
Semantics of Minimally Synchronous Parallel ML

Myrto Arapinis, Frédéric Loulergue, Frédéric Gava and Frédéric Dabrowski

Laboratory of Algorithms, Complexity and Logic, Créteil, France
http://f.loulergue.free.fr

Abstract

This paper presents a new functional parallel language:
Minimally Synchronous Parallel ML. The execution time
can then be estimated and dead-locks and indeterminism
are avoided. It shares with Bulk Synchronous Parallel ML
its syntax and high-level semantics but it has a minimally
synchronous distributed semantics. Programs are written
as usual ML programs but using a small set of additional
functions. Provided functions are used to access the pa-
rameters of the parallel machine and to create and operate
on a parallel data structure. It follows the cost model of
the Message Passing Machine model (MPM).

1. Introduction

Bulk Synchronous Parallel (BSP) computing is a paral-
lel programming model introduced by Valiant [32, 25, 31]
to offer a high degree of abstraction in the same way
as PRAM models and yet allow portable and predictable
performance on a wide variety of architectures. A BSP
computer has three components: a homogeneous set of
processor-memory pairs, a communication network allow-
ing inter processor delivery of messages and a global syn-
chronization unit which executes collective requests for a
synchronization barrier. A wide range of actual architec-
tures can be seen as BSP computers.

The BSP execution model represents a parallel compu-
tation on p processors as an alternating sequence of com-
putation super-steps (p asynchronous computations) and
communications super-steps (data exchanges between pro-
cessors) with global synchronization. The BSP cost model
estimates execution times by a simple formula. A com-
putation super-step takes as long as its longest sequential
process, a global synchronization takes a fixed, system-
dependent time L and a communication super-step is com-
pleted in time proportional to the arity h of the data ex-
change: the maximal number of words sent or received by
a processor during that super-step. The system-dependent
constant g, measured in time/word, is multiplied by h to

obtain the estimated communication time. It is useful to
measure times in multiples of a Flop so as to normalize g
and L w.r.t. the sequential speed of processor nodes.

Bulk synchronous parallelism (and the Coarse-Grained
Multicomputer model, CGM, which can be seen as a spe-
cial case of the BSP model) has been used for a large
variety of domains: scientific computing [3, 17], genetic
algorithms [5] and genetic programming [8], neural net-
works [30], parallel databases [2], constraint solvers [13],
etc. It is to notice that “A comparison of the proceedings of
the eminent conference in the field, the ACM Symposium
on Parallel Algorithms and Architectures, between the late
eighties and the time from the mid nineties to today reveals
a startling change in research focus. Today, the majority of
research in parallel algorithms is within the coarse-grained,
BSP style, domain” [7].

The main advantages of the BSP model are:

• deadlocks are avoided, indeterminism can be either
avoided or restricted to very specific cases. For exam-
ple in the BSPlib [15], indeterminism can only occur
when using the direct remote memory access opera-
tion put: two processes can write different values in
the same memory address of a third process

• portability and performance predictability [14, 18].

Nevertheless the majority of parallel programs written
are not BSP programs. There are two main arguments
against BSP. First the global synchronization barrier is
claimed to be expensive. [16] for example shows the effi-
ciency of the BSPlib against other libraries. A more recent
work [19] also points out the advantages of the BSP model
over MPI for VIA (a lightweight protocol) nets in partic-
ular using a scheduling of messages which can be done at
the synchronization barrier (using a latin square) in order
to avoid sequentialization of the receipt of messages.

Second the BSP model is claimed to be too restrictive.
All parallel algorithms are not fitted to its structured par-
allelism. This argument is not false but is more limited
than the opponent of the BSP model think. BSP algo-
rithms which have no relation with older algorithms but

which compute the same thing can be found. The perfor-
mance predictability of the BSP model even allows to de-
sign algorithms which cannot be imagined using unstruc-
tured parallelism (for example [2]). Divide-and-conquer
parallel algorithms are a class of algorithms which seem
to be difficult to write using the BSP model and several
models derived from the BSP model and allowing sub-
set synchronization have been proposed. We showed that
divide-and-conquer algorithms can be written using exten-
sions [23, 22] of our framework for functional bulk syn-
chronous parallel programming [24, 21]. The execution of
such programs even follow the pure BSP model.

