ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/277656433

BSP-Why: A Tool for Deductive Verification of BSP Algorithms with Subgroup
Synchronisation

Article in International Journal of Parallel Programming - March 2015

DOI: 10.1007/510766-015-0360-y

CITATIONS READS
10 81

2 authors, including:

Frédéric Gava
Université Paris-Est Créteil Val de Marne - Université Paris 12

64 PUBLICATIONS 403 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

et Laboratoire d'Algorithmique, Complexité et Logique View project

poject Multi-ML View project

All content following this page was uploaded by Frédéric Gava on 30 March 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/277656433_BSP-Why_A_Tool_for_Deductive_Verification_of_BSP_Algorithms_with_Subgroup_Synchronisation?enrichId=rgreq-53cd550d77afa8436cf47acc8eb356fb-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY1NjQzMztBUzoxMDA2OTc0MjQ2MzQ2NzUyQDE2MTcwOTI3Nzc3MTE%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/277656433_BSP-Why_A_Tool_for_Deductive_Verification_of_BSP_Algorithms_with_Subgroup_Synchronisation?enrichId=rgreq-53cd550d77afa8436cf47acc8eb356fb-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY1NjQzMztBUzoxMDA2OTc0MjQ2MzQ2NzUyQDE2MTcwOTI3Nzc3MTE%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Laboratoire-dAlgorithmique-Complexite-et-Logique?enrichId=rgreq-53cd550d77afa8436cf47acc8eb356fb-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY1NjQzMztBUzoxMDA2OTc0MjQ2MzQ2NzUyQDE2MTcwOTI3Nzc3MTE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Multi-ML?enrichId=rgreq-53cd550d77afa8436cf47acc8eb356fb-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY1NjQzMztBUzoxMDA2OTc0MjQ2MzQ2NzUyQDE2MTcwOTI3Nzc3MTE%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-53cd550d77afa8436cf47acc8eb356fb-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY1NjQzMztBUzoxMDA2OTc0MjQ2MzQ2NzUyQDE2MTcwOTI3Nzc3MTE%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frederic-Gava?enrichId=rgreq-53cd550d77afa8436cf47acc8eb356fb-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY1NjQzMztBUzoxMDA2OTc0MjQ2MzQ2NzUyQDE2MTcwOTI3Nzc3MTE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frederic-Gava?enrichId=rgreq-53cd550d77afa8436cf47acc8eb356fb-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY1NjQzMztBUzoxMDA2OTc0MjQ2MzQ2NzUyQDE2MTcwOTI3Nzc3MTE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-Paris-Est-Creteil-Val-de-Marne-Universite-Paris-12?enrichId=rgreq-53cd550d77afa8436cf47acc8eb356fb-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY1NjQzMztBUzoxMDA2OTc0MjQ2MzQ2NzUyQDE2MTcwOTI3Nzc3MTE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frederic-Gava?enrichId=rgreq-53cd550d77afa8436cf47acc8eb356fb-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY1NjQzMztBUzoxMDA2OTc0MjQ2MzQ2NzUyQDE2MTcwOTI3Nzc3MTE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frederic-Gava?enrichId=rgreq-53cd550d77afa8436cf47acc8eb356fb-XXX&enrichSource=Y292ZXJQYWdlOzI3NzY1NjQzMztBUzoxMDA2OTc0MjQ2MzQ2NzUyQDE2MTcwOTI3Nzc3MTE%3D&el=1_x_10&_esc=publicationCoverPdf

Int J Parallel Prog (2016) 44:574-597 @ CrossMark
DOI 10.1007/s10766-015-0360-y

BSP-Why: A Tool for Deductive Verification of BSP
Algorithms with Subgroup Synchronisation

Jean Fortin! - Frédéric Gava!l

Received: 14 August 2014 / Accepted: 10 March 2015 / Published online: 31 March 2015
© Springer Science+Business Media New York 2015

Abstract We present BSP-WHY, a tool for deductive verification of BSP algorithms
with subgroup synchronisation. From BSP programs, BSP-WHY generates sequential
codes for the back-end condition generator WHY and thus benefits from its large range
of existing provers. By enabling subgroups, the user can prove the correctness of
programs that run on hierarchical machines—e.g. clusters of multi-cores. In general,
BSP-WHY is able to generate proof obligations of MPI programs that only use collective
operations. Our case studies are distributed state-space construction algorithms, the
basis of model-checking.

Keywords BSP - Verification - Subgroup synchronisation - State-space

1 Introduction

Context of the work Because parallel code is the norm in many areas, formal verifica-
tion [19] of parallel programs is necessary. Indeed formal verification seems essential
when considering the growing number of parallel architectures (e.g. GPUs, multi-cores,
etc.), the complexity of distributed architectures and the cost of conducting large-scale
simulations, the losses due to faulty programs, unreliable results, unexpected crashing
simulations, etc. [24] This is especially true when parallel programs are executed on
architectures which are expensive and consume many resources. Therefore, it seems
more appropriate to find errors before the said programs are executed.

B Jean Fortin
jean.fortin@ens-lyon.org

Frédéric Gava
frederic.gava@univ-paris-est.fr

LACL, University of Paris-East, Créteil, France

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-015-0360-y&domain=pdf

Int J Parallel Prog (2016) 44:574-597 575

In the last decades, methods have been developed to study the correctness of sequen-
tial programs [19]. For the verification of parallel ones it should be possible to avoid
starting again. A question immediately follows: how easy is it to adapt these methods
(developed to ensure the safety of sequential programs) for a parallel environment?
Given the strong heterogeneity of the parallel architectures and their complexity, a
frontal attack of the problem of verification of parallel programs is a daunting task
that is unlikely to materialize.

In this paper, we propose a method of “sequentialisation” [10] of annotated parallel
programs. Annotations are added to programs in order to verify some properties such
as the absence of failure, overflows, liveness, etc. and total correctness, that is to check
if results are as intended. In this way, if we can have a machine-checked proof that
the (generated) sequentialized annotated parallel program is correct, then the original
program is correct too. There is thus no need of new specific complex tools for checking
correctness of parallel programs. Therefore, the goal is using the now “well defined”
verification tools of sequential programs as back-ends for tools of parallel programs.

Which model for parallelism? An approach is to consider well-defined subsets that
include interesting structural properties. In fact, many parallel programs are not as
unstructured as they appear: it is the skeletons and BSP (Bulk Synchronous Parallel
[36]) main idea. A bridging model [36] such as BSP has great advantages in respect
to the correctness of parallel programs. Take for example a proof of correctness of a
GPU-like program. Although interesting in itself it cannot be used directly for clusters
of PCs. A bridging model has the advantage that if a program is correct, then this is the
case for “all” physical architectures. Note that the problem does not arise for portable
libraries such as MPI but algorithm design would be clearly architecture independent,
which will not be the case using a bridging model. Moreover, it is known and accepted
that correctness of programs is more costly in terms of work than just programming
and designing algorithms. Hence the choice in this article of BSP to provide both
portability for proofs of correctness and a cost model for algorithmic design of efficient
programs [1].

The choice of allowing subgroup synchronisation is motivated by the fact that
some BSP libraries already allow subgroups, for instance the PUB [2]. Moreover, a
large number of MPI programs use only global communications [4,32]. These can be
viewed as BSP programs, if we allow BSP programs to synchronise over a subgroup
of processes. Subgroup synchronisation is also convenient for clusters of multi-cores
and hierarchical architectures in general [37]. In order to be able to study these kinds
of programs, we extend our previous work on verifying strict BSP programs [10] for
those that use subgroups.

Which tool of correctness? Verification Condition Generators (VCGs) are tools that
work properly for checking annotated programs: they take an annotated program as
input and produce verification conditions (also called goals or proof obligations) as
output to provers to ensure correctness of the properties given in the annotations. The
key advantages of using a VCG are: it allows the verification of simple properties of a
program (such as “no overflow”) without formally proving its total correctness; using
automatic provers enables the quick detection of simple errors; the manual proof of

@ Springer

576 Int J Parallel Prog (2016) 44:574-597

properties (“programming with a theorem prover” such as COQ) can be mixed with
automatised checks of simple properties using automatic provers.

For this work, we choose the vCG WHY [8]. It takes as input a small core-language
close to ML, avoiding us the need to handle all the constructs of a full language.
Instead, realistic programming languages can be compiled into the WHY input lan-
guage. WHY currently interprets C, ADA and JAVA programs with the help of companion
tools. Our BSP-WHY would serve as intermediary for C [2,18] and JAVA [28,40]
BSP extensions, like WHY is for sequential programming. In addition, WHY is interfaced
with the main theorem provers (automatic or not) as back-end for the proofs obliga-
tions. This allows us to use these provers for the proof obligations obtained from the
BSP programs with subgroups.

