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Abstract

Bulk-Synchronous Parallel ML (BSML) is a ML based language to code Bulk-Synchronous Parallel (BSP)
algorithms. It allows an estimation of execution time, avoids deadlocks and non-determinism. BSML proposes an
extension of ML programming with parallel primitives on a parallel data structure called parallel vector. One of
these primitives is dedicated to express at most divide-and-conquer algorithms by allowing parallel composition
of two BSP programs. Nevertheless, its implementation using system threads have a serious drawback which is
the maximal number of possible threads in OS. This paper presents a new implementation of this primitive (called
parallel superposition) based on a continuation-passing-style (CPS) transformation and a flow analysis. Exemple
of application is done (with some benchmarks) to the application of the implemenatation of algorithmic skeletons
(those of OCamlP3L) that will need an important number of calls of this primitive.
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Chapter 1

Introduction

The increasing pervasiveness of multi-CPU systems makes the design of new and robust parallel programming
languages more important. Creating such a language involves a tradeoff between the possibility to write predictable
and efficient programs and the abstraction of such features to make programming safer and easier. An interesting
compromise is Bulk-Synchronous Parallel ML1 (a.k.a. BSML), an extension of ML to code bulk-synchronous
algorithms which combines the high degree of abstraction ofML with the scalable and predictable performances
of BSP. In BSML, deadlocks and non-determinism are avoided.

The Bulk-Synchronous Parallel2 (BSP) paradigm’s simplicity and elegance comes at a cost: the ability to syn-
chronise a subset of the processors would break the BSP cost model. Subset synchronisation is used to recursively
decompose computations into independent tasks (this is thedivide-and-conquer paradigm). However, [36] pro-
poses a natural way to fit divide-and-conquer algorithms into the BSP framework without using subset synchroni-
sation by using sequentially interleaved threads of BSP computation, calledsuper-threads. An adaptation of this
method to BSML was proposed in [29]: theparallel superposition. The first implementation of this primitive was
based on system threads [19], limiting the number of such threads and leading to efficiency problems.

We propose a new implementation of the parallel superposition. Our implementation is based on the efficient
compilation of lightweight threads using a flow-directed CPS [30] transformation. We base our developments
on a firm semantics ground, by proving the operational equivalence between the source and the result of the
transformation. Finally, we show how algorithmic skeletons can be implemented (even naively) using this new
primitive. This part briefly reviews the BSP model, the BSML language and informally presents the parallel
superposition and its first implementation.

1.1 Generalities.

At the core of our implementation is the CPS transformation.CPS is a classic style of programming in which
control is passed explicitly in the form of a continuation [1]. Instead of “returning” values, a function takes an
extra argument, the continuation which represents what should be done with the result of the function and then
passes it to another function. For instance, the successor function, written(fun x→x+1) in direct style, becomes
(fun x k→k(x+1)) in CPS style, wherek is the extra continuation parameter. Programs can be systematically
translated to semantically equivalent programs in CPS using a variety of CPS transformation algorithms [15]. The
CPS transformation is widely used as an intermediate representation in compilers for functional languages [1],
allowing aggressive optimisations that are significantly harder to perform on direct-style programs. First-class
continuations are also an extremely powerful tool in the hands of the programmer, allowing rich and expressive
control constructs to be built. In particular, cooperativelightweight threads [17, 32, 38] are easily encoded using
continuations. We go further by guiding our transformationby a flow analysis, allowing to spare unrelated part of
the program from the transformation.

1Currently, BSML is implemented as a parallel library forOCaml. Seehttp://bsmllib.free.fr.
2We refer to [6, 33] for a gentle introduction to BSP.
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Figure 1.1: The BSP model of execution (left) and evaluationof the superposition (right)

1.2 The BSP model.

A BSP machine is a set of pairs CPU-memory distributed acrossa communication network. The execution of a
BSP program is divided into super-steps (see left scheme in Fig. 1.1), each separated by a global synchronisation.
A super-step consists of each processor doing some calculations on local data and communicating some data to
other processors. The collective barrier of synchronisation event guarantee that all communications of data have
completed before the start of the next super-step; this ensures the determinism of the parallel program.

A BSP computer is characterized by three parameters, which are given in function of the processor speeds:

• The number of processorsp;

• The time taken by a global synchronisationl;

• The time taken for a collective exchange where each processor to send and/or receive at most one word
g. This exchange is called a 1-relation. Thus, a communication phase where each processor sends and/or
receivesh words is bounded byh × g.

Any BSP program’s complexity is given in function of these parameters. If we were to allow subset synchro-
nisation, we wouldn’t be able to bound the execution time of asuper-step so easily. This would in turn make the
complexity analysis of BSP programs near impossible.