As we faced those criticisms in our previous work on
Bulk Synchronous Parallel ML (BSML), we decided to in-
vestigate semantics of a new functional parallel language,
without synchronization barriers, called Minimally Syn-
chronous Parallel ML (MSPML). As a first phase we aimed
at having (almost) the same source language and high level
semantics (programming view) than BSML (in particular
to be able to use with MSPML work done on type sys-
tem [12] and proof of parallel BSML programs [11]), but
with a different lower level semantics and implementation.

With this new language we would like to:

• have a functional semantics and a deadlock free lan-
guage but a simple cost model is no more mandatory ;

• compare the efficiency of BSML with respect to
MSPML as the comparisons of BSP and other par-
allel paradigms were done with classical imperative
languages (C, Fortran) ;

• investigate the expressiveness of MSPML for non
BSP-like algorithms.

MSPML will also be our framework to investigate ex-
tensions which are not suitable for BSML, such as the nest-
ing of parallel values or which are not intuitive enough in
BSML, such as spatial parallel composition. We could also
mix MSPML and BSML for distributed supercomputing.
Several BSML programs could run on several parallel ma-
chines and being coordinated by a MSPML-like program.

We first present informally MSPML (section 2.1), then
give the semantics of MSPML (section 2.2). Predictabil-
ity being one of our concern, we looked after cost mod-
els which could be applied to MSPML. The MPM model
(section 2.3) is such a model. Section 3 is devoted to re-
lated work. We end with conclusions and future work (sec-
tion 4).

2. Flat Minimally Synchronous Parallel ML

2.1. Informal presentation

There is currently no implementation of a full Mini-
mally Synchronous Parallel ML (MSPML) language but

rather a partial implementation: a library for Objective
Caml [27, 6] (using TCP/IP for communications). The so-
called MSPML library is based on the following elements.

It gives access to the parameters of the underling archi-
tecture which is considered as a Message Passing Machine
(MPM) [28] (and section 2.3). In particular, it offers the
function p:unit->int such that the value of p() is p,
the static number of processes of the parallel machine. The
value of this variable does not change during execution.
There is also an abstract polymorphic type ’a par which
represents the type of p-wide parallel vectors of objects of
type ’a, one per process. The nesting of par types is pro-
hibited. This can be ensured by a type system [12].

The parallel constructs of MSPML operate on par-
allel vectors. Those parallel vectors are created
by: mkpar: (int -> ’a) -> ’a par so that
(mkpar f) stores (f i) on process i for i between 0
and (p−1). We usually write fun pid->e for f to show
that the expression e may be different on each proces-
sor. This expression e is said to be local. The expression
(mkpar f) is a parallel object and it is said to be global.
For example the expression mkpar(fun pid->pid)
will be evaluated to the parallel vector 〈0, 1, . . . , p− 1〉.

In the MPM model, an algorithm is expressed as
a combination of asynchronous local computations and
phases of communication. Asynchronous phases are
programmed with mkpar and with apply whose type
is (’a -> ’b) par-> ’a par -> ’b par. It is
such as apply (mkpar f) (mkpar e) stores (f
i) (e i) on process i.

The communication phases are expressed by:

get: ’a par->int par->’a par

The semantics of this function is given by:

get 〈v0, . . . , vp−1〉 〈i0, . . . , ip−1〉
= 〈 vi0%p , . . . , vi(p−1)%p

〉

The full language would also contain:

ifat:(bool par)*int*’a*’a -> ’a

the parallel conditional operation such that
ifat(v, i, v1, v2) will evaluate to v1 or v2 depend-
ing on the value of v at process i. But Objective Caml
is an eager language and this synchronous conditional
operation can not be defined as a function. That is why
the core MSPML library contains the function: at:bool
par->int->bool to be used only in the construction:
if (at vec pid) then... else... where
(vec:bool par) and (pid:int). if at expresses
communication phases. Without it, the global control
cannot take into account data computed locally. Global
conditional is necessary to express algorithms like :

Repeat Parallel Iteration Until Max of local errors < ε

We end with small examples of functions used in the
next sections. bcast is a direct broadcast program.

let replicate x = mkpar(fun pid ->x)
let bcast n vec = get vec (replicate n)

2.2. Formal semantics

This section is devoted to the formal semantics of
MSPML. We first give a high level semantics for MSPML.
It is similar to the high level semantics of BSML (but the
get operator is here a primitive whereas it can be defined
in BSML using the put primitive). Then we give the dis-
tributed minimally synchronous semantics (which is close
to the implementation) of MSPML.