Contribution of this paper and outline The objective of this work is to provide a
tool for the formal verification of logical properties of annotated BSP (well-structured)
programs with subgroup synchronisation. Writing a theorem prover or a VCG is a
huge task which should be left to the experts. The main idea of our work is to simulate
BSP parallelism by transforming the parallel code into a sequential form. The structural
nature of the BSP programs will allow us to decompose the programs into sequences of
blocks of code, each block corresponding to a super-step of a group. Our BSP-WHY tool
(available at http://lacl.fr/fortin/BSP-why/) works by transforming the parallel code
(with logical annotations) into a semantically equivalent WHY code to generate proof
obligations. Another advantage of generating a sequential program with assertions is
that we would be able to use any kind of dedicated tools for code analysis that work on
annotated programs; thus avoiding the need to recreate these tools for BSP programs.
Furthermore, implementing a formal tool for a realistic programming language (such
as C or JAVA) needs a lot of work even for a big team: too many constructs require
specific treatment. Reducing the work to a core language is a good approach: it is a first
step which helps to measure the difficulties caused by the BSP model (with subgroups)
while avoiding the complexity of a real-world language. Subsequently, this work can
be extended to a real-world language with a sufficient team.

Throughout this paper, we illustrate our work with the example of the state-space
construction of systems, which is the basis of model-checking (MC for short) [6].
Parallelizing the construction of the state-space on several machines is a standard
method more and more used in the industry [12]. The correctness of their answers is
thus important.

The remainder of this paper is structured as follows. We first give in Sect. 2 an
overview of the WHY tool (Sect. 2.1) following with a short presentation in Sect. 2.2
of how the BSP-WHY tool (without subgroups) works. We also present how to program
with the subgroup synchronisation in the PUB [2] and MPI context (Sect. 2.3), following
with typical errors. We then present in Sect. 3 how to adapt the BSP-WHY tool to
manage subgroups. We then give in Sect. 4 the total correctness of a BSP+subgroups
state-space construction algorithm. Section 5 discusses some related work and finally,
Sect. 6 concludes the paper and gives a brief outlook on future work.

@ Springer

http://lacl.fr/fortin/BSP-why/

Int J Parallel Prog (2016) 44:574-597 577

2 Context and General Definitions
2.1 Deductive Verification of Sequential Algorithms Using WHY
2.1.1 The wHY Tool

WHY [8] is a framework for the verification of algorithms. It is composed of two parts:
a logical language and an intermediate programming language called WHY-ML with a
VCG. WHY takes an algorithm with logical assertions and generates goals to theorem
provers that ensure the correctness of the algorithm. The logic of WHY is a polymorphic
first-order logic with definitions and axioms. WHY’s library proposes finite sets of data
and several operations with their axiomatisation. In the logical formula, x@ is the
notation for the value of x in the pre-state, i.e. at the precondition point and x @label
for the value of x at a certain point (marked by a label) of the algorithm.

WHY-ML is a first-order language that provides the usual constructs of imperative
programming. All symbols from the logic can be used in the algorithms. Mutable data
types can be introduced, by means of polymorphic references: a reference r to a value is
created with the function ref, is accessed with Ir, and assigned with r <— €. Algorithms
are annotated using pre- and post-conditions, loop invariants (a property that holds
before and after each repetition), and variants (a strictly decreasing measure) to ensure
termination. VCG are computed using a weakest precondition calculus and then passed
to the back-end of WHY to be sent to provers. Notice that in WHY, sets are immutable
(manipulated only with purely functional routines) and thus only a reference on a set
can be modified and assigned to another set.

2.1.2 Example: Verification of a State-Space Construction Algorithm

Model-Checkers (MC for short) are often used to verify safety-critical systems. The
correctness of their answers is thus vital: many MC produce the answer “yes” or
generate a counterexample computation (if a property of the model fails), which forces,
in the two cases, to assume that the algorithm and its implementation are both correct.
Having trusty state-space is fundamental in order to get MC that you can trust [7].
Let us recall that the finite state-space construction problem (also known as the
Orbit skeleton [22]) is exploring all the states reachable through a successor function
succ (which returns a set of states) from an initial state sy. This is done without loss
of generality and it is a trivial extension to compute the full Kripke structure—usually
preferred for checking temporal logic formulas. Generally, during this operation, all
the explored states must be kept in memory in order to avoid multiple explorations of
a same state. To represent this set StSpace in the logic of WHY, we used the following
axiom (for consistency, it has been proved in COQ using an inductive definition of the
state-space, also available in the source code):
1 logic s0: state logic succ: state — state set logic StSpace: state set

2 axiom contain_state_space: Vss:state set. StSpace C ss <
3 (sO € ss and (v s:state. s € ss — s € StSpace — succ(s) C ss))

Now ss is the state-space (ss=StSpace) if and only if, the two following properties
hold: (A) ss C StSpace and (B) StSpace C ss. Note that using this first-order

@ Springer

578 Int J Parallel Prog (2016) 44:574-597

1 let random_walk () =

2 let known = ref () and todo = ref {s0} in

3 while todo #) do

4 { invariant (1) (known U todo) C StSpace

5 and (2) (known N todo)=0

6 and (3) sO €(known U todo)

7 and (4) (V e:state. e €known —

8 succ(e) C (known U todo))

9 variant |StSpace \ known| }

10 let s = pick todo in

11 known«—!known @ s;

12 todo«—!todo U (succ(s) \ !'known)
13 done;

14 lknown {result=StSpace}

Fig. 1 A sequential state-space algorithm

definition makes the automatic solvers prove more proof obligations than using an
inductive definition for the state-space.

For example, we give in Fig. 1 the usual sequential algorithm in WHY-ML where a set
called known contains all the states that have been processed and would finally contain
StSpace. It involves a set todo that is used to hold all the states whose successors
have not been constructed yet; each state s from todo is processed in turn (lines 3 and
8) and added to known (line 10) while its successors are added to todo unless they
are known already—Iine 11.

Note that this algorithm can be made strictly depth-first by choosing the most-
recently discovered state (i.e. implementing todo as a stack), or breadth-first by
choosing the least-recently discovered state—i.e. todo as a heap. This has not been
studied here and pick randomly chooses a state in the set: we cannot have information
about any order in the annotations.

For correctness, the previously presented code needs three properties: (a) it does not
fail; (b) it indeed computes the state-space; (c) and it terminates. (a) is immediate since
the only operation that could fail is pick (where the precondition of this parameter' is
“not take any element from an empty set”) and this is ensured by the guard of the while
statement. (b) is given by the final post-condition which is only valid after the loop
using the four following invariants: (1) known and todo are subsets of StSpace ((A)
property); at the end, (3) and (4) known is a subset of StSpace and has the “same”
inductive property; and when todo will be empty, then known contains StSpace —
(B) property. Finally, termination is ensured by the variant: the algorithm only adds a
new state S since (known N todo)=¢; thus known is growing and thus the measure is
strictly decreasing.

2.2 Deductive Verification of BSP Algorithms Using BSP-WHY
2.2.1 BSP Model and Programming Without Subgroup Synchronisation

A BSP program is executed as a sequence of super-steps —Fig. 2. This structured model
enforces a strict separation of communication and computation: during a super-step,

L\ parameter is a routine of the program for which we do not know the code; we only have its type and
the effect on its arguments.

@ Springer

Int J Parallel Prog (2016) 44:574-597 579

local
= computations

N communication
N <

ﬁﬁﬁ& barrier

. : : : next super-step

Fig. 2 A BSP super-step

no communication between the processors is allowed but only transfer requests; only at
the synchronisation barrier information is actually exchanged. Note that a BSP library
can send messages during the computation phase of a super-step, but this is hidden
to programmers. There exist different BSP programming libraries. The most known
are BSPLIB [18,40], PUB [2] and HAMA [28]. An MPI program only using collective
operations can also be viewed as a BSP program.