1.3 The BSML language.

1.3.1 Core BSP primitives.

BSML allows to program BSP algorithms in high-level fashion. BSML is based on 8 primitives, three of which
are used to access the parameters of the machine :

bsp_p: int bsp_l: float bsp_g: float
mkpar: (int→α )→α par
apply: (α →β ) par→α par→β par
put: (int→α ) par→(int→α ) par proj: α par→int→α

super: (unit→α )→(unit→β )→α ∗ β

A BSML program is built as a sequential program on a parallel data structure called parallel vector. Its ML
type isα par, which expresses that it contains a value of typeα at each of thep processors. Moreover, there is
no nested data parallelism. To enforce this constraint, a type system was developed3. Implementation of these
primitives rely either on MPI, PUB [7] or on the TCP/IP functions provided by the Unix module ofOCaml.

The BSP asynchronous phase is programmed using the two primitives mkpar andapply so that(mkpar f)
stores(f i) on processi (f is a sequential function): mkpar f = (f 0) · · · (f i) · · · (f (p−1)) and apply

3This is a part of the ongoing thesis of Louis Gesbert at the LACL: http://research.antislash.info/english/
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applies a parallel vector of functions to a parallel vector of arguments: apply · · · fi · · · · · · vi · · · =

· · · (fi vi) · · ·

The first communication primitive isput. It takes as argument a parallel vector of functions which should
return, when applied toi, the value to be sent to processori. put returns a parallel vector with the vector of
received values: at each processor these values are stored in a function which takes as argument a processor
identifier and returns the value sent by this processor.

The second communication primitiveproj is such that(proj vec) returns a functionf where(f n) is thenth
value of the parallel vectorvec. Without this primitive, the global control cannot take into account data computed
locally.

The primitivesuper (parallel superposition) allows the evaluation of two expressions as interleaved threads of
BSP computations called super-threads. From the programmer’s point of view, the semantics ofsuper is the same
as pairing but the evaluation ofsuperE1 E2 is different (see right scheme in Fig. 1.1): the phases of asynchronous
computation ofE1 andE2 are run; then the communication phase ofE1 is merged with that ofE2 and only one
barrier occurs; if the evaluation ofE1 needs more super-steps than that ofE2 then the evaluation ofE1 continues
(andvice versa).

The parallel superposition ofE1 andE2 costs less than the evaluation ofE1 followed by the evaluation of
E2. The superposition is thus not only useful to express divide-and-conquer algorithms, but it can also be used to
efficiently program parallel data structures [20], BSP scheduling etc.

1.3.2 Useful BSP functions.

The primitives described in this section constitute the core of the BSML language. The BSML library contains
many others useful functions.

Often used asynchronous functions. The asynchronous functionreplicate creates a parellel vector which con-
tains the same value everywhere. Theapply primitive only handles the application of a parallel vectorof functions
taking one argument, and we define theapplyn function to deal with n-ary functions.

(∗ replicate : α → αpar and apply2 : (α → β → γ) → αpar → βpar → γpar ∗)
let replicate x = mkpar(fun pid → x) and apply2 vf v1 v2 = apply (apply vf v1) v2
It’s also common to apply the same function to each element ofa parallel vector. We provide such a primitive

for functions of arity equal to 1 and 2.
(∗ parfun : (α → β) → αpar and parfun2 : (α → β → γ) → αpar → βpar ∗)
let parfun f v = apply (replicate f) v and let parfun2 f v1 v2 = apply (parfun f v1) v2
We often want to apply a different function at a specific process.applyat n f1 f2 applies function f1 at process

n and f2 at others.
(∗ applyat : int → (α → β) → (α → β) → αpar → β ∗)
let applyat n f1 f2 v = apply (mkpar (fun i → if i = n then f1 else f2)) v

Often used communication functions. As an example, we will describe replicated total exchange. Each pro-
cessor contains a value (represented as a parallel vector ofvalues) and the result of (rpl_total v0 · · · vp−1 )
is [v0, . . . , vp−1] - a replicated list of these values on each processor:

(∗ rpl_total : αpar → αlist ∗)
let rpl_total vec =

let rpl_totex vec = compose noSome (proj (parfun (fun v →Some v) vec)) in
List.map (rpl_totex vec) (procs ())

wherecompose f g x = f (g x), noSome (Some x) = x andprocs () = [0; 1; . . . ; bsp_p() − 1].
Useful functions can then be defined, such asparfun_total which applies a sequential function to each element

of a vector, totally exchanges these values and finally applies another sequential function:
parfun_total f1 f2 v0 · · · vp−1 ⇒ (f2 [f1v0; . . . ; f1vp−1]).
Our second example is the broadcasting of a valuev from one processori to other ones. It can be summarized

as follows:

3
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v v v

where processori sends its own valuev to other processors. This task can be done in one super-step using the
following code:

(∗ bcast_direct: int→α par→α par ∗)
let bcast_direct root vv =
if not (correct_number_of_processor root)
then raise (Bcast_Error "Root is not a correct number of processor")

else
let mkmsg = applyat root (fun v dst →Some v) (fun _ dst →None) vv
in parfun noSome (apply (put mkmsg) (replicate root))

When the size of value to broadcast is important, and following the parameters BSP of the machine, the two-phases
algorithm described in [6, 21] can be more effective.