2.2.1. High Level Semantics

Syntax The syntax of the core of MSPML is given by
the grammar given in figure 1.

In this grammar, x is an identifier, expression (e e′) cor-
responds to the application of a function or an operator e to
an argument e′. Term fun x→ e is the functional abstrac-
tion, the function whose parameter is x and result is given
by the value of e. Constants c are integers and booleans.
The set of operators op contains arithmetic operators, fix-
point (fix). mkpar, apply, get and ifat are the parallel
operators presented in the previous section.

There is one semantics per value of p, the number of
processors of the parallel machine (constant during execu-
tion). In the following ∀i means ∀i ∈ {0, 1, . . . , p − 1}.
The previous grammar is extended by enumerated parallel
vectors: e ::= . . . | 〈e, e, . . . , e〉 (parallel vector)

The programmer does not use this new syntax, but the
syntax of figure 1, because enumerated parallel vectors are
created during evaluation. In these syntaxes we do not sep-
arate local and global expression as in the BSλ-calculus.
We rely on the type system describes in [12] to avoid nest-
ing of parallel values.

The semantics says how we obtain values from expres-
sions. The values of MSPML are defined by the following
grammar:

v ::= fun x→ e (functional value))
| c (constants)
| op (operators)
| (v, v) (pairs)
| 〈v, v, . . . , v〉 (enumerated parallel vector)

We note e1[x ← e2] the substitution of the free occur-
rences of x in e1 by e2.

Evaluation rules First come the rules for the constants,
operators and functions:

c . c op . op (fun x→ e) . (fun x→ e)

Then rules for application, binding and pairs:

e1 . (fun x→ e) e2 . v2 e[x← v2] . v

(e1 e2) . v

e1 . v1 e2[x← v1] . v

let x = e1 in e2 . v

e1 . v1 e2 . v2

(e1, e2) . (v1, v2)

Rules for conditional, projection, arithmetic operators
and fix-point are also rules which can be found in the se-
mantics of sequential functional programming languages:

e1 . + e2 . (n1, n2) n = n1 + n2

(e1 e2) . n

e1 . fix e2 . (fun x→ e3) e3[x← fix(e2)] . v

(e1 e2) . v

e1 . fix e2 . op

(e1 e2) . op

e1 . true e2 . v

if e1 then e2 else e3 . v

e1 . false e3 . v

if e1 then e2 else e3 . v

e1 . fst e2 . (v1, v2)

(e1 e2) . v1

e1 . snd e2 . (v1, v2)

(e1 e2) . v2

The unusual rules are for the parallel operators (Fig. 2).

Example 1 We now evaluate as example the application
of the broadcast program (Fig. 3). We assume that v eval-
uates to 〈v0, v1, . . . vp−1〉.

2.2.2. Distributed semantics The high-level semantics
does not give the steps of the computation but only the re-
sult. Thus all parallel operators seem to be synchronous in
this semantics. To show how desynchronization is handled
in MSPML, a distributed semantics, which gives the steps
of a reduction towards a value, is needed.

Distributed evaluation→ can be defined in two steps:

1. local reduction (performed by one process i) ⇀i

2. global reduction of distributed terms which allows the
evaluation of communication requests (for get and
ifat).

