,
(fsj i) must evaluate to None.

Expression (*) evaluates to a parallel vector containing
a function fdi of delivered messages on every process. At
process i, (fdi j) evaluates to None if process j sent no
message to process i or evaluates to Some v if process j
sent the value v to the process i.

The full language would also contain a synchronous
conditional operation:

ifat:(bool par) * int * ’a * ’a -> ’a

such that ifat(v, i, v1, v2) will evaluate to v1 or v2 de-
pending on the value of v at process i. But Objective
Caml is an eager language and this synchronous condi-
tional operation can not be defined as a function. That is
why the core BSMLlib contains the function: at:bool
par->int->bool to be used only in the construction:
if (at vec pid) then... else... where
(vec:bool par) and (pid:int). if at expresses
communication and synchronization phases. Global con-
ditional is necessary of express algorithms like :

Repeat Parallel Iteration Until Max of local errors < ε

Without it, the global control cannot take into account data
computed locally.

We end with small examples of functions used in the
next section (figure 1). The get function takes a paral-
lel vector of values and a parallel vector of integers. Its
semantics is given by the following equation:

get〈v0, v1, . . . , vp−1〉〈i0, i1, . . . , ip−1〉 = 〈vi0 , . . . , vip−1
〉

It’s parallel cost is (h + 1) × g + 2 × L, where

h = max
0≤k<p

{
∑

0≤j<p

|vj | such that ij = k}

where |v| denotes the size of the value v in words. Experi-
ments showed that the actual performance of get follows
this cost formula.

3. Parallel Pattern Matching with the
BSMLlib Library

In the current BSMLlib library, pattern matching is
possible because it is possible in Objective Caml. Thus
one can write:

let one = replicate 1
and this = mkpar(fun i->i) in
let l = [one; this] in match l with
| [] -> None
| h::t -> Some h



let replicate x = mkpar(fun pid ->x)
let parfun f v = apply (replicate f) v
let get vec srcs =
let pids = parfun (fun i->natmod i (bsp_p())) srcs in
let ask = put(parfun (fun i dst->if dst=i then Some() else None) pids)
and replace_by_data =

parfun2 (fun f d dst->match(f dst)with Some() -> Some d|_->None) in
let reply = put(replace_by_data ask vec) in
parfun (fun(Some x)->x) (apply reply pids)

Figure 1. Examples

In this case, the matching of a parallel value (l is a parallel
value since it is a list of parallel vectors) is possible because
the patterns match only the structure of the list (which is
the same at each process) and could be applied to any kind
of list.

We can also use pattern matching on a parallel value in
applying a usual Objective Caml pattern at each process:

parfun length (mkpar(fun i->li))

In this case the matching cannot change the global be-
havior of the program because the matching is done asyn-
chronously on each process, on usual sequential values.
There is no global agreement to determine which local pat-
tern was chosen.

When one writes programs using the BSMLlib library,
one would like to be allowed to write pattern matching of
parallel values in the two following cases.

First the matching of parallel vectors at the global level,
with the possibility to have patterns which depend on the
internal structure of parallel values. Take, as an example,
a usual Objective Caml pattern P . 〈P 〉 would be a pattern
which matches a parallel vector whose components are se-
quential values which may be matched by P . Of course
the right side of a 〈P 〉-> E must be in this case a parallel
expression, otherwise the nesting of parallel vectors would
be allowed.

We refer to [5] for an in-depth discussion of the reasons
why such nesting should be avoided and for a polymorphic
type system which enforces this restriction. In particular
in the BSMLlib library, the programmer is responsible for
the absence of nesting of parallel vectors (or he or she must
use our type checker). Two rules to avoid such nesting are:

• one should not have functions which return a value
of a usual Objective Caml type and which take argu-
ments with parallel type.

• one should not write local binding expressions
let e1 = e2 in e3 where e2 is a parallel value and
e3 is a usual Objective Caml value.

Another interesting pattern matching of parallel values
would be the global matching of parallel vectors where the
patterns may be different on each processor. The problem
is:

• to find a syntax to express such patterns;

• to have a syntax to manipulate the values bound dur-
ing pattern matching.

The latter facility is an open problem and we believe
that there is no simple solution to allow such pattern match-
ing and that a solution would be too complicated to be used
in practice. Thus we address only the former in this paper.