The Figure 1.2 shows the method used. The broadcasting in twosuper-steps proceeds as follows: the sending
processor “cuts” the message intop sub-messages and sends one sub-message to each other processors (first super-
step). Then, each processor sends its sub-message to other processors (total exchange) and to finish each processor
“glue” the receveid sub-message to form the complete message.

In a first step, we define the first super-step, one that scatters the initial value of the processor. We code it with
the function below, which takes as parameter a function thatdefine how cutting the value to broadcast:

(∗ scatter :(α →int→β option)→int→α par→β par ∗)
let scatter_wide partition root v =
if not (correct_number_of_processor root)
then raise (Scatter_Error "Root is not a correct number of processor")

else let mkmsg = applyat root partition (fun _ _ →None) in
parfun noSome (apply (put (mkmsg v)) (replicate root))

Then, we can implant a generic version of this broadcasting algorithm, (generic because “cut” and “glue” functions
are the first function parameters):

let bcast_totex_rpl_gen howTotex howApp partition paste root vv =
if not (correct_number_of_processor root)
then raise (Bcast_Error "Root is not a correct number of processor")

else
let phase1 = scatter_wide partition root vv in
let phase2 = howTotex phase1 in
howApp paste phase2

(∗ replicate_bcast_totex_gen: (α →int→β option)→((int→β )→γ )→int→α par→γ ∗)
let replicate_bcast_totex_gen partition paste root vv =
bcast_totex_rpl_gen proj (fun f x →(f x)) partition paste root vv

4



It can easily be specialized as for example lists (but with time of “cutting” and “glueing” lists that are proportional
to the length of the sending list) or with arrays (allowing a “cutting” and a “glueing” proportional top).

Longer examples of BSML code can be found in the Chapter A of the appendix.

1.4 Older implementation.

1.4.1 Super-threads and evaluation strategy

Imperative features are widely used when it comes to programnumerical code.OCaml is a call-by-value language,
and in order to keep a deterministic semantics we must clearydefine the order of evaluation in particular constructs.
This is the case of oursuperprimitive, as shown in the following expression :

let a=ref 0 in let _ = super (fun () →a:=1) (fun () →a:=2) in !a

Each process creates a replicate reference calleda which contains the integer0. Then, two super-threads are
created, and each of them affects a different value toa. If no strategy is defined, the result would be indeterministic.
The compositional nature of the BSP cost model would be lost if the number of super-steps of the program
depended ofa. This is due to the fact that the two super-threads are activeand are allowed to modify this shared
reference.

Having only one active super-thread and a deterministic strategy for the choice of this super-thread is the
solution : the active super-thread is evaluated until it ends its computation or it needs communications, i.e., until it
ends the first phase of a superstep. When communications are done, the first super-thread which has finished “its
superstep” is re-started, i.e., it becomes the new current active super-thread.

Note that having only one active super-thread gives also better performances : there is no cost for changing
every time of active super-thread.

1.4.2 Thread implementationa

Currently, the superposition is implemented (based on a semantics study) using system threads [19]. Each time a
superposition is called, a new thread is created and share locks are used each time a communication primitive is
called. This way, we simulate that only one super-thread is active and allow that all data (managed by the GC of
OCaml) are available by each super-thread.

There are two drawbacks to this method. First, threads slow down the program: a global lock is used due to
OCaml’s GC. Even if there is at most one active thread, we lost a fairamount of time because of the numerous
system locks. The second and main drawback is the maximal number of possible threads in OS (e.g. 1024 for many
Linux systems). For divide-and-conquer algorithms (initial goal of the superposition), it is not a problem because
they mainly need a tree of recursive calls (each call need a new super-thread) and their sizes are logarithmic in the
number of processors. But for a modern use of this primitive [19, 20], a greater number of super-threads than this
maximal number can be run simultaneously in a single program.

These limitations would quickly depreciate the interest ofthis primitive and using the semantics property that
only one super-thread is active, we now present another implementation which use a global continuation-passing-
style transformation of BSML programs.

1.5 Outline

Part 2 presents our transformation as well as semantics results. A type system instrumented to perform flow
analysis is described.

Our implementation is described in Part 3. We used a constraint-solving approach to type inference. Moreover,
we describe the many transformations and optimisations used to bridge the gap of polymorphism that we imple-
mented (such as monomorphisation), and their respective costs and benefits. We also dicuss the few technical
limitations of our code transformer.

In Part 4, we present an interesting example of application for our new primitive: the implementation of algo-
rithmic skeletons. The skeletons are a kind of “parallel design patterns” which can be easily composed to form
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safe parallel programs. These skeletons can be seen as a graph, which we recursively decompose using the parallel
superposition.