Syntax For the programmer, the syntax is the same as
the syntax of the previous section, but it is to notice that
each process will hold the same program (or that the pro-
gram for the parallel machine is built with p copies of the
same program) whereas in the previous section it was a

e′ ::= x (variables) | c (constants)
| op (operators) | fun x→ e′ (abstraction)
| (e′ e′) (application) | let x = e′ in e′ (binding)
| (e′, e′) (pairs) | if e′ then e′ else e′ (conditional)
| mkpar e′ (parallel vector) | apply e′ e′ (parallel application)
| get e′ e′ (communication) | if e′ at e′ then e′ else e′ (global conditional)

Figure 1. Syntax

e1 . 〈v
′

1, v
′

2, . . . , v
′

p−1〉 e2 . 〈v
′′

0 , v
′′

1 , . . . , v
′′

p−1〉 ∀i(v
′

i v
′′

i) . vi

apply e1 e2 . 〈v0, v1, . . . , vp−1〉

e1 . 〈v0, v1, . . . , vp−1〉 e2 . 〈i0, i1, . . . , ip−1〉

get e1 e2 . 〈vi0%p, . . . , vip−1%p〉

e1 . v ∀i (v i) . vi

mkpar e1 . 〈v0, . . . , vp−1〉

e1 . 〈. . . ,

n
︷︸︸︷

true, . . .〉 e2 . n e3 . v3

if e1 at e2 else e3 then e4 . v3

e1 . 〈. . . ,

n
︷︸︸︷

false, . . .〉 e2 . n e4 . v4

if e1 at e2 else e3 then e4 . v4

Figure 2. Rules for parallel operators

program for the parallel machine. As in the previous sec-
tion we need to define new terms which may be created
during evaluation:

ed ::= x | c | op | fun x→ ed

| (ed ed) | let x = ed in ed | (ed, ed)
| if ed then ed else ed

| mkpar ed | apply ed ed | get ed ed

| if ed at ed then ed else ed | request ed ed

The distributed semantics follows the SPMD paradigm.
For example at process i the expression mkpar f will be
reduced to f i. request is used to allow the evaluation of
the get operation without having a global synchronization.
At each step of communication (a call to get or ifat), called
a m-step, each process stores the number of the m-step
(each process performs the same number of m-steps thus
this numbering can be done locally) and the value it holds:
for get this value is the first argument of get and also for
ifat. Those pairs are stored into a communication environ-
ment (one per process) EC . Those environments can be
thought as associative lists. Those environments evolved
asynchronously during execution and to know at which m-
step is a process we will use the mstep function defined
by:

{
mstep([]) = 0
mstep((n, vd) :: EC) = n.

Now when a process i evaluates get v j, it adds the
pair (mstep(EC) + 1 , v) to the communication envi-
ronment1 EC and then it asks the value held by the com-
munication environment of process j at the current m-step

1In this implementation when a MSPML program is ran, the user must
specify the asynchronicity depth, i.e. the maximum size of the commu-
nication environments in order to avoid memory leak. When this size is
reached, a global synchronization occur and the communication environ-
ments are emptied.

(n = mstep(EC) + 1). This asking is formally written:
request n j. The local reduction can create request ex-
pressions but it cannot make them disappear: this can be
done only at the global level.

The values for local reduction are:

vd ::= fun x→ ed | c | op | (vd, vd)

request expressions are not values.
Local reduction (figure 4) is a relation between pairs

of expressions ed and communication environments. First
we begin with axioms for head reduction (ed, EC)

ε
⇀i

(e′d, E
′

C). It can be read as “Expression ed in communi-
cation environment EC is reduced to expression e′d in envi-
ronment E ′C , at process i”.

Those rules cannot be applied in any context. To have
a weak call by value strategy, the following contexts are
needed (• is a “hole” which may be filled by any expres-
sion):

Γ ::= • | Γ ed | vd Γ | let x = Γ in ed | (Γ, ed)
| (vd, Γ) | mkpar Γ | apply Γ ed

| apply vd Γ | get Γ ed | get vd Γ
| if Γ then ed else ed

| if Γ at ed then ed else ed

| if vd at Γ then ed else ed

together with the context rule:

(ed, EC)
ε

⇀i (e′d, E
′

C)

(Γ[ed], EC) ⇀i (Γ[e′d], E
′

C)

Distributed expressions are p-wide tuples of pairs
of local expressions and communication environments:
〈〈(ed0 , EC0), (ed1 , EC1), . . . , (edp−1 , ECp−1)〉〉.