The only important routines are those that perform barriers because they terminate
a super-step. How BSP communication routines work (with few differences due to the
host language) is not of important in this work: mainly, the semantics is growing a
data-structure with the messages to be sent and the pending DRMA operations?, copying
buffers of data and modifying the data-structures of received messages only when the
barrier is performed—the synchronous effect. For example:

1 parameter bsp_send: dest0:int — v:value —

> {valid_proc(dest0)} unit writes envCsend {envCsend=pupdateSend(envCsend @ ,pid,dest0,v)}
3 parameter bsp_sync: unit— {}unit Sync,writes envCsend,

4 ... {comm(envCsend@,envCsend,...)}

so that the primitive bsp_send updates the set of sending messages using the des-
tination destO, the value v to send and pid of the processor; bsp_sync creates new
environments of communication using a relation comm between the past environ-
ments and the new ones. Note that as WHY does not allow pointers, we also use
a global two-dimensional array to store all variables that need DRMA access. More
details could be found in [9,10]. We do not consider in this work high-performance
routines of some BSP libraries: even if they are more efficient, they break the abstrac-
t/theoretical BSP model of execution. Consequently, they are unsafe and introduce too
much non-determinism. For example, if we modify the buffer of an unbuffered send-
ing, it is unknown which value will be sent: for a deductive verification tool, all the
possibilities must be kept into account, which is not reasonable.

Throughout this paper, we abstract all communications by using a parameter of
exchange over arrays of values—it is mainly the MPI’s alltoall primitive. Source codes
of the examples can be found at http://lacl.fr/gava/cert-mc.tar.gz.

2 For DRMA operations, in case of a distributed architecture, the buffers have to be sent; in case of a
shared-memory architecture, the library simulates this sending.

@ Springer

http://lacl.fr/gava/cert-mc.tar.gz

580 Int J Parallel Prog (2016) 44:574-597

2.2.2 The BSP-WHY Tool (Without Subgroups) [9,10]

BSP-WHY extends the syntax of WHY-ML with BSP primitives (message passing
of values and synchronisation) and definitions of collective operations. BSP-WHY-
ML codes are written in an Single Program Multiple Data (SPMD) fashion. We used
the WHY-ML language as a back-end of our own BSP-WHY-ML language. In this way,
BSP-WHY-ML programs are transformed into WHY-ML ones and then the VCG of WHY is
used to generate the appropriate goals for the verification of the BSP algorithms. It is
thus a kind of “sequentialisation”: a simulation of a distributed program by a sequen-
tial one. The objective is to have a sequential program where we can test to prove the
correctness of the final post-condition [9, 10]: if it is valid (thus all generated invariants
and pre/post-conditions of functions are also valid too) then the post-condition of the
parallel program is valid too. In this way, the logical annotations of both parallel and
sequential versions of the the program are valid.

A special constant nprocs (equal to p the number of processors) and a special
variable bsp_pid (with range O, ..., p — 1) were also added to WHY-ML expressions.
A special syntax for BSP annotations is also provided which is simple to use and seems
sufficient to express conditions in most practical programs: we add the construct # <i>
which denotes the value of a term ¢ at processor id i, and <x> denotes a p value x
(represented by fparray, purely applicative arrays of constant size p) that is a value
on each processor as opposed to the simple notation x which means the value of x on
the current processor.

The transformation of BSP-WHY-ML codes into WHY-ML ones is based on the fact
that, for each super-step, if we execute sequentially the code for each processor and then
perform the simulation of the communication by copying the data, we have the same
validity of the logical properties of the environments as if it is truly done in parallel.
We thus have the same logical properties, and it is the charge of the programmer to
have sufficiently annotated the program to prove the correctness; for example, proving
that the result does not depend of the order of reception of the messages in case of a
set of received values.

The first step of the transformation is a decomposition of the program into blocks of
sequential instructions —Fig. 3. For this, we need to be able to know if an instruction
has a synchronize effect—doing a barrier or not. Two instructions potentially influence
the parallelism of the program: (1) a routine defined with the synchronize effect, such
as bsp_sync; (2) a function call, if the function body is determined to have a parallel
code. The first step of our transformation is to tag each part of the code with a boolean

Block 1
il; :%
i2; i ' ia.
while b1 do i3; while ?41. dois;
i4; -
syne; —) Block 2
if b2 then i5 else i6; if b2 then i5 else i6;
i7; i7;
sync;
Y

Fig. 3 BSP-WHY’s block decomposition

@ Springer

Int J Parallel Prog (2016) 44:574-597 581

that says whether the “subcode” includes parallel code, or not. This static analysis is
fully described in [9].

After having regrouped the sequential parts of the code into blocks, we create a “for
loop” to execute sequentially the block p times. That is the block is executed p times,
once for each processor. Local variables remain unchanged and any variable that was
created outside the block, had been transformed into an array of size p (one value per
processor) and we thus modify the code of the block accordingly to this fact. Moreover,
when making explicit the “for loop”, one thing is immediately visible: it is necessary
to give an invariant to the loop, if we hope to prove anything about the program. We
thus generate invariants to keep track of which variables are modified. Since we are
using arrays to represent the variables local to every processor, and programs are run
in a SPMD fashion, it is necessary to say that we only modify a variable on the current
processor and that the rest of the array stays unchanged. Fortunately, the invariant can
in general be inferred automatically. The loop consists of the independent execution
of the sequential code e, simulated for the processors O to p. This means that one
iteration of the loop will have executed the code e for one processor. Hence, if we
know the post condition post that we would like to ensure after the block e, the
invariant should include Vj:int. 0<j<i — post[j] (for all the processors j < i, the
code e has already been executed, so the post condition post at the processor j holds)
and Vj:int. i<j<pv[j]=v[j]@loopstart : the value of v for the processor j must still be
the same as the value at the beginning of the loop, denoted by the label @loopstart;
ensuring that at the ith iteration of the loop, we have not modified the array for the
processors i + 1 top — 1 yet.

Outside the blocks of sequential codes, the code is not altered. However, several
cases need more attention: when transforming if or while statements, there is a risk
that a synchronous code (a bsp_sync or any code containing a barrier) might be
executed on a processor and not on the others—resulting in a program failure; more
details in Sect. 2.3.2. We thus enforce that the condition associated with the instruction
will always be true on every processor at the same time using a call to a parameter,
called valid. This parameter is called on the result of the boolean expression and a
proof obligation will then be generated by WHY to ensure that every processor enter
the same branch of the if, or that no processor exits the loop prematurely. Figure 4
gives a naive example to illustrate the method.

Finally, when translating the logic expressions in annotations, it is necessary to
translate the variable in the same way as previously. When it is necessary to refer to

D : Parallel code

bsp_sync()
—

—

fori=0top-1do

‘ Ij <= nprocs l bsp_sync() ‘ fori=0top-1do

Fig. 4 Example of tagging the code, adding the “valid” condition and the “for loop”

@ Springer

582 Int J Parallel Prog (2016) 44:574-597

1 let bsp_state_space () =

2 let known = ref () and let todo = ref () and

3 let pastsend = ref) and let total = ref 1 in

4 if cpu(s0) = bsp_pid then

5 todo «+—s0 @ !todo;

6 while total>0 do

7 { invariant (1) |J(<known>) U |J(<todo>) C StSpace

s and (2) (U(<known>) N J(<todo>))=0

9 and (3) (V i,j:int. isproc(i) — isproc(j) — total<i> = total<j>)

10 and (4) total<0> > [|J(<todo>)|

11 and (5) s0 €(J(<known>) U [J(<todo>))

12 and (6) (V e:state. e €(J(<known>) — succ(e) C (|J(<known>) U |J(<todo>)))
13 and (7) (V e:state. Viint. isproc(i)

14 — e€ known<i>— succ(e) C (known<i> U pastsend<i>))
15 and (8) J(<pastsend>) C StSpace

16 and (9) (V i:int. isproc(i) — Ve:state. e Epastsend<i> — cpu(e)# i)
17 and (10) |J(<pastsend>) C (|J(<known>) U |J(<todo>))

18 variant pair(total<0>,| StSpace \ |J(known) |) for lexico_order }

19 let tosend=(local_successors known todo pastsend) in
20 exchange todo total 'known !tosend
21 done;
22 lknown {StSpace=|J(<result>)}

Fig. 5 Parallel (distributed) BSP-WHY-ML algorithm for state-space construction

the variable x as an array <x>, or to the variable on a different processor than the
current one, x<i> is transformed in the access to the i-th component of x. The details
and some examples are available in [9]. Note the the special treatment for exceptions
handling is also available in [9].

2.2.3 Example: Verification of a BSP State-Space Algorithm [9,15]

Algorithm “random_walk” can be parallelised [12] using a partition function cpu
that returns for each state a processor id, i.e., the processor numbered cpu(s) is the
owner of s: logic cpu: state — int axiom cpu_range: Vs:state. 0<cpu(s)<nprocs

The idea is that each process computes the successors only for the states it owns.
This is rendered as the BSP algorithm of Fig. 5. Sets known and todo are still used but
become local to each processor and thus provide only a partial view on the ongoing
computation. Initially, only state s¢ is known and only its owner puts it in its todo set.
To ensure termination of the algorithm, we use the additional variable fotal in which
we count the total number of sent states. It can be noted that the value of fotal may be
greater than the intended count of states in fodo sets. Indeed, it may happen that two
processors compute a same state owned by a third processor, in which case two states
are exchanged but then only one is kept upon reception—depending on the partition
function. In the worst case, the termination requires one more super-step during which
all the processors will process an empty fodo, resulting in an empty exchange and thus
total = 0 on every processor, yielding the termination. We have thus not used any
complicated methods such as the ones presented in [12].