Part 5 concludes this report by reviewing previous works on the implementation of the divide-and-conquer
paradigm into parallel programming languages and the use ofthe CPS transformation to express concurrency.
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Chapter 2

CPS transformation and flow analysis

Before describing our transformation, we present a core source language which is heavily inspired by ML, with the
adjunction of two concurrency primitives:yield andsuper. We then proceed to the definition of the transformation
to the target language, which is the same as the source minus the concurrency primitives. Here,yield replacesput
andproj , abstracting away communication handling.yield suspends the currently executing superthread (called
thread in the next) and schedules the execution of the next thread, as defined by thesuper operational semantics.
As can be seen from the syntax definition,mkpar andapply are ignored. These two primitives are orthogonal to
the following work.

Syntax of the language.Expressions and values are as follow:
e ::= x variables | c constants

| λx.e functional values | fix f λx.e recursive functions
| e1 e2 applications | let v = e1 in e2 local definitions
| (e1, e2) couples | κ e constructor application
| match e with m1 | ... | mn pattern matching | op e1 e2 arithmetic operators
| super e1 e2 superposition | yield simulatesput andproj

m ::= κ x → e matching branch
v ::= c constants | λv.e functional values

| fix f λx.e recursive functions | (v1, v2) couples
| κ v constructor application

Annotations on expressions are possibly written in sub or superscript position. The big-step operational seman-
tics for the core of our language is given in Fig. 2.1.

2.1 Continuation Passing Style.

The original CPS transform [30] was designed to study the various evaluation strategies for the lambda-calculus
by making the control explicit, as acontinuation: a function representing the evaluation context. It was then
discovered that giving to the programmer or the compiler writer the ability to explicitly manipulate continuations
was an expressive tool to perform various analysis or to encode various high-level constructs, such as exceptions
or light-weight threads [32]. Below is the original CPS transformation, as defined in [30]:

JxK = λk.k x
Jλx.MK = λk.k (λx.JMK)
JM NK = λk.JMK (λm.JNKλn.m n k)

This transformation is strictly equivalent to the monadic one, which is presented in the next section.

2.2 Monadic CPS transformation.

Monads are a useful programming technique in functional languages [37]. They allow to extend a language while
enforcing a correct operational behaviour. A monad is the data of three primitives:run , ret andbind , operating
on a typeM α - intuitively, the type of computations on values of typeα. Therun primitive has type∀α.M α → α
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CONST
c ⇒ c

LAMBDA
λx.e ⇒ λx.e

PAIR
e1 ⇒ v1 e2 ⇒ v2

(e1, e2) ⇒ (v1, v2)

CONSTR
e ⇒ v

κ e ⇒ κ v

LET
e1 ⇒ v1 [v1/a]e2 ⇒ v2

let a = e1 in e2 ⇒ v2

APP
e1 ⇒ λx.e e2 ⇒ v′ [v′/x]e ⇒ v

e1 e2 ⇒ v

FIX
fix h λx.e ⇒ fix h λx.e

MATCH
e ⇒ κ v [v/x]e′ ⇒ v′

match e with | . . . | κ x → e′ | . . . ⇒ v′

OP
e1 ⇒ v1 e2 ⇒ v2 v = op v1 v2

op e1 e2 ⇒ v

SUPER
e1() ⇒ v1 e2() ⇒ v2

supere1 e2 ⇒ (v1, v2)
Y IELD
yield ⇒ ()

Figure 2.1: Big-step reduction rules

and executes a monadic program.ret , of type ∀α.α → M α transforms a base value into a monadic one. Finally,
bind allows chaining monadic computations as reflected by it’s type ∀ α, β.M α → (α → M β) → M β.

Monadic primitives. Threads are modelled as resumptions, meaning that they are either in a suspended state or
terminated:type α thread=Terminated of α |Waiting of (unit→α thread).

The usual CPS monad type is:Mcps α = ∀β.(α → β) → β but in our case, the codomain of continuations is
always threads:M α = ∀ β.(α → thread β) → thread β. The primitives are defined as follow:

ret x = λk.kx
bind m f = λk.m(λv.fvk)
run = λx.((fix loop λt. match t with

| Terminated x → x
| Waiting s → loop (s ())) (x (λx.Terminated x)))

These primitives must also satisfy three laws:

bind (ret a) f ≈ f a
bind a λx.ret x ≈ a
bind (bind a (λx.b)) (λy.c) ≈ bind a (λx.bind b (λy.c))

Where≈ is defined as:a1 ≈ a2 = ∀k ∃ a .(a1 k = a) ∧ (a2 k = a) extended by “concurrency-irrelevance”:
λk.Waiting k ≈ ret (). We take= to beβ-convertibility. In our case, these laws were mechanicallyproved
using the Coq proof assistant. See the appendix for the proofscript.
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Monadic transformation. We now straightforwardly proceed to the definition of the naive monadic transforma-
tion on expressionsT0JeK:

T0JxK = ret x
T0JcK = ret c
T0Jλv.eK = ret λv.T0JeK
T0Jfix f λx.eK = ret (fix f λx.T0JeK)
T0Je1 e2K = bind T0Je1K (λv1.bind T0Je2K (λv2.v1 v2))
T0Jlet v = e1 in e2K = bind T0Je1K (λv.T0Je2K)
T0J(e1, e2)K = bind T0Je1K (λv1.bind T0Je2K (λv2.ret (v1, v2)))
T0Jκ eK = bind T0JeK (λve.ret κ ve)
T0Jmatch e with

| κi xi → ei K = bind T0JeK (λve.match ve with | κi xi → T0JeiK)
T0Jop e1 e2K = bind T0Je1K (λv1.bind T0Je2K (λv2.ret op v1 v2))

The two concurrency primitives are then defined using first class continuations:

yield = λk.Waiting k
super = let loop = fix loop λr1.λr2.

bind yield (λ () .match (r1, r2) with
| (Terminated x1, T erminated x2) → ret (x1, x2)
| (Terminated _, Waiting s) → loop r1 (s ())
| (Waiting s, Terminated _) → loop (s ()) r2

| (Waiting s1, Waiting s2) → loop (s1 ()) (s2 ())) in
ret λf1.ret λf2.

let r1 = ((ret f1)@ (ret ())) (λxTerminated x) in
let r2 = ((ret f2)@ (ret ())) (λxTerminated x) in
loop r1 r2

Wherea @ b = bind a (λva.bind b (λvb.va vb))).
The operational behaviour of these primitives is clear:yield captures it’s own continuation, and stores it into

a suspension for further evaluation;super first suspends its own execution (usingyield ) and then schedules the
execution of it’s two sub-threads, until they are terminated.

Code size explosion. To illustrate the problem of the naive transformation, we give this trivial but clear example:
apply = λf.λx.fx
T0JapplyK = λk0.k0λf.λk1.k1λx.(λk2.(λk3.k3f)(λv.(λvf .λk4.(λk5.k5x)(λv.(λvx.vfvx)vk4))vk2))

It is obvious that this transformation can’t be used as is. Moreover, this code didn’t need to be converted to CPS
at all: it doesn’t contain any concurrency primitive. Preserving these kind of expression from being converted is
the aim of the transformation which is presented in the next section.

Soundness of the naive transformation. The soundness proof for the vanilla CPS transformation is equally
applicable to our slightly modified setting. We won’t exposethe proof here, but we will nevertheless state the
result. Let the CPS transformation on values be defined as:

JcKv = c J(v1, v2)Kv = (Jv1Kv, Jv2Kv) Jκ vKv = κ JvKv

Jλx.eKv = λx.T0JeK Jfix hλx.eKv = fix hλx.T0JeK

Theorem 2.2.1 (Soundness of the naive transformation)If e ⇒ v, T0JeK ≈ ret JvKv.

The small-step semantics ofsuper make the “threads” appear in the reduction sequence, thus weuse the big-
step semantics rules, making the proofs much harder. However, the fact thatsuperallows to reduce the number of
global synchronisation only appears in the small-step semantics. The proof linking our big-step soundness proof
to the small-step operational semantics ofsupercan be found in [18].
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2.3 Flow-directed cps transformation.

The full transformation of a program to CPS considerably impedes performance. This overhead is usually allevi-
ated using transformation-time reductions (so-called administrative reductions) on the program.

However, these reductions doesn’t suffice. Aiming at intense parallel computing, we can’t afford to transform
unnecessary expressions. Observing how some very limited parts of the program need continuations, it seems
natural to try to convert only the required expressions (in our case, onlyyield andsuper need them). We thus
need a partial CPS transformation. Ours is inspired by [27].The expressions to be transformed are those sus-
ceptible to reduce ayield or super expression. Since we must cope with higher-order functions, the partial CPS
transformation is guided by a flow analysis.

2.3.1 Type-based flow analysis.

Definition of the type system. In the context of language compilation, flow analysis is usually used as a tech-
nique to efficiently implement closure conversion. Our flow analysis presents itself as an instrumented type system,
yielding an straightforward flow inference algorithm.

Instead of tracking sets of lambda-abstractions, our flow analysis purpose is to decide if an expression is sus-
ceptible to reduce ayield expression. We define our flows as F ::=P | I. If an expression may reduce ayield ,
we tag it asimpure: I. If not, we tag it aspure, notedP. We also define a total order<F on flows, defined by
I <F P.