. . .

v . 〈v0, v1, . . . vp−1〉

fun x→ j . fun x→ j ∀i
fun x→ j . fun x→ j j . j j[x← i] . j

((fun x→ j) i) . j

(mkpar (fun x→ j)) . 〈j, j, . . . , j〉

get v (mkpar (fun x→ j)) . 〈vj%p, vj%p, . . . vj%p〉

bcast j v . 〈vj%p, vj%p, . . . , vj%p〉

Figure 3. Example

((fun x→ ed) vd, EC)
ε

⇀i (ed[x← vd], EC) (βfun)

((let x = vd in ed), EC)
ε

⇀i (ed[x← vd], EC) (βlet)

(+(n1, n2), EC)
ε

⇀i (n, EC) with n = n1 + n2 (δ+)

(fst(vd1 , vd2), EC)
ε

⇀i (vd1 , EC) (δfst)

(snd(vd1 , vd2), EC)
ε

⇀i (vd2 , EC) (δsnd)

(fix(fun x→ ed), EC)
ε

⇀i (ed[x← fix(fun x→ ed)], EC) (δfix)

(fix(op), EC)
ε

⇀i (op, EC) (δfixop)

(if true then e1 else e2), EC)
ε

⇀i (e1, EC) (δift)

(if false then e1 else e2), EC)
ε

⇀i (e2, EC) (δiff)

(mkpar vd, EC)
ε

⇀i (vd i, EC) (δmkpar)

(apply vd1 vd2 , EC)
ε

⇀i (vd1 vd2 , EC) (δapply)

(get vd j, EC)
ε

⇀i (request (mstep(EC) + 1) j, (δdst
get)

(mstep(EC) + 1, vd) :: EC) if j 6= i

(get vd i, EC)
ε

⇀i (vd, (mstep(EC) + 1, vd) :: EC) (δloc
get)

(if b at n then v1 else v2, EC)
ε

⇀i (if (request (mstep(EC) + 1) n) (δdst
ifat)

then v1 else v2, (mstep(EC) + 1, b) :: EC)
if n 6= i

(if b at i then v1 else v2, EC)
ε

⇀i (if b then v1 else v2,
(mstep(EC) + 1, b) :: EC) (δloc

ifat)

Figure 4. Local reduction

(edi
, ECi

) ⇀i (e′di
, E ′Ci

)

〈〈(ed0 , EC0), . . . , (edi
, ECi

), . . . , (edp−1 , ECp−1)〉〉 → 〈〈(ed0 , EC0), . . . , (e
′

di
, E ′Ci

), . . . , (edp−1 , ECp−1)〉〉

(edi
= Γ[request n j]) ∧ ((n, vd) ∈ ECj

)

〈〈(ed0 , EC0), . . . , (edi
, ECi

), . . . , (edp−1 , ECp−1)〉〉 → 〈〈(ed0 , EC0), . . . , (Γ[vd], ECi
), . . . , (edp−1 , ECp−1)〉〉

Figure 5. Global reduction

Distributed values are:
〈〈(vd0 , EC0), (v

′

d1
, EC1), . . . , (v

′

dp−1
, ECp−1)〉〉.

The rules for global reduction are given in figure 5 If
process i requests the value held by process j at m-step n
(request n j) and the communication environment ECj

of process j contains the value vd at m-step n then the
value vd is sent to process i. Otherwise the rule cannot be
applied: this means that if process j has not yet reached
the nth m-step, then process i must wait. The high level
semantics and the lower level one are equivalent.

Example 2 For the broadcast example, with p = 3, dis-
tributed evaluation of

bcast 2 (mkpar(fun x→ 2× x))

begins with local reduction at each process. At process i,
local reduction is given in figure 6. Then global reduction
is used:

〈〈
(request 0 2, [(0, 0)]),
(request 0 2, [(0, 2)]),
(request 0 2, [(0, 4)])

〉〉
3
→ 〈〈(4, [(0, 0)]), (4, [(0, 2)]), (4, [(0, 4)]),)〉〉

2.3. Cost model

2.3.1. BSPWB: BSP Without Barrier BSPWB, for
BSP Without Barrier[29], is a model directly inspired by
the BSP model. It proposes to replace the notion of super-
step by the notion of m-step defined as: at each m-step,
each process performs a sequential computation phase then
a communication phase. During this communication phase
the processes exchange the data they need for the next m-
step.