The function local_successors computes the successors of the states in todo
where each computed state that is not owned by the local processor is recorded in a
set tosend together with its owner number. The set pastsend contains all the states

@ Springer

Int J Parallel Prog (2016) 44:574-597 583

that have been sent during the past super-steps—the past exchanges. This prevents
returning a state already sent by the processor.

The synchronous primitive exchange is responsible for performing the actual
communications: it computes the set of received states that are not yet known locally
(and update todo with this set) together with the new value of fotal—it is essen-
tially the MPI’s alltoall primitive. Pastsend is also updated with the union of all
states from tosend. The primitive performs a global (collective) synchronisation bar-
rier which makes data available for the next super-step so that all the processors are
now synchronised.

For brevity, we only present the verification of the parallel part of this algorithm and
not the sequential local_successors —similar to “random_walk” but with additional
invariants on states to send. They are still available in the source code and fully
explained in [9]. We use the following predicates:

— isproc(i) defines what is a valid processor id, that is 0<i<nprocs;
— |J(<p_set>) is the union of the sets of the p-value p_set, i.e. U}):_OI p_set<i>;

As before, we need to prove that (1) the code does not fail; (2) indeed computes
the entire state-space and (3) terminates. The first property follows immediately
since only the routine pick is used as before in the local_successors function
(we never pick a state in a empty set); and to also prove that the code is well-
structured enough to never have a processor doing an extra super-step (the loop
contains exchange which implies a global synchronisation), we can easily main-
tain that total (which gives the condition for termination) has the same value on all the
processors during the entire execution of the algorithm. Let us now focus on the two
other properties.

The invariants (lines 7-17) of the main parallel loop work as follows: (1) as in
“random_walk”, we need to maintain that Known (even distributed) is a subset of
StSpace which finally ensures (A) property when todo is empty; (2) as before, the
states to be treated are not already known; (3) total is a global variable, we thus
ensure that it has the same value on each processor; (4) ensures that no state remains
in todo (to be treated) when leaving the loop since total is at least as big as the
cardinality of todo, total is an over-approximation of the number of sent states; (5-7),
as before, ensure (B) property; (8) ensure states sent in the past are in the state-
space; (9) pastsend only contains states that are not owned by the processor and (10)
all these states, that were sent, are finally received and stored by a processor. In the
post-condition (line 22), we can also ensure that the result is well distributed: the state-
space is complete and each processor only contains the states it owns according to the
function “cpu”.

The termination of the main loop has two cases: (a) in general the set known globally
(that is for of all processors) grows and we have thus the cardinality of StSpace minus
known which is strictly decreasing; (b) if there is no state in any todo of a processor,
no new states would be computed and thus total would be equal to O in the last stage
of the main loop. We thus used a lexicographic order on the two values: sum of known
across all processors and total.

@ Springer

584 Int J Parallel Prog (2016) 44:574-597

Fig. 6 Example of execution of subgroup synchronisation

2.3 Subgroup Synchronisation
2.3.1 Model

The BSP model is based on global barriers. However, an algorithm may include prob-
lems that can be solved using only a subset of the processors. Some libraries thus
extend the basic BSP model, and allow the definition of subgroups, which are pairwise
disjoint subsets of the set of processors. It is then possible to write a part of the pro-
gram with the subgroup acting as an independent BSP computer. A call to bsp_sync
will then synchronise over the subgroup, instead of the whole machine. In Fig. 6,
we show an example of execution of subgroup synchronisation. In this example, the
overall group of processors “S” is split into two subgroups (“S1” and “S2”’) which run
independent BSP computations. Finally the two subgroups are merged and the whole
machine continues its work. Handling subgroups is an important feature considering
cluster of multi-cores: a program can synchronise and communicate only over the
cores making it faster.

2.3.2 Programming with Subgroup Synchronisation and Possible Errors
Allowing the synchronisation on a subset of processors means that the communication
procedures need to be able to tell in which group they are working. An additional argu-

ment, called a communicator, is thus added to all the parallel procedures, representing
a group of processors linked together.

@ Springer

Int J Parallel Prog (2016) 44:574-597 585

MPI allows to create sub-communicators and collective operations can then be per-
formed on a subset of the processors. The main routine is MPI_Comm_split(...) which
creates a new communicator by partitioning the group into disjoint subgroups using a
set of colors. Unlike in the PUB, the MPI routines require a collective call between
the processors of the group and there is almost no restriction to the way groups
are formed.

For the PUB, the main function is void bsp_partition(...). The subgroups are described
as a partition of the current BSP computer in contiguous subsets. It is impossible
to synchronize or create other subgroups from the parent subgroup until the current
subgroup is released with the routine bsp_done. It is however possible to create different
new subgroups of the current subgroup. The partition also has to be made of subgroups
of consecutive processors. The organisation of subgroups is similar to a stack, with
only the lowest subgroup being allowed to create new subgroups. As shown in the
next section, our work is independent of these two kinds of routines. We can add a
synchronise creation of subgroups a la MPI (if the routine has a synchronise effect)
or aysnchronous one a la PUB or both depending on what the user wants to use.
Despite the limitation of the PUB, using subgroups can introduce different errors. In
addition to the usual sequential programming errors (out-of-bound or bad results due
to non-deterministic communications [9]), a failure can happen when one processor
is performing an extra super-step. Considering the following code:

1 group1<«subgroup(group2,...);

2 if (bsp_pid=0)

3 then bsp_sync(group1);

4 else asynchronous_computation();
s bsp_sync(group?2);

where group1 would be a subgroup of group2 (no matter how subgroup works);
because processor 0 performs an additional synchronisation, it is a programming error.
In some BSP libraries, this translates by a program failure. Generally, it is not a good way
of programming. To forbid this case, we force programs (with specific annotations) to
be well-structured enough: any synchronous operation must be performed by the entire
group. We thus do not allow programs that have the same barrier of the same super-step
at different points of the program. A reader can notice that this strict decomposition
does not accept all valid BSP programs. Take for example the following code:

1 if (bsp_pid=0)

> then comp;bsp_sync();compy;

3 else comps;bsp_sync();compy;

This is a case where our decomposition fails: not all the processors run the same
bsp_sync and our tool will generate unprovable assertions. But the program can be
rewritten by factoring the two bsp_sync?:

1 if (bsp_pid=0) then comp;;else comps;

> bsp_sync();
3 if (bsp_pid=0) then comp,;else compy;

3 Doing this transformation automatically is perhaps possible in some specific cases; however, this is not
the subject of this work.

@ Springer

586 Int J Parallel Prog (2016) 44:574-597

if(pid<2) let S = {eval (pid<2)} in

foriinS do
[b1]

sync(sub,S)

foriinSdo
[b2]

sync(sub)

—

else

foriin ~S do
[b3]

o o <A

Fig. 7 Scheme of the transformation

In practice and by reading many BSP algorithms (those cited in [1]), we only find
this problem in reduction-like (logarithmic) loops where the code can clearly be re-
factored. This does not seem too restrictive.

3 Managing Subgroups

We have presented so far the transformation of programs in the strict BSP model. In this
section, we will show how to extend the above transformation to include the possibility
of synchronising over a subgroup of processors.

Figure 7 illustrates the main idea of the simulation of a BSP program with sub-
groups by a sequential program. The block decomposition remains the same as before.
However, the if statements in the parallel structure need another treatment because
they allow the program to branch over different paths of execution depending on the
subgroups. A variable S for the set of the processors entering the if statement is thus
introduced (internally) by BSP-WHY.

The BSP-WHY prelude file defines the datatypes used for the subgroups. First, a
subgroup of processors is defined as an array of booleans of size p (bool fparray).
This is easily interpreted: each processor of the BSP machine can either be part of the
subgroup, or not. It is not possible, however, to simply assimilate a communicator with
a subgroup, since several distinct communicators can match the same subset of proces-
sors. For this reason, communicators are stored in a list associating a communicator
identifier and the corresponding subgroup of processors, with the bsp_partition
and mpi_createcomm parameters returning such an identifier.