The general mechanism is perhaps best elucidated by
examples. In this parallel case we match at the global level
but looking the internal structure of parallel vectors, so it
is possible that a pattern matches the expression at some
process but not at some others:

type number = F of float | I of int
let v1 = mkpar(fun pid->if (pid/2) = 0

then I pid
else F (float_of_int pid))

let f1 e = match e with
<I i> -> <i>

| <F f> -> replicate 0

v1 is an expression of type number par andf1 of type
number par -> int par. No pattern of our exam-
ple program f1 matches expression v1 because on some
processes the local value held by v1 is matched sometimes
by the pattern F f, sometimes by I i. Thus commu-
nications are needed to determine whether a 〈P 〉 pattern
matches an expression or not. Each process must check
locally the pattern matching and then say to one chosen
process (for example process 0) if the pattern matches the
expression or not. Then a if at construction is used to
change the global behavior.

Take as an example the small following program:

let f2 e = match e with
| <Some v> -> (<v>,<v>)



In the pattern <Some v> the variable v has type int
and represents several sequential values, one per process.
Thus it is not allowed to use v in the right side of the
matching. The correct notation is <v> which is a paral-
lel vector of values.

The f2 program can be seen as syntactic sugar for the
BSMLlib program:

let f2’ e =
let local_match e =
match e with

|Some v -> true |_ -> false
and extract_v e =
match e with |Some v -> v in
let vl=gl 0 (parfun local_match e) in
let vb = parfun (reduce (&&)) vl in
if at vb 0 then
let vv = parfun extract_v e in (vv,vv)
else raise Parallel_Match_failure

where gl has type int -> ’a par -> ’a list
par and gl i vv gathers the values of parallel vector
vv at process n, and whose semantics is given by:

gl n 〈v0, . . . , v1〉 = 〈 [] , . . . , [v0; . . . ; vp−1]
︸ ︷︷ ︸

n

, . . . , [] 〉

and reduce ⊕[v1; . . . ; vn] = [v1; v1 ⊕ v2; . . . ;⊕k=n
k=1vk].

In the sequential case, we said in section 2.2, that each
pattern is tried until one pattern matches the given expres-
sion. If we take the same strategy in the parallel case, each
try costs two BSP super-steps which is too expensive. It
is possible to reduce this cost to one super-step but in this
case the program is not well typed: it is possible imple-
ment the new match with construct as a primitive but it
is no more syntactic sugar.

Another possibility is to first check locally all the pat-
terns then exchange the booleans which indicate whether
a pattern matches the expression or not and determine the
first j such as the j th pattern matches the expression on all
processes. For example:

let f3 e = match e with
| <Some v> -> <v>
| <None> -> (replicate 0)

is syntactic sugar for the program given in figure 2.
This program is again not very efficient since we must

use as many if at as patterns. Thus for n patterns, the
cost would be in the worst case, the cost of the total ex-
change n × (p − 1) × g + L plus the cost of each if
at: n × ((p − 1) × g + L). To improve the efficiency of
such a program to make the number of super-steps inde-
pendent on the number of patterns, we could introduce a
new primitive in the language: a match e at n with
construction whose parallel cost would be the same as a
if at. The end of the f3’ function would then became:

match vj at 0 with
| 0 -> let extract_v e =

match e with | Some v -> v in
let vv = parfun extract_v e in vv

| 1 -> replicate 0
| _ -> raise Parallel_Match_failure

and cost would be: n× (p− 1)× g +L+(p− 1)× g +L.
This new construction is a straightforward generalization
of the if at construct and it will be included in the next
release of the BSMLlib library.

It can be make even more efficient but no more as syn-
tactic sugar. One can notice that the j value is a parallel
vector which contains the same value everywhere. Thus as
in the implementation of the BSMLlib [8] the type ’ a
par is defined as ’a, in the implementation of the core
library, the following program, which uses the usual pat-
tern matching of Objective Caml, would be correct (but it
is an incorrect user program, because it would not be well
typed):

match vj with
| 0 -> let extract_v e =

match e with | Some v -> v in
let vv = parfun extract_v e in (vv)

| 1 -> replicate 0
| _ -> raise Parallel_Match_failure

The communication and synchronization cost of this last
version would be n × (p − 1) × g + L.

In conclusion of this section, the matching of parallel
values using the new parallel pattern 〈P 〉 where P is a
usual Objective Caml pattern must be implemented as a
primitive of the BSMLlib library in order to attain rea-
sonable performance. Designing it as syntactic sugar on
top on the current BSMLlib library would lead to poor
performances.

Each times we add a new primitive to our language, we
design a formal semantics to ensure the correct behavior of
this primitive by proving the confluence of the new seman-
tics. That is what is done in the next section.