The parallel machine in this model is characterized by
three parameters (expressed as multiples of the processors
speed): the number of processes p, the latency L of the
network, the time g which is taken to one word to be ex-
changed between two processes.

The time needed for a process i to execute a m-step s, is
ts,i bounded by Ts the time needed for the execution of the
m-step s by the parallel machine. Ts is defined inductively

by:

{

T1 = max{w1,i}+ max{g × h1,i + L}

Ts = Ts−1 + max{ws,i}+ max{g × hs,i + L}

where i ∈ {0, . . . , p − 1} and s ∈ {2, . . . , R} where R
is the number of m-steps of the program and ws,i and hs,i

respectively denote the local computation time at process
i during m-step s and max{h+

s,i, h
−

s,i} where h+
s,i (resp.

h−

s,i) is the number of words sent (resp. received) by pro-
cess i during m-step s. This model could be applied to
MSPML but it will be not accurate enough because the
bounds are too coarse.

2.3.2. MPM: Message Passing Machine A better bound
Φs,i is given by the Message Passing Machine (MPM)
model [28]. The parameters of the Message Passing Ma-
chine are the same than those of the BSPWB model.

The model uses the set Ωs,i for a process i and a m-step
s defined as:

Ωs,i =

{
j/process j sends a message
to process i at m-step s

}
⋃

{i}

Processes included in Ωs,i are called “incoming part-
ners” of process i at m-step s. Φs,i is inductively defined
as:

Φ1,i = max{w1,j/j ∈ Ω1,i}+ (g × h1,i + L)

Φs,i = max{Φs−1,j + ws−1,j/j ∈ Ωs,i}

+(g × hs,i + L)

where hs,i = max{h+
s,i, h

−

s,i} for i ∈ {0, . . . , p − 1} and
s ∈ {2, . . . , R}. Execution time for a program is thus
bounded by: Ψ = max{ΦR,j/j ∈ {0, 1, . . . , p− 1}}.

The MPM model takes into account that a process
only synchronizes with each of its incoming partners
and is therefore more accurate. The preliminary experi-
ments done with our prototype implementation of MSPML
showed that the model applies well to MSPML. For exam-
ple, the parallel cost of the direct broadcast is (p−1)×s×
g + L, where s denotes the size of the value vn held at pro-
cess n in words. Preliminary experiments showed that the
actual performance of bcast follows this cost formula.

(
get (mkpar(fun x→ 2× x)) (mkpar(fun x→ 2)) , []

)

⇀i

(
get ((fun x→ 2× x) i) (mkpar(fun x→ 2)) , []

)

⇀i

(
get 2i (mkpar(fun x→ 2)) , []

)

⇀i

(
get 2i ((fun x→ 2) i) , []

)

⇀i

(
get 2i 2 , []

)

⇀i

(
request 0 2 , [(0, 2i)]

)

Figure 6. Example

3. Related Work

There are several works on extension of the BSPlib li-
brary or libraries to avoid synchronization barrier [9, 1, 20]
which rely on different kind of messages counting. To
our knowledge the only extension to the BSPlib standard
which offers zero-cost synchronization barriers and which
is available for downloading is the PUB library [4]. The
oblivious synchronization function bsp_oblsync takes
as argument the number of messages that must be received
by the process at the given super-step: when the process
has received this number of message it begins the next
super-step without synchronizing with other processes.

Caml-flight, a functional parallel language [10], relies
on the wave mechanism. This mechanism is more com-
plex than ours and there is no pure functional high level
semantics for Caml-flight.

[26] describes the mechanism of structural clocks to
allow a minimally synchronous execution of data-parallel
programs written in a small imperative language in SPMD
style. The difficulty is this framework is that the number
of communication phases may be different at each pro-
cess, because an operator of parallel composition is pro-
vided. We will also need a more complex m-step num-
bering which may be similar to the numbering used in
structural clocks, when we will add parallel juxtaposition
to MSPML. The high level semantics of the parallel jux-
taposition for MSPML will be the same as the one for
BSML [22].