3.1 Managing the Primitives

A new pre-condition It would be senseless to keep guarding the conditional statements
as before, since it would only allow the synchronisation of all the processors. We
already saw that in a BSP-WHY program, a communicator is given to the synchronise
primitive to tell which subgroup has to synchronise. We thus need to verify in the
execution of our WHY translated program that all the processors in the communicator
are synchronising properly.

@ Springer

Int J Parallel Prog (2016) 44:574-597 587

To do this, we now dynamically (automatically) maintain S during the execution
of the translated program: S contains the set of the processors that are running the
same branch of the code. To avoid failures, for each bsp_sync(comm,S) (or every
parameter with a synchronize effect), we check that all the processors of a subgroup
will synchronise at the same time:
assert{Vi:int icS—(comm(i] € S and (v j:int jecomm][i] —comm[il=comm([j]))}.

That is bsp_sync is now defined with this precondition. It ensures that it is called
on a coherent set of processors at any time. For every processor in the set S, which
is the set of the processors that will execute the call to bsp_sync, the subgroup
that includes the processor is included in S. The subgroup of a processor i of S is
denoted here by comm[i], since it is an information contained in the communicator
argument. The second part of the assertion states that if one processor synchronises
over a communicator, then all the other processors of the communicator synchronise
on it too.

Well-structured programs If one processor in a subgroup calls the synchronisation on
that subgroup, every processors in the subgroup must execute it too. As before, the
restriction imposed by BSP-WHY is a bit more restrictive. To ensure that there can not
be a failure, BSP-WHY asks that all the processors of a same group that enter the same
branch of the if synchronise together. However it is still possible for two subgroups
to enter two different branches of a if. For example, the following code is correct
for BSP-WHY:

1 let C; ={0,1}and C, ={2,3} in

> if (bsp_pid in C;) then comp;; bsp_sync(C;);

3 else

4 if (bsp_pid in C;) then comp;; bsp_sync(C,);
5 else ...

For valid programs that do not meet this restriction, it is often possible to rewrite them
using the previous factorisation.

3.2 Transformation of Programs with Subgroups

The transformation of programs follows the same general steps as the transforma-
tion explained in Sect. 2.2.2. The first step, extracting a tree of sequential blocks, is
unchanged. The transformation of the block tree (noted [[e]]s) is generally similar to
the transformation done by BSP-WHY without subgroup synchronisation. However, as
explained earlier, code that do not execute the same for all processors will result in a
specific treatment. This includes the if and while statetments. We give their rules of
transformation in Fig. 8. Exceptions also need a specific transformation, but we will
not detail it in this article by lack of space. The full rules are available in [9]. They
work as follows.

The transformation of a if statement is done in three steps. First, the condition is
evaluated for all processors in the current subset S. This gives us two new subsets, S
and S\S;, respectively the processors of S where the condition is true and the other

@ Springer

588 Int J Parallel Prog (2016) 44:574-597

let S;1 = evalCond ¢1 S in
[[if c1 then cg else c3lls = [[c2]]s;;
[[eslls\sy

[[while ¢ do cp {invariant ¢ variant v}]]s =
while valid([[c1]]s, S) do [[c2]]s {invariant [[i]] variant [[v]]}

[[while ¢1 do c¢o {invariant ¢ variant v}]]s =
S’ := S ; while S’ := evalCond c1 S’ do [[c2]]g/ {invariant [[i]] variant [[v]]}

Fig. 8 Transformation of if and while statements

processors. The second step is thus the execution of the first branch for Sy, and the
last step the execution of the second branch for S\S;.

The transformation of the while loop is more complex, and we give two variations
of it. The first option closely follows the transformation found in BSP-WHY without
subgroup: the valid parameter ensures that the condition remains true on every proces-
sor that executes the loop. The only difference is that now, the loop can be executed
within a subgroup instead of all the processors. The invariant and variant are thus
obtained in the same way as before. In the second option, we enrich the loop by allow-
ing processors to exit it while it progresses. Because of this, we need to update, at each
iteration, the set of the processors that are currently executing the loop. This is done
by introducing a variable S’, which is updated from the computation of the condition
on each processor. While the invariant is still much the same, the variant generation
is a bit more difficult, since there is no way of knowing beforehand which processor
will stay the longest in the loop. Instead, we need to provide some measure obtained
from the variants on every processors, for instance their sum. Because of the added
complexity for the user in the second option, both in the orginal code and with the
proof obligations, we chose to provide the first option by default, with the possibility
to request the generation of the more complex loop when necessary (if the case when
the user wants an algorithm where processors exit the loop early) using the keyword
global next to variant.

Finally, the transformation of a sequential block of code is similar to the one seen
in Sect. 2.2.2, but slightly more complex. Instead of executing the block for all the
processors successively, we only execute it for the processors that are running that
part of the code. This is exactly what is denoted by the variable S. For this, we
introduce a shortened notation: for i in § do c. The “for loop” means that we
execute sequentially the instructions ¢ for all the processors in S. This generates a
code of the following form:

1 leti=refOin
> while li<nprocs do
3 { invariant inv

4
variant nprocs — i }

s if procin i S then c;
6 i< li+1;
7 done

where the procIn functions just tells if i is in the set S—the treatment of the invariant
inv is described above. With this notation, our transformation is now the following:

@ Springer

Int J Parallel Prog (2016) 44:574-597 589

[comm worLp, p |

v
|subGrmrp2, p2| subGrp3, p3
e

[subsub1, p1.1] |subsub2, p1.2|

Fig. 9 A tree of BSP subgroups

[[ells = fori in S do[[e]];, s where [[e]]; s is transformation of the sequential code
e for processor i.

When transforming local code from BSP-WHY to WHY, there are almost no modifica-
tion compared to the standard BSP model. The main point here is that for synchronising
parameters, we add the S argument containing the set of the processors that run the
synchronisation. This is necessary to ensure the proper synchronisation. As explained
before, the synchronisation parameters are defined with two arguments, the array of
the communicators and the set of the processors that execute the synchronisation. Both
arguments are then used to define the correct precondition. Similarly, an argument is
added for all of the function calls, when the function contains parallel code. This is
needed to transmit the information of S inside the code of the functions.

The determination of the invariants of the “for loops” can be made similarly
to what we did before—see Sect. 2.2.2. The difference is that for the processors
that are not in S , we always need the second form of invariant to hold, that is:
vjiint. O<j<iandj € S — post[j]. And, as above, we also need to express that
the computation has not yet been processed for some processors. This is done
using the two following invariants: (1) Vj:int. i<j<nprocs—v|[j] = v[j]@loopstart,
the computation has not been done for these processors; (2) Vj:int. 0<j<iand—
(j € S)—V[jl=V[jl@loopstart, processors not in S will never do the computation.

4 Application to Finite State-Space Construction
4.1 Model and Algorithm

Previously, we have mechanically verified two state-space algorithms: one sequential
and one strictly BSP. The latter uses an extension of the former in a inner loop. We
now show how to use the transformation of Sect. 3 to verify an algorithm which is
a modification of the BSP algorithm with subgroups. For this algorithm, we assume
that the architecture is a “hierarchical tree” of disjoint BSP machines, e.g. a cluster of
multi-cores. Figure 9 illustrates the architecture, i.e. the tree of disjoint groups. The
root is the whole machine (group comm_woRLD) with the p processors. Then, there are
three disjoint subgroups (subGrpyy,2,3)) of processors where p = p1 + p2 + p3. The
first subgroup is itself cut up into two disjoint subsubgroups where p; = p1.1 + p1.2.
Also py (resp. py2,3y and pq1.1,1.2)) is greater than 0.