Our type system is derived from the type system for CFA definedin [23]. We use ground, simple types anno-
tated by flows. Letτ denote the syntactic family of types:

τ ::= 〈F, const_type〉
| 〈F, typename〉 user-defined sum types
| 〈F, τ0 → τ1〉 functions
| 〈F, τ0 ∗ τ1〉 couples

const_type ::= unit | int constants

Each constructorκ has a domain type (the type of its argument) and a codomain type (thetypename to which
κ belongs). These are denotedκdom andκcodom. We also define two projection functions on types :annot(〈f, x〉)
= x and flow(〈f, x〉) = f . These functions are readily extended to typed source terms. For any expressionsa and
b, we definea ∨ b = min(flow(a), f low(b)). The inference rules for our type system are given in Fig. 2.2.

Soundness proof. Before stating and proving the soundness theorem, we will prove a lemma on type-preserving
(and thusflow preserving) substitutions. This proof is mostly the same as in simply-typed lambda-calculus.

Lemma 2.3.1 (Typings are stable by substitution)
Let e be an expression such thatΓ, x : τ ⊢ e : τ ′ holds, and letv be an expression such thatΓ ⊢ v : τ . Then
Γ ⊢ [v/x]e : τ ′.

Theorem 2.3.2 (Soundness w.r.t.yield reductions)
Lete be a well-typed expression. We have: ayield expression is reduced while normalizinge → flow e = I.

Proof : see the appendix.

2.3.2 Partial CPS transformation.

In order to alleviate the overhead of the naive CPS, we use a flow-directed partial CPS transformation. The aim
is to preserve “pure” expressions, while CPS-converting “impure” ones. The first option we considered was to
directly use the transformation described in [27], relyingon the types inferred during the flow analysis to generate
appropriate padding code between CPS and non-CPS terms. Sadly, our analysis doesn’t meet one of the criterion
necessary to ensure the soundness of this transformation. It then appeared that our setting allows a much simpler
transformation. The algorithm is quite simple : when transforming a pure expression, we simply wrap it into a
ret .
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Definition of the partial transformation.

T1JxK = ret x
T1JcK = ret c
T1Jλv.eIK = ret λv.T1JeK
T1J(fix hλx.e)IK = ret fix hλx.T1JeK
T1J(e1 eI2 )IK = bind T1Je1K (λv1.bind T1Je2K (λv2.v1v2))
T1J(e1 eP2 )IK = T1Je1K(ret e2)
T1J(let v = eI1 in e2)

IK = bind T1Je1K (λv.T1Je2K)
T1J(let v = eP1 in e2)

IK = let v = e1 in T1Je2K
T1J(e1, e2)

IK = bind T1Je1K (λv1.bind T1Je2K (λv2.ret (v1, v2)))
T1J(κ e)IK = bind T1JeK (λve.ret κ ve)
T1Jmatch e with

| κi xi → ei K = bind T1JeK (λve.match ve with
| κi xi → T1JeiK)

T1Je
PK = ret e

The concurrency primitivessuper andyield are directly replaced by their definitions, and the primitive operators
are always pure. We observe that an impure expression is never embedded into a pure one. This property is
induced by the type system: if any sub-expressionei of an expressione is impure, so ise.

Examples. We will only show the produced code and not the type derivations. The example from the previous
section is simply wrapped into an abstraction:

apply = λf.λx.fx
T1JapplyK = ret apply

We also give a more interesting variation of this function. We assume here thatf andx are always applied to pure
arguments, implying that flow(f ) = flow(x) = flow(f x) = P.

applyI = λf.λx.let () = yield in fx
T1JapplyK = λk0.k0λf.λk1.k1λx.λk2.(λk3.Waiting k3)(λ().(λ().λk4 .k4(f x)) () k2)

There is still many administrative redexes, but pure expressions are preserved from being transformed. On large
real-world programs, most of the computation takes place inpure expressions, making the CPS part less of a bur-
den. Our final touch to the transformation is the use of a modified CPS transform which creates no administrative
redex [14, 15].

2.3.3 Soundness for the partial transformation.

We redefine the partial CPS transformation on values as:

JvPKv = v J(λx.e)IKv = λx.T1JeK J(fix h λx.e)IKv = fix h λx.T1JeK

J(v1, v2)
IKv = (Jv1Kv, Jv2Kv) J(κ v)IKv = κ JvKv

Once again, we will prove the soundness ofT1 on a subset of the source language. To this end, we need these two
lemmas:

Lemma 2.3.3 For all valuesv, T1JvK = ret JvKv. Moreover,JvKv is a value. (trivial proof)

Lemma 2.3.4 (Extended monadic substitution)For all valuesv,

1. If flow(x) = I, T1J[v/x]aK = [JvKv/x]T1JaK.

2. If flow(x) = P, T1J[v/x]aK = [v/x]T1JaK (follows from the definition ofJKv).

We will now state the main soundness theorem.

Theorem 2.3.5 (Soundness of the partial CPS transformation)If t ⇒ v, T1JtK ≈ ret JvKv.