4. BSλ-calculus with Pattern Matching of Par-
allel Values

In the λ-calculus, the notion of function relies on the
abstraction of a variable in a term as in λx.x + x where
λx means the variable x is abstracted in the term x + x.
The application ((λx.e0) e1) denotes a computation step
done by substituting the argument e1 to the variable x in
e0. Pattern matching allows a more general abstraction
mechanism through the use of nested patterns, generally
a subset of terms whom variables bound free occurences
as in the λ-calculus. Take, as an exemple, terms λ(x, y).x
and λ(x, y).y the usual projections.



let f3’ e =
let local_checkP1 e = match e with | Some v -> true | _ -> false
and local_checkP2 e = match e with | None -> true | _ -> false in
let apply_check e = map (fun f->f e) [local_checkP1;local_checkP2] in
let l1 =parfun apply_check e in let l2 = total_exchange l1 in
let vj = let rec aux j l =
if j=bsp_p() then raise Parallel_Match_failure
else let h,l’ = split(map (fun (h::l)->h,l) l) in

let b = reduce (&&) h in
if b then j else aux (j+1) l’ in

parfun (aux 0) l2 in
if at (parfun (fun x ->x=0) vj) 0 then
let extract_v e = match e with |Some v -> v in let vv=parfun extract_v e in vv

else if at (parfun (fun x ->x=1) vj) 0 then replicate 0
else raise Parallel_Match_failure

where







map f [e1; . . . ; en] = [f e1; . . . ; f en]
split [(e1, e

′
1); . . . ; (en, e

′
n)] = ([e1; . . . ; en], [e

′
1; . . . ; e

′
n])

total_exchange 〈 e0 , . . . , ep−1 〉 = 〈 [e0; . . . ; ep−1] , . . . , [e0; . . . ; ep−1] 〉

Figure 2. f3’ program

4.1. Syntax

Let ẋ, ẏ, ż, . . . range over the set V̇ of local variables
and x̄, ȳ, z̄, . . . range over the set V̄ of global variables. ċ
ranges over a set of constants : integers or booleans. Fi-
nally, we use the uppercase letters C, D, E, . . . to denote
constructors. We define ṗ and ė (resp. p̄ and ē), sets of lo-
cal (resp. global) patterns and terms of the BSλ-calculus.
v̇ (resp. v̄) denotes the set of local (resp. global) values.

ṗ ::= _ | ċ | ẋ | (ṗ, ṗ) | C ṗ
ȧ ::= λṗ[ė1].ė0 | (λṗ[ė1].ė0|ȧ)
ė ::= ẋ | ċ | (ė, ė) | ė ė | ȧ
v̇ ::= ċ | (v̇, v̇) | ȧ
p̄ ::= _ | x̄ | (p̄, p̄) | (p̄, ṗ) | (p̄, ṗ)

| p@e | 〈ṗ〉 | C p̄
ā1 ::= λṗ[ė].ē | (λṗ[ė].ē|ā1)
ā2 ::= λp̄[ē].ē | (λp̄[ē].ē|ā2)
ē ::= x̄ | 〈ẋ〉 | ē ē | ē ė

| mkpar e | get ē ē | apply ē ē
| 〈ė, ė, . . . , ė〉 | if ē at ė then ē else ē
| (ē, ē) | (ē, ė) | (ė, ē) | ā1 | ā2

v̄ ::= (v̄, v̄) | (v̄, v̇) | (v̇, v̄) | ā1 | ā2

We will use p and e to denote either local or global pat-
terns and terms. Intuitively, the term in brackets in an ab-
straction denotes a condition which must evaluates to T in
order to allow reduction. We name delocalized pattern a
pattern of the form 〈p〉, these patterns are used to trans-
late the local structure of vectors to the global level. In
λ-calculus, one can only abstract on a single variable. Pat-
terns generalize the abstraction to more complicated struc-
tures which may contain several variables. Thus we have

to define the set of variables of a pattern. The variable in
V ar(p) are the variables bounded by the abstraction:

V ar(_) = ∅ V ar(ċ) = ∅ V ar(x) = {x}
V ar((p1, p2)) = V ar(p1) ∪ V ar(p2)

V ar(C p) = V ar(p)
V ar(ṗ@e) = V ar(ṗ)
V ar(〈ṗ〉) = {〈ẋ〉/ẋ ∈ V ar(ṗ)}

We also define the set of free variable of a term e and
the substitution of a variable x by an expression e in a term
by induction (figure 3).