We also assume a new function of partition Cpu(s) which now returns a pair (g, i)
where g is a “group leaf” of the tree and i the ith processor in this group. Note that our
algorithm provides load balancing of computations only if the partition (hash) allows

@ Springer

590 Int J Parallel Prog (2016) 44:574-597

1 let multi_bsp_state_space () =

2 let known = ref () and todo = ref ()

3 and pastsend = ref () and total = ref 1

4 and toOther = ref [pl = 0,p2 = 0, ..., pl.2= 0]

5 and mygroup = ref (leafGroup (bsp_pid COMM_WORLD)) in

6 let (g,i) = cpu(s0) in

7 if (g=mygroup) and (i=(bsp_pid mygroup)) then todo «s0 & !todo;
8 while (total>0) or (!mygroup# COMM_WORLD) do

9 { invariant (1) and (2) and (3) and (6) and (9) and (11)

10 (2") and (Viint.isproc(i)— (known<i> N AllSum(toOther<i>))=0)

11 (2") and (Vitint.isproc(i)— (todo<i> N AllSum(toOther<i>))=0)

12 (4') and (V i,j:int. isproc(mygroup,i)— isproc(mygroup,j)— total<mygroup,i> =total<mygroup,j>)
13 (5') and total<mygroup,0> > |[J(<todo,mygroup>)|

14 (7') and (Ve:state.e€| J(<known>)

15 — succ(e)C (U(<known>)ulJ(<todo>)UlJ(<AlISum(toOther)>)))

16 (8") and (Ve:state.Vi:int.isproc(i)— e€known<i>

17 — succ(e)C (known<i>Upastsend <i>UAIISum(toOther<i>)))

18 (9") and J(<AlISum(toOther)>) C StSpace

19 (10’) and (Vi:int.isproc(i)— Ve:state.Epastsend<i>

20 — let(g,j)=cpu(e) in g# GrplLeaf(i) and toProper(j)# i)

21 (10") and (Vi:int.isproc(i)— Ve:state. let(g,j)=cpu(e) in e€(Sum(toOther<i>[g]))

22 — g# GrpLeaf(i) and toProper(j)# i)

23 (10") and (Vi:int.isproc(i)— Ve:state. let(g,j)=cpu(e)in €(Sum(toOther<i>[g]))— g# mygroup)
24 (12) and mygroup<COMM_WORLD

25 (13) and (Viiint.isproc(i)— Vgrp:group. Valid(toOther<i>[g]) < grp<COMM_WORLD)

26 (14) and (Vi:int.isproc(i)— Vgrp:group. €(gr, Tree)— grp<mygroup— Sum(toOther<i>[g])=0)
27 variant pair(total,| StSpace \ |J(known) |) for lexico_order }

28 local_successor known todo pastsend toOther;

29 exchange todo total 'known (select !mygroup toOther);

30 while (total=0) and (!mygroup# COMM_WORLD) do

31 { invariant (1) and (2) and (all 2') and (4') and (5’) and (6) and (7') and (8') and (9) and (9')
32 and (all 10’) and (11) and (12) and (13) and (14)

33 variant | nprocs(COMM_WORLD)—nprocs(mygroup)| }

34 mygroup«—(top !mygroup);

35 exchange todo total 'known (select !mygroup toOther);

36 done

37 if total# 0 then mygroup«—(leafGroup (bsp_pid COMM_WORLD));

38 done

39 'known {StSpace={J(<result>)}

Fig. 10 BSP-WHY-ML (with subgroups) algorithm for state-space construction

a good distribution of the states. Adding specific procedures of redistribution of the
states is out of the scope of this article.

Figure 10 shows the annotated algorithm. It works as follows. First, references are
properly initialised —lines 2—7. Second, each processor computes its local successors
and, depending of cpu, puts into toOther the states that belong to another processor
of a group. toOther is a map where keys are groups and values are fparray of sets
of states, one set for each processor within the group. For this, we assume a procedure
leafGroup indicating to a processor the “leaf group” to which it belongs. Third, we
need to send states of toOther. For this, we have a inner loop (lines 30-36) that moves
back up in the tree until an exchange is not empty (total>0) or the root is reached; these
exchanges are initialised with the procedure select which takes from toOther only
the states that belong to the selected group; to moves back up in the tree, we use the
procedure top. If the exchange is not empty, then some states have been received by
some processors and we loop to perform again the local computations. Otherwise, we
have reached comm_woRLD without sending any states which terminates the main loop
since no new state have been received. local_successors works as before (mainly as
“random_walk”) but by putting into toOther states that have not to be owned by the

@ Springer

Int J Parallel Prog (2016) 44:574-597 591

1 let local_successors (known: state set ref) (todo:state set ref)
2 (pastsend:state set ref) (mygroup:group)
3 (toOther: state set fparray map ref) =

4 let tosend = ref (init_send mygroup 0) in

5 while todo # () do

6 let s = pick todo in

7 known«—!known @ s;

8 let new_states = ref ((succ s)\ 'known)\ !pastsend) in

9 init:while new_states #) do

10 let new_s = pick new_states in

11 let (grp,tgt)=cpu(new.s) in

12 if (grp=mygroup) and (tgt=bsp_pid) then

13 todo«!todo@new_s

14 else

15 toOther[grp] <tgt><«—toOther[grp] <tgt>®Hnew_s
16 done

17 done

Fig. 11 Local successors function

local processor. Figure 11 gives the code without annotations of the local computations.
exchange works also as before but only synchronises the processors of the subgroup.

This algorithm results in less synchronisations of the whole machine since the
processors of a group only synchronize when there were actually states to exchange
and all local calculations (of the subgroups) were completed. It also better supports
the hardware locality: a group could be the multi-cores of a machine and thus com-
pute a part of the state-space without communications with other processors of other
machines. Note that, assuming that the tree is only the root, we recover the original
BSP algorithm.

4.2 Mechanised Deductive Verification of the Algorithm

For lack of space, we only present the verification of the parallel part of this algorithm
and not the sequential local_successors nor exchange, which is more technical and
with straightforward properties: it only permutes states in arrays. It is still available
in the source code. We use the following predicates:

— Sum(m(gr]) is the union of all states of a fparray of sets, given by the the map m
from the key (group) gr;

— AlISum(m) is the union of all sets of states in the map (for each key);

— isproc(grp,i) defines what is a valid processor id of a group grp, that is
O<i<nprocs(grp);

— GrpLeaf(i) gives the “group leaf” of the proper processor i (O<i<nprocs)

— toProper(gr,j) gives the proper processor id of the jth processor of group gr

— grp1<grp2 is valid if both groups are in the tree of groups, in the same branch
and grp1 is lower. Note that all groups are lower than COMM_WORLD.

As previously, we need to prove that (1) the code does not fail; (2) computes the
entire state-space (e.g. no state is lost during the exchanges of the subgroups) and
(3) terminates. The first property is easy since picK is used as before; the function
top does not fail since the condition of the loop is that we only trace the tree back
until the root (COMM_WORLD) is accessed; and to prove that the code is well-structured
enough (a loop contains exchange which implies a synchronisation of a subgroup),

@ Springer

592 Int J Parallel Prog (2016) 44:574-597

we can easily maintain that total has the same value on all the processors of a same
group during the entire execution of the mentioned group. Let us now focus on the two
other properties.

Correctness of the parallel main loop For the main loop, the invariants (lines 9-26)
work as follows: (1), (2), (3), (6), (9), (11) as in the strict BSP algorithm; (2”) completes
(2) so that any state could not be owned by a processor and be sent to another group
(depending on the partition function); (4”) total is the same value for each processor of
the group mygroup, thus ensuring no processor makes another super-step in a group;
(5”) is as for the BSP algorithm but here total is an over-approximation for each group;
(7’) as before, ensures the (B) property since todo and toOther will be empty after the
loop; (8’) successors of a state are owned by the current processor or was (or will be)
sent; (9) all states of toOther are in the state-space; (10”) pastsend and toOther only
contain states that are not owned by the processor; (12) ensuring that mygroup is in
the tree and lower than comm_woRLD ; (13) if a group is a valid key of the map toOther
then it is lower than cOMM_WORLD ; (14) ensures that all communication of a group has
been done which ensures that toOther is empty after the loop since mygroup will be
equal to COMM_WORLD .

Invariants of the inner loop are as before—lines 31-32. The most important one
is (14) which ensures that we trace the tree back to the root without forgetting to
send states. A reader might think that roo many invariants are added to the code. This
is actually fairly standard when performing mechanical proofs and such constraints
would appear if the verification had been made in COQ.

Termination For the local computations, the termination is ensured as above since
known grows when entering the loop. But to ensure that kKnown actually grows in
the main loop or there is no need to send states (toOther remains unchanged), the
two following specific invariants are added in the loop of the local computations: (1)
(todo@init U known @init) € (todo U known) that is known contains the states of
the initial kKnown (the label “init” marks the beginning of the loop) union todo, but
todo will be empty after the loop and thus known will contain (at most) all the states
of the initial todo; (2) todo @ init=¢)— (todo=¢ and toOther=toOther @init) that is
if todo is empty then there is no need of sending states and toOther is as at label “init”.
The termination of the inner loop (line 33) is easy since every group has obviously less
processors than its “father”. Thus the variant is the difference between the number of
processor of mygroup and COMM_WORLD.

Mechanical proof 11 obligations are generated for the sequential “random_walk”
whereas 152 are generated for the strict BSP algorithm. With some obvious axioms on
the above predicates (such as | <f,...,0>=@) so that solvers can handle the predicates,
all the obligations (logical goals) produced by the VCG of WHY are automatically
discharged by a combination of automatic provers: CVC3, Z3, SIMPLIFY, ALT- ERGO,
YCES and VAMPIRE. For each prover, we give a timeout of 10 mins—otherwise some
obligations are not proved. The automatic provers SIMPLIFY and Z3 give the best results.
In practice, we mostly used them. SIMPLIFY is the fastest and z3 sometime verified

@ Springer

Int J Parallel Prog (2016) 44:574-597 593

some obligations that had not be discharged by SIMPLIFY. We have no explanation for
this fact.