4. Conclusions and Future Work

Minimally Synchronous Parallel ML is a functional par-
allel language which shares its syntax and high-level se-
mantics with Bulk Synchronous Parallel ML but which has
a new lower level semantics and implementation. Commu-
nications do not need global synchronization barriers. The
Message Passing Machine cost model can be applied to
MPSML. The first experiments with our prototype imple-
mentation show the accuracy of the cost model.

Future work can be divided into three parts:

• work on this implementation and experiments with
the cost model. For the moment MSPML is a li-
brary for the Objective Caml language and it uses

the threads facilities and the Unix module for TCP/IP
communications. We plan to write also an MPI ver-
sion to compare MSPML with the BSMLlib library.
The first public version of MSPML will be released
in october 2003.

• extension of MSPML with a parallel juxtaposition
which allows to divide the machine in two distinct
parallel machines which evaluate two MSPML ex-
pression in parallel. With this primitive the number
of communication phases may be different on each
process. Thus a new mechanism of communication
environment must be designed.

• extension of MSPML to allow the nesting of parallel
vectors.

5. References

[1] R. Alpert and J. Philbin. cbsp: Zero-cost synchro-
nization in a modified bsp model. Technical Report
97-054, NEC Research Institute, 1997.

[2] M. Bamha and G. Hains. Frequency-adaptive join
for shared nothing machines. Parallel and Dis-
tributed Computing Practices, 2(3):333–345, 1999.

[3] R. H. Bisseling and W. F. McColl. Scientific com-
puting on bulk synchronous parallel architectures. In
B. Pehrson and I. Simon, editors, Technology and
Foundations: Information Processing ’94, Vol. I,
volume 51 of IFIP Transactions A, pages 509–514.
Elsevier Science Publishers, Amsterdam, 1994.

[4] O. Bonorden, B. Juurlink, I. von Otte, and
O. Rieping. The Paderborn University BSP (PUB)
library. Parallel Computing, 29(2):187–207, 2003.

[5] A. Braud and C. Vrain. A parallel genetic algorithm
based on the BSP model. In Evolutionary Computa-
tion and Parallel Processing GECCO & AAAI Work-
shop, Orlando (Florida), USA, 1999.

[6] E. Chailloux, P. Manoury, and B. Pagano.
Développement d’applications avec Objective Caml.
O’Reilly France, 2000. freely available in english at
http://caml.inria.fr/oreilly-book/index.html.

[7] F. Dehne. Special issue on coarse-grained parallel
algorithms. Algorithmica, 14:173–421, 1999.

[8] D. C. Dracopoulos and S. Kent. Speeding up genetic
programming: A parallel BSP implementation. In
First Annual Conference on Genetic Programming.
MIT Press, July 1996.

[9] A. Fahmy and A. Heddaya. Communicable memory
and lazy barriers for bulk synchronous parallelism
in bspk. Technical Report BU-CS-96-012, Boston
University, 1996.

[10] C. Foisy and E. Chailloux. Caml Flight: a portable
SPMD extension of ML for distributed memory mul-
tiprocessors. In A. W. Böhm and J. T. Feo, editors,
Workshop on High Performance Functionnal Com-
puting, Denver, Colorado, April 1995. Lawrence
Livermore National Laboratory, USA.

[11] F. Gava. Formal Proofs of Functional BSP Pro-
grams. Parallel Processing Letters, 2003. to appear.

[12] F. Gava and F. Loulergue. A Polymorphic Type
System for Bulk Synchronous Parallel ML. In
Seventh International Conference on Parallel Com-
puting Technologies (PaCT 2003), number 2763 in
LNCS, pages 215–229. Springer Verlag, 2003.

[13] L. Granvilliers, G. Hains, Q. Miller, and N. Romero.
A system for the high-level parallelization and co-
operation of constraint solvers. In Y. Pan, S. G.
Akl, and K. Li, editors, Proceedings of International
Conference on Parallel and Distributed Computing
and Systems (PDCS), pages 596–601, Las Vegas,
USA, 1998. IASTED/ACTA Press.