Proof : see the appendix for the proofs.
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x : τ ∈ Γ

Γ ⊢ x : τ Γ ⊢ c : 〈P, const_type〉 Γ ⊢ op : τop

Γ, x : τ1 ⊢ z : τ2 if f =x ∨ z

Γ ⊢ λx.z : 〈f, τ1 → τ2〉
Γ ⊢ e : κdom

Γ ⊢ κ e : κcodom

Γ ⊢ z Γ ⊢ z′ : τ1 if annot(z)=τ1 → τ2 andf =z ∨ z′

Γ ⊢ (z z′) : 〈f, annot(τ2)〉
Γ ⊢ z : τ1 Γ ⊢ z′ : τ2 if f =z ∨ z′

Γ ⊢ (z, z′) : 〈f, τ1 ∗ τ2〉

Γ ⊢ z : τ1 Γ, x : τ1 ⊢ z′ : τ2 if flow(τ2) ≤F flow(τ1)

Γ ⊢ let x = z in z′ : τ2

Γ, h : 〈f, τ0 → τ1〉, x : τ0 ⊢ z : τ1 if f =x ∨ z

Γ ⊢ fix hλx.z : 〈f, τ0 → τ1〉

Γ ⊢ e : κj
codom Γ, xi : κi

dom ⊢ ei : τ

Γ, xi : κi
dom ⊢ κixi : κj

codom if flow(τ) ≤F flow(κj
codom) 1 ≤ j ≤ n, ∀i ∈ [1..n]

Γ ⊢ match e with | κi xi → ei : τ

if f = min(flow(τ0), f low(τ1))

Γ ⊢ super : 〈I, 〈I, 〈P, unit〉 → τ0〉 → 〈I, 〈I, 〈P, unit〉 → τ1〉 → 〈f, τ0 ∗ τ1〉〉〉 Γ ⊢ yield : 〈I, unit〉

Figure 2.2: Inference rules
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Chapter 3

New implementation

Our source language is BSML, a statically-typed derivativeof Caml. Caml’s type system is based on the Hindley-
Milner type discipline, and provides a rich module system, including functors. We do not want to lose the flexi-
bility provided by polymorphism. But even if we could extendour type system to handle let-polymorphism, we
would lose some precision (application of polymorphic functions to different types would be “merged”, and the
worst case would be taken). A polyvariant flow analysis couldbe used, but it would be extremely heavy, both in
algorithmic complexity and in implementation. Thus, we must take on defunctorisation and monomorphisation.
Monomorphisation is the process of duplicating polymorphically typed functions for each needed domain type. It
can potentially make the size of the program grow exponentially, but actual implementations (as MLton1) shows
that practically, the size growth is manageable (about 30 %). In fine, to maximize the efficiency of the generated
code, we use a process similar to monomorphisation calledmonoflowisation: after duplicating functions based on
their types, we duplicate them based on their flows.

3.1 Imperative features.

We didn’t treat imperative features in this report, suffice to say that every expression involved in an effectful
operation is constrained to have a pure flow (our partial CPS transformation isn’t defined on imperative programs
yet). When encountering an impure loop, we must convert it into it’s tail-recursive equivalent form.OCaml
handles tail-recursion fine, so there is no risk of stack overflow (exceptocamlopt on some architectures, when the
number of arguments exceeds a certain threshold).

3.2 The module system.

3.2.1 Defunctorisation.

The source language provides parametric modularity (knownasfunctors), but our transformation doesn’t handle
theses properly. In order to apply our transformation, we have to defunctorise the whole program. To this end, we
use the already existingOcamldefun program2. A nice side-effect is the increased possibilities in inlining by our
back-end compiler (OCaml).

We give a small example of the relevance of defunctorisationin our setting. Imagining a similar example with
for instance a generic matrix module parametrized by a set ofoperators isn’t hard.

module type DummySig =
sig

val please_inline_me : float →float →float
end

module Dummy : DummySig =
struct

1http://mlton.org/
2http://www.lri.fr/~signoles/ocamldefun/
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let please_inline_me = (+.)
end

module Functor (D : DummySig) =
struct

let fold array =
Array.fold_left D.please_inline_me 0.0 array

end

(∗ Instantiate Functor with Dummy. Sadly,
∗ Dummy.please_inline_me isn’t inlined. ∗)

module I1 = Functor(Dummy)

(∗ With defunctorisation, we would obtain: ∗)
module I2 =

struct
let fold array =

Array.fold_left Dummy.please_inline_me 0.0 array
end

(∗ This allows Dummy.please_inline_me to be inlined. ∗)

3.2.2 The module environment.

For clarity’s sake, we won’t present too deeply how we handlethe module system. Our implementation slightly
differs of OCaml’s in subtle ways, and we dropped several features (such as the include directive). Basically,
we see the module environment as a stack of currently opened modules describing where wecurrentlyare in the
module tree. We acknowledge that this part of our implementation needs a more severe review to conform to
OCaml’s semantics, however most programs are handled just fine.