Currently, 245 goals are generated when subgroups are used and some of them
still not proved by the solvers. We are currently working to research what in our
axiomatisation of subgroups hampers the solvers. We hope to be able to discharge all
goals in a near future. Even if proof obligations are as usual when working with a
VCG such as WHY, some of them are hard to follow due to the parallel computations.
But reading them carefully, we can find the good annotations. Based on this fact, it
seems conceivable that a more seasoned team in formal methods can tackle more
substantial algorithms.

5 Related Work

Correctness of BSP programs Different approaches have been studied. In [13], func-
tional BSP programs have been proved correct in COQ. In [14], we presented the
correctness of a N-body computation using a mechanised semantics. However, proofs
of correctness were too hard by only using semantics inside COQ.

The derivation of imperative programs using the Hoare’s semantics followed by the
generation of correct C code [41] also exists. The two main drawbacks of this approach
is a lack of an implementation of a dedicated tool for the logical derivation, which
implies a lack of safety; users make hand proofs which are not machine checked,;
moreover, it is impossible to verify users existing codes. Using the Hoare’s semantics
has also been studied in [5,21,34]. More recently, these works were extended for
subgroups in [33]. All of these approaches lack mechanised proofs. Moreover, they
are close to refinement a la B since they give logical rules for deriving algorithms from
specifications. On the contrary, using deductive verification, we begin with a program
and by adding logical assertions, we prove the correctness of the said program.

A work on proving determinism, using assertions in the code, of multi-threaded
JAVA programs with barriers can be found in [3]. The authors note that there seemed
to be no obvious simpler, traditional assertions that would aid in catching non-
deterministic parallelism. In our case of BSP programs, this work is simple —but
still limited to BSP programs.

Another work on concurrent threading with barriers is [20]. The authors have devel-
oped and proved sound a concurrent separation logic for barriers of threads. An
interesting point is that the proofs are machine-checked in COQ. The authors also show-
case a program verification toolset that automatically applies some logic rules (Hoare
logic) and discharges the associated proof obligations. It is thus a work for derivation
of formal specifications into correct parallel programs. The drawback (as in [38] and
partly in [26]) is that only programs with a predefined constant number of threads (e.g.
two for a producer-consumer problem) can be considered. For HPC, we prefer to have
correct programs for an unknown number of processors in a data-parallel fashion.

Debugging MPI programs There are many tools dedicated to MPI. A survey could be

found in [16]. These tools help to find some classical errors, but not all of them. In
practice, defects, which usually appear in large configurations, can often be detected

@ Springer

594 Int J Parallel Prog (2016) 44:574-597

in much smaller configurations. [39] presents a tool that directly model-check the
MPI source code, executing its interleaving with the help of a verification scheduler
(producing error traces of deadlocks and assertion violations). It allows an engineer
to check its MPI code against deadlocks on a p-processors machine before running
it on this machine. The main advantage of this method is to be fully automatic. The
two main drawbacks are (1) they only consider deadlocks and assertion violations (2)
programs are model-checked only for a predefined number of processors which is less
than 64 in the original article; their model-checker induces too much computations
and communication if the program is checked with a larger number of processors.

In [30], the author proposes a solution using a symbolic execution technique (with
special “collective loop invariants™) that he uses to verify assertions in MPI programs
which are then checked, with a model-checker, for unknown sizes of data—but still
for a fixed number of processors only. However, the author note that discovering these
collective invariants is currently to the charge of the programmer (as in our work) and
these invariants are limited: for example, there is no way to express that the number
of messages is invariant. The method still has the advantage of greatly reducing the
number of necessary invariants. The tool can also be use (with symbolic executions) to
verify that two programs are functionally equivalent—i.e. “input-output equivalent”.
This technique is particularly useful in computational science, to compare a complex
parallel program, the “implementation”, to its simple and trusted sequential version,
the “specification”.

Currently, we are not aware of any verification condition generator tool for MPI pro-
grams. We think that performing a sequential simulation of any kind of MPI programs
is not reasonable. Continuations would be necessary to simulate the interleaving of
processes: that would generate unintelligible assertions. But certainly many MPI pro-
grams could be automatically transformed into BSP ones [23]. We leave the aim of
substantiating this claim for future work.

The approaches of symbolic verification as well as VCG tools, suffer to the main
limitation: as it now stands, models of the programs must be built by hand. This requires
significant effort and a degree of skill from the user. The ideal situation would be to
have tools that automatically extract the models from source code, at least for specific
domains [11].

Correctness of state-space algorithms and model-checkers For verifying model-
checkers, different solutions have been proposed. The first one is to prove MC inside
theorem provers and use the extraction facilities to get pure functional machine-
checked programs [7,31]. Extracted functional programs are known to be less efficient
than imperative ones and currently only sequential MC algorithms have been studied.
Second, derive a model-checker from its specification a la B [35], but also only sequen-
tial codes are currently generated.

The third and more common approach is to generate a “certificate” during the exe-
cution of the MC that can be checked later or on-the-fly by a dedicated tool or a theorem
prover. This is the so-called “certifying model-checking” [25]. In this way, users can
re-execute the certificate/trace and have some safety guarantees because even if the
MC is buggy, its results can be checked by a trustworthy tool. But, any explicit MC may

@ Springer

Int J Parallel Prog (2016) 44:574-597 595

enumerate a very large state-spaces (the famous state-space explosion problem), and
mimicking this enumeration inside any theorem prover would be unreasonable [29].

We are also not aware of another state-space algorithm using subgroups. An excep-
tion is the work of [27] but a concurrent data-structure is used for the cores and the
naive algorithm of [12] is used for the whole parallel machines.

6 Conclusion and Future Work

Summary of the contribution The paper presents a methodology and its associated
tool, called BSP-WHY, for the deductive verification of BSP algorithms with sub-
groups. BSP-WHY-ML extends the WHY-ML intermediate language by adding some
constructs specific to BSP parallelism and subgroups. The tool translates a subset of
BSP-WHY-ML (programs that are “well-structured” enough) into sequential WHY-ML:
since BSP programs are made of super-steps, even with subgroups, parallelism can be
removed by replacing a portion of code between barriers of a subgroup with a loop
to repeat that portion for every process of the subgroup. In view of the ratio “number
to prove/proved automatically” of the generated proof obligations, we believe this
method is far from perfect but nonetheless can rapidly increase the confidence that
can be placed in the code.

In this work, we also focus on examples for finite state-space construction of systems
(basis of model-checking) and notably on a BSP algorithm (with subgroups) designed
by the authors. We annotated the algorithms and used the VCG WHY (certified in
CcoQ [17]) as back-end of our tool BSP-WHY to obtain goals. These goals ensure the
termination of the algorithms as well as their correctness for any successor function—
assumed correct and generating a finite state-space. We thus gained more confidence
in the code. We also hope to have convinced the reader that this approach is humanly
feasible and applicable to other kinds of BSP algorithms: graphs, bioinformatics, etc..

Future work The current prototype is still limited. We plan to extend it in several
ways. First, we are currently proving algorithms and not real codes. Regarding the
code structure, this is not really an issue and translating the resulting proof into a
verification tool for true programs should be straightforward, especially if high level
data-structures are used, e.g., the WHY framework allows a user to generate WHY-
ML code from JAVA using a tool called KRAKATOA.

Second, adapt this work for true MC algorithms—for instance able to check temporal
logics such as LTL/CTL*; it is mostly Tarjan/NDFS like algorithms. This is challenging
in general but using appropriate algorithms, we believe that a team can “quickly” do it.

And to finish, without the insurance of a machine-checked proof, the transforma-
tion of BSP-WHY-ML into WHY-ML could potentially contain bugs. The first author is
working on this using machine-checked semantics in COQ [9].