4.2. Semantics

The semantics is given in figure 4, where

γαβ =

{

σ1 ∪ σ2 if α = σ1, β = σ2

⊥m if α or β =⊥m

and α′ ∈ {σ,⊥m}. We first define rules for
the match operator which maps a set of couple
{(e1, x1), . . . , (en, xn)} to a pattern p and a expression e
such as p[e1/x1, . . . , en/xn] = e, if such a set exists. The
matching rules return ⊥m otherwise. These rules acts as
usual except for patterns of the form 〈ṗ〉 for which the lo-
cal structure of vectors is translated to global level as men-
tioned above and patterns of the form ṗ@e which are use
to get global control on the matching of a parallel value
component. For example, if the pattern is 〈(ṗ1, ṗ2)〉 and
the parallel vector holds value (vi, v

′
i) at process i, the re-

sult is the union of the matchings of 〈ṗ1〉 with the parallel



fv(x) = x fv(〈ẋ〉) = 〈ẋ〉 fv(ċ) = ∅
fv(Ci p) = fv(p)

fv((p1, p2)) = fv(p1) ∪ fv(p2)
fv(λp[e1].e0) = (fv(e1) ∪ fv(e2))\V ar(p)

fv((λp[e1].e0 |a)) = (fv(λp[e1].e0) ∪ fv(a))
fv(e1 e2) = fv(e1) ∪ fv(e2)

fv(mkpar ė) = fv(ė)
fv(〈e0, e1, . . . , ep−1〉) = ∅

fv(apply ē1 ē2) = fv(ē1) ∪ fv(ē1)
fv(get ē1 ē2) = fv(ē1) ∪ fv(ē2)

fv
(

if ē0 at ė
then ē1 else ē2

)

=
⋃

i=0,1,2 fv(ēi) ∪ fv(ė)

x{e/x} = e
〈ẋ〉{e/〈ẋ〉} = e
x{e/〈y〉} = x

x{e/y} = x if y 6= x
〈ẋ〉{e/〈ẏ〉} = 〈ẋ〉 if y 6= x
〈x〉{e/y} = 〈x〉

〈e0, e1, . . . , ep−1〉{e/x} = 〈e0, e1, . . . , ep−1〉
〈e0, e1, . . . , ep−1〉{e/〈ẋ〉 = 〈e0, e1, . . . , ep−1〉
(λp[e1].e0){e/x} = (λp[e1{e/x}].e0{e/x})

if x 6∈ V ar(p)
(λp[e1].e0){e/〈ẋ〉} = (λp[e1{e/〈ẋ〉}].e0{e/〈ẋ〉})

if 〈ẋ〉 6∈ V ar(p)
(λp[e1].e0|a){e/x} = ((λp[e1].e0){e/x}|a{e/x})
(λp[e1].e0|a){e/〈ẋ〉} = ((λp[e1].e0){e/〈ẋ〉|a{e/〈ẋ〉})

Figure 3. Definitions

vector which holds the value vi at process i and 〈ṗ2〉 with
the parallel vector which holds the value v′

i at process i. In
the second case, the matching is as usual but with a given
component from a parallel value and the result is available
at each process. Next, we define the reduction rules of the
BSλ-calculus with pattern matching.

A simple abstraction acts as usual except that we need
to match the pattern and the argument. The reduction
condition must evaluate to T , after substitution, in or-
der to allow reduction of the body where the substitu-
tion is applied. If the match operator returns ⊥m then
the expression does not reduce. A compound abstraction
(λp.e0|a) e1 is reduced to e0{x1/e1, . . . , en/xn} where
{(e1, x1), . . . , (en, xn)} is the result, if exists, of the match
operator applied to p and e. If match returns ⊥m then it is
reduced to (a e′).

The parallel operators behave as indicated by their in-
formal presentation in section 2.3.

The reduction system is fully deteministic since on the
one hand, for a given rule only one rule applies and on the
other hand, the matching rules hold the same property.

5. Related Work

To our knowledge the first work on the formalization of
pattern matching (in the sequential case) was done by V.
van Oostrom [12]: he defined the λφ-calculus, an untyped
λ-calculus extended with pattern matching and studied its
confluence. The patterns are a subset of the terms, but the
confluence holds only if this set satisfies the “rigid pattern
condition”. [6] starts from the assignment of patterns and
terms to Gentzen’s sequent proofs. The operational seman-
tics of this typed calculus is then obtained as the compu-
tational interpretation of proofs using the Curry-Howard
isomorphism.

Those extensions are only for pure λ-calculus, but in
functional programming languages, there are built-in basic
types (for e.g. booleans, integers, floats). These basic types
and the primitives operations on them can be formalized

using rewriting rules. The interaction of rewriting systems
and λ-calculus leading to higher order rewriting systems
has been widely studied. [3] presents the extension of such
a family of systems, ERS (expression reduction systems),
with pattern matching.