[14] J. M. D. Hill, P. I. Crumpton, and D. A. Burgess.
Theory, practice, and a tool for BSP performance
prediction. In L. Bougé, P. Fraigniaud, A. Mignotte,
and Y. Robert, editors, Euro-Par’96. Parallel Pro-
cessing, number 1123–1124 in Lecture Notes in
Computer Science, Lyon, August 1996. LIP-ENSL,
Springer.

[15] J.M.D. Hill, W.F. McColl, and al. BSPlib: The
BSP Programming Library. Parallel Computing,
24:1947–1980, 1998.

[16] Jonathan M. D. Hill and David Skillicorn. Lessons
learned from implementing BSP. Journal of Future
Generation Computer Systems, April 1998.

[17] Guy Horvitz and Rob H. Bisseling. Designing a
BSP version of ScaLAPACK. In Bruce Hendrickson
et al., editor, Proceedings Ninth SIAM Conference on
Parallel Processing for Scientific Computing. SIAM,
Philadelphia, PA, 1999.

[18] S.A. Jarvis, J.M.D Hill, C.J. Siniolakis, and V.P.
Vasilev. Portable and architecture independent par-
allel performance tuning using BSP. Parallel Com-
puting, 28:1587–1609, 2002.

[19] Y. Kee and S. Ha. An Efficient Implementation of
the BSP Programming Library for VIA. Parallel
Processing Letters, 12(1):65–77, 2002.

[20] Jin-Soo Kim, Soonhoi Ha, and Chu Shik Jhon. Re-
laxed barrier synchronization for the BSP model of
computation on message-passing architectures. In-
formation Processing Letters, 66(5):247–253, 1998.

[21] F. Loulergue. Implementation of a Functional Bulk
Synchronous Parallel Programming Library. In
14th IASTED International Conference on Paral-
lel and Distributed Computing Systems, pages 452–
457. ACTA Press, 2002.

[22] F. Loulergue. Parallel Juxtaposition for Bulk Syn-
chronous Parallel ML. In Harald Kosch, editor,
Euro-Par 2003, number 2790 in LNCS, 2003.

[23] F. Loulergue. Parallel Superposition for Bulk Syn-
chronous Parallel ML. In Peter M. A. Sloot and
al., editors, International Conference on Computa-
tional Science (ICCS 2003), Part III, number 2659
in LNCS. Springer Verlag, june 2003.

[24] F. Loulergue, G. Hains, and C. Foisy. A Calculus
of Functional BSP Programs. Science of Computer
Programming, 37(1-3):253–277, 2000.

[25] W. F. McColl. Universal computing. In L. Bouge
and al., editors, Proc. Euro-Par ’96, volume 1123 of
LNCS, pages 25–36. Springer-Verlag, 1996.

[26] X. Rebeuf. Un modèle de coût symbolique pour les
programmes parallèles asynchrones à dépendances
structurées. PhD thesis, Université d’Orléans,
LIFO, 2000.

[27] D. Rémy. Using, Understanding, and Unravellling
the OCaml Language. In G. Barthe, P. Dyjber,
L. Pinto, and J. Saraiva, editors, Applied Semantics,
number 2395 in LNCS, pages 413–536. Springer,
2002.

[28] J. L. Roda, C. Rodríguez, D. G. Morales, and
F. Almeida. Predicting the execution time of mes-
sage passing models. Concurrency: Practice and
Experience, 11(9):461–477, 1999.

[29] C. Rodriguez, J.L. Roda, F. Sande, D.G. Morales,
and F. Almeida. A new parallel model for the anal-
ysis of asynchronous algorithms. Parallel Comput-
ing, 26:753–767, 2000.

[30] R. O. Rogers and D. B. Skillicorn. Using the BSP
cost model to optimise parallel neural network train-
ing. Future Generation Computer Systems, 14(5-
6):409–424, 1998.

[31] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl.
Questions and Answers about BSP. Scientific Pro-
gramming, 6(3):249–274, 1997.

[32] Leslie G Valiant. A bridging model for parallel com-
putation. Communications of the ACM, 33(8):103,
August 1990.