References

1. Bisseling, R.H.: Parallel Scientific Computation. A Structured Approach Using BSP and MPI. Oxford
University Press, Oxford (2004)

@ Springer

596 Int J Parallel Prog (2016) 44:574-597

2. Bonorden, O., Judoiink, B., von Otte, I., Rieping, O.: The Paderborn University BSP (PUB) library.
Parallel Comput. 29(2), 187-207 (2003)

3. Burnim, J., Sen, K.: Asserting and checking determinism for multithreaded programs. Commun. ACM
53(6), 97-105 (2010)

4. Cappello, F., Guermouche, A., Snir, M.: On communication determinism in HPC applications. In:
Computer Communications and Networks (ICCCN), pp. 1-8. IEEE (2010)

5. Chen, Y., Sanders, W.: Top-down design of bulk-synchronous parallel programs. Parallel Process. Lett.
13(3), 389-400 (2003)

6. Clarke, E., et al. (eds.): Handbook of Model Checking. Springer, Berlin (2012)

7. Esparza, J., et al.: A fully verified executable LTL model checker. In: Computer Aided Verification
(CAV), LNCS, vol. 8044, pp. 463-478. Springer (2013)

8. Filliatre, J.C.: Verifying two lines of C with why3: an exercise in program verification. In: Verified
Software: Theories, Tools and Experiments (VSTTE) (2012)

9. Fortin, J.: BSP- WHY: a tool for deductive verification of BSP programs; machine-checked semantics
and application to distributed state-space algorithms. Ph.D. thesis, University of Paris-East (2013).
http://lacl.fr/gava/papers/fortin_thesis

10. Fortin, J., Gava, F.: BSP- WHY: an intermediate language for deductive verification of BSP programs.
In: HLPP, pp. 35-44. ACM (2010)

11. Furia, C.A., Meyer, B.: Inferring loop invariants using postconditions. In: Fields of Logic and Com-
putation, LNCS, vol. 6300, pp. 277-300. Springer (2010)

12. Garavel, H., Mateescu, R., Smarandache, I.M.: Parallel state space construction for model-checking.
In: SPIN Conference, LNCS, vol. 2057, pp. 217-234. Springer (2001)

13. Gava, F.: Formal proofs of functional BSP programs. Parallel Process. Lett. 13(3), 365-376 (2003)

14. Gava, F, Fortin, J.: Formal semantics of a subset of the PUB. In: Parallel and Distributed Computing,
Applications and Technologies (PDCAT), pp. 269-276. IEEE (2008)

15. Gava, E, Fortin, J., Guedj, M.: Deductive verification of state-space algorithms. In: Integrated Formal
Methods (IFM), LNCS, vol. 7940, pp. 124-138. Springer (2013)

16. Gopalakrishnan, G., Kirby, R.M., Siegel, S.F., Thakur, R., Gropp, W., Lusk, E.L., de Supinski, B.R.,
Schulz, M., Bronevetsky, G.: Formal analysis of MPI-based parallel programs: present and future.
Commun. ACM 54(12), 82-91 (2011)

17. Herms, P.: Certification of a chain for deductive program verification. In: Bertot, Y. (ed.) COQ Work-
shop, Satellite of ITP (2010)

18. Hill, JM.D., McColl, B., Stefanescu, D.C., Goudreau, M.W., Lang, K., Rao, S.B., Suel, T., Tsantilas,
T., Bisseling, R.: BSPLIB: the BSP programming library. Parallel Comput. 24, 1947-1980 (1998)

19. Hoare, C.A.R., Misra, J., Leavens, G.T., Shankar, N.: The verified software initiative: a manifesto.
ACM Comput. Surv. 41(4), 1-8 (2009)

20. Hobor, A., Gherghina, C.: Barriers in concurrent separation logic: now with tool support. Log. Methods
Comput. Sci. 8(2), 1-32 (2012)

21. Jifeng, H., Miller, Q., Chen, L.: Algebraic laws for BSP programming. In: Bouge, L., Robert, Y. (eds.)
Euro-Par, no. 1124 in LNCS, pp. 359-368. Springer (1996)

22. Liibeck, F., Neunhoffer, M.: Enumerating large orbits and direct condensation. Exp. Math. 10(2),
197-205 (2001)

23. Martino, B.D., Mazzeo, A., Mazzocca, M., Villano, U.: Parallel program analysis and restructuring by
detection of point-to-point interaction patterns and their transformation into collective communication
constructs. Sci. Comput. Program. 40(2-3), 235-263 (2001)

24. Merali, Z.: Computational science: error, why scientific programming does not compute. Nature
467(7317), 775-777 (2010)

25. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A. (eds.) Computer
Aided Verification (CAV), LNCS, vol. 2102, pp. 2-13. Springer, Berlin (2001)

26. Nieto, L.P.: Verification of parallel programs with the Owicki-Gries and rely-guarantee methods in
Isabelle/HOL. Ph.D. thesis, Technische Universitat Munchen (2001)

27. Saad, R.T., Dal-Zilio, S., Berthomieu, B.: Mixed shared-distributed hash tables approaches for parallel
state space construction. In: Parallel and Distributed Computing (ISPDC), pp. 9-16. IEEE (2011)

28. Seo, S., Yoon, E.J., Kim, J.H., Jin, S., Kim, J.S., Maeng, S.: HAMA: an efficient matrix computation
with the mapreduce framework. In: Cloud Computing (CloudCom), pp. 721-726. IEEE (2010)

@ Springer

http://lacl.fr/gava/papers/fortin_thesis

Int J Parallel Prog (2016) 44:574-597 597

29.

30.

31
32.
33.
34.
35.
36.
37.
38.

39.

40.

41.

Shankar, N.: Trust and automation in verification tools. In: Cha, S.D., Choi, J.Y., Kim, M., Lee, 1,
Viswanathan, M. (eds.) Automated Technology for Verification and Analysis (ATVA), LNCS, vol.
5311, pp. 4-17. Springer, Berlin (2008)

Siegel, S.F., Zirkel, T.K.: Loop invariant symbolic execution for parallel programs. In: Kuncak, V.,
Rybalchenko, A. (eds.) Verification, Model Checking, and Abstract Interpretation (VMCAI), LNCS,
vol. 7148, pp. 412-427. Springer, Berlin (2012)

Sprenger, C.: A verified model checker for the modal p-calculus in COQ. In: Tools and Algorithms
for Construction and Analysis of Systems (TACAS), LNCS, vol. 1384, pp. 167-183. Springer (1998)
Springel, V.: The cosmological simulation code gadget-2. Mon. Not. R. Astron. Soc. 364, 1105-1134
(2005)

Stewart, A.: A programming model for BSP with partitioned synchronisation. Form. Asp. Comput.
23(4), 421-432 (2011)

Stewart, A., Clint, M., Gabarrd, J.: Axiomatic frameworks for developing BSP-style programs. Parallel
Algorithms Appl. 14, 271-292 (2000)

Turner, E., Butler, M., Leuschel, M.: A refinement-based correctness proof of symmetry reduced
model-checking. In: Abstract State Machines, Alloy, B and Z, LNCS, pp. 231-244. Springer (2010)
Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103-111 (1990)
Valiant, L.G.: A bridging model for multi-core computing. J. Comput. Syst. Sci. 77(1), 154-166 (2011)
Villard, J., Lozes, E., Calcagno, C.: Proving copyless message passing. In: Programming Languages
and Systems (APLAS), LNCS, vol. 5904, pp. 194-209. Springer (2009)

Vo, A., Vakkalanka, S., DeLisi, M., Gopalakrishnan, G., Kirby, R.M., Thakur, R.: Formal verification
of practical MPI programs. In: Principles and Practices of Parallel Programming (PPoPP), pp. 261-269
(2009)

Yzelman, A.N., Bisseling, R.H.: An object-oriented BSP library for multicore programming. Concurr.
Comput. Pract. Exp. 24(5), 533-553 (2012)

Zhou,J., Chen, Y.: Generating C code from LOGS specifications. In: Theoretical Aspects of Computing
(ICTAC), LNCS, vol. 3722, pp. 195-210. Springer (2005)

@ Springer

https://www.researchgate.net/publication/277656433

	BSP-Why: A Tool for Deductive Verification of BSP Algorithms with Subgroup Synchronisation
	Abstract
	1 Introduction
	2 Context and General Definitions
	2.1 Deductive Verification of Sequential Algorithms Using why
	2.1.1 The why Tool
	2.1.2 Example: Verification of a State-Space Construction Algorithm

	2.2 Deductive Verification of BSP Algorithms Using BSP-WHY
	2.2.1 BSP Model and Programming Without Subgroup Synchronisation
	2.2.2 without subgroups
	2.2.3 Example

	2.3 Subgroup Synchronisation
	2.3.1 Model
	2.3.2 Programming with Subgroup Synchronisation and Possible Errors

	3 Managing Subgroups
	3.1 Managing the Primitives
	3.2 Transformation of Programs with Subgroups

	4 Application to Finite State-Space Construction
	4.1 Model and Algorithm
	4.2 Mechanised Deductive Verification of the Algorithm

	5 Related Work
	6 Conclusion and Future Work
	References