To our knowledge there is no work on the matching of
parallel values because either the languages use implicit
parallelism, so pattern matching is as usual, or the lan-
guages with explicit parallelism do not offer data types
for parallel values but rather follow the SPMD program-
ming style, so pattern matching of parallel values is not
supported.

6. Conclusions and Future Work

This papers demonstrates that the current BSMLlib li-
brary and its formalization the BSλ-calculus are not suit-
able for the pattern matching of parallel values. We pro-
posed a new calculus of functional Bulk Synchronous Par-
allel programs which allows efficient pattern matching of
parallel values. This confluent calculus is the basis of an
extension of the BSMLlib library with facilities for par-
allel pattern matching. The implementation of such an ex-
tension is sketched.

Currently, we transform the matching of parallel val-
ues 〈P 〉 by hand, but we are writing an automatic transfor-
mation using the preprocessing facilities of the Objective
Caml compiler. The automatic transformation follows ex-
actly the process described in this paper.

The semantics presented here can lead to irreductible
terms which are not values when match returns ⊥m. In
an actual language, we need to be able to catch such a fail-
ure. Thus we need an exception handling mechanism. In
the current BSMLlib library difficulties come when an ex-
ception raised inside a mkpar for example is not caught at
the local level: the whole program fails. We can imagine to
catch such exceptions at the global level. We are exploring
the different possible ways to give a meaning to programs
such as:



(m1)
match(x, v) →m {(v, x)}

(m2)
match(〈ẋ〉, v) →m {(v, 〈x〉)}

(m3)
match(_, v) →m ∅

(m4)
match(ċ, ċ) →m ∅

(m5)
ċ 6= v

match(ċ, v) →m ⊥m

(m6)
match(p1, v1) →m α match(p2, v2) →m β

match((p1, p2), (v1, v2)) →m γαβ

(m7)
match(p, v) →m α′

match(E p, E v) →m α′
(m8)

v 6= Cv′

match(E p, v) →m ⊥m

(m9)
match(ṗ, vj) →m α′

match(〈ṗ@j〉, 〈v0, v1, . . . vp−1〉) →m α′

(m10)
∀i ∈ {0, 1, . . . , p − 1}.match(ṗ, vi) →m σi

match(〈ṗ〉, 〈v̇0, v̇1, . . . , ˙vp−1〉) →m σ
σ(〈x〉) = 〈σ0(x), σ1(x), . . . , σp−1(x)〉

(m11)
∃i ∈ {0, 1, . . . , p − 1}.match(ṗ, vi) →m ⊥m

match(〈ṗ〉, 〈v̇0, v̇1, . . . , ˙vp−1〉) →m ⊥m

(1)
e2 → v match(p, v) → σ e1σ → T e0σ → v0

(λp[e1].e0)e2 → v0

(2)
e2 → v match(p, v) → σ e1σ → T e0σ → v0

(λp[e1].e0|a)e2 → v0

(3)
e2 → v match(p, v) → σ e1σ → F ae2 → v0

(λp[e1].e0|a)e2 → v0

(4)
e2 → v match(p, v) → ⊥m

(λp[e1].e0|a)e2 → ae2

(5)
v → v

(6)
e → v

E e → E v

(7)
e1 → v1 e2 → v2

(e1, e2) → (v1, v2)
(8)

ē1 → 〈ḟ0, ḟ1, . . . , ˙fp−1〉 ē1 → 〈v̇0, v̇1, . . . , ˙vp−1〉 ∀i ∈ {0, 1, . . . , p − 1}.ḟi v̇i → ẇi

ē1 # ē2 → 〈ẇ0, ẇ1, . . . , ˙wp−1〉

(9)
∀i ∈ {0, 1, . . . , p − 1}.(ė i) → ẇi

π ė → 〈ẇ0, ẇ1, . . . , ˙wp−1〉
(10)

ē1 → 〈v̇0, v̇1, . . . , ˙vp−1〉 ē2 → 〈ṁ0, ṁ1, . . . , ˙mp−1〉 ∀i ∈ {0, 1, . . . , p − 1}.mi ∈ N

ē1 ? ē2 → ē1 → 〈 ˙vm0
, ˙vm1

, . . . , ˙vmp−1
〉

Figure 4. Semantics

try mkpar(function
|0->raise Exn1 |1->raise Exn2 |_-> i)

with ...

Exceptions handling will increase the safety of our lan-
guage, in particular we will investigate this both practi-
cally and theoretically in order to check the applicability
of type systems which can detect uncaught exceptions in
Caml programs [7].
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