3.3 Polymorphic type inference.

Monomorphisation operates on a typed source tree. To this end, we extended our type system to handle a caml-
like language. Instead of modifyingOCaml’s type inference code, we chose to code from scratch a full-blown
type inference system, handling let-polymorphism. Drawing upon [31], we decided to use a constraint-based
inference algorithm. We use the (non-relaxed) value restriction to ensure the soundness of our analysis in presence
of references. Another gap to bridge is thegroundnature of our original type system. Thus, the syntactic family
of typesτ is extended with typevariables, notedv.

3.3.1 Type constraints.

As in [31], polymorphism is handled using constrained type schemes, whose meaning is roughly the set of all
ground types admitted by the underlying expression. ConstraintsC and type schemesχ are defined as follow:

C ::= True “empty” constraint
| C0 ∧ C1 constraint conjunction
| τ0 = τ1 equality constraint
| ∃ v.C existential quantification of types
| ∃F vf .C existential quantification of flows
| def x : χ in C binds a type scheme tox
| inst x χ instantiates the scheme bound tox
| τ0 ≤F τ1 flow constraint

χ ::= τ ground types
| ∀ v[C].v constrained type scheme

Bear in mind that the types’s shapes are irrelevant to the≤F constraint.
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CgJxKτ = inst x τ

CgJiKτ
= τ = 〈P, int〉

CgJ()Kτ
= τ = 〈P, unit〉

CgJλv.eK
τ

= ∃X0 X1.∃F f.def v : X0 in CgJeKX1
∧ τ = 〈f,X0 → X1〉

∧ f ≤F flow(X0) ∧ f ≤F flow(X1)

CgJfix hλx.eK
τ

= ∃X0 X1.∃F f.def h : 〈f,X0 → X1〉 in def x : X0 in CgJeKX1

∧ τ = 〈f,X0 → X1〉 ∧ f ≤F flow(X0) ∧ f ≤F flow(X1)

CgJe1 e2Kτ = ∃X0 X1.∃F f.CgJe1K〈f,X0→X1〉
∧ CgJe2KX0

∧ τ = X1

∧ f ≤F flow(X0) ∧ f ≤F flow(X1)

CgJlet v = e1 in e2Kτ
= def v : ∀X[CgJe1KX

∧ flow(τ) ≤F flow(X)].X in CgJe2Kτ

CgJ(e1, e2)Kτ = ∃X0 X1.∃F f.CgJe1KX0
∧ CgJe2KX1

∧ τ = 〈f,X0 ∗ X1〉
∧ f ≤F flow(X0) ∧ f ≤F flow(X1)

CgJκ eK
τ

= ∃X.∃F f.CgJeKX
∧ (τ = 〈f, dataconsκ X〉) ∧ f ≤F flow(X)

CgJmatch e with κi xi → eiKτ
= ∃X0.CgJeKX0

∧ ∃Yi.def xi : Yi in ∧i (CgJκi xiKX0
∧ CgJeiKτ

)

∧ flow(τ) ≤F flow(X0)

CgJop e1 e2Kτ
= CgJe1K〈P,int〉 ∧ CgJe2K〈P,int〉 ∧ τ = 〈P, int → 〈P, int → int〉〉

CgJsupere1 e2Kτ
= ∃X0 X1 Xl Xr.CgJe1KXl

∧ CgJe2KXr
∧ Xl = 〈I, 〈P, unit〉 → X0〉

∧ Xr = 〈I, 〈P, unit〉 → X1〉 ∧ τ = 〈I,Xl → 〈I,Xr → 〈P,X0 ∗ X1〉〉〉

∧ flow(X0) = I ∧ flow(X1) = I

CgJyieldK
τ

= τ = 〈I, unit〉

Figure 3.1: Constraint generation

3.3.2 Constraint generation.

The constraint generation algorithmCg is defined inductively on expressions and is a quite natural encoding of
the typing rules into the constraint language. This is no surprise since our type system is syntax-directed. It is
also parametrized by the expected type of the expression, ascan be seen from the definition ofCg in Fig. 3.1. In
order to simplify the presentation, we assume the existenceof a dataconsfunction which upon application to a
data constructorκ and a domain typeτ returns the type of the constructed value.

3.3.3 Constraint solving.

For any programP , the computed type constraint isC = ∃X.CgJP KX . C is then simplified into a list of type
equations. This list is the unification problem we feed to oursolver, which proceeds using a slightly adapted
syntactic unification module, on top of an union-find algorithm. The flow equations are stored, as they can’t be
solved without the full types’s shapes.
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CsJTrueKΓ = ∅
CsJC0 ∧ C1KΓ = CsJC0KΓ ∪ CsJC1KΓ
CsJτ0 = τ1KΓ = {τ0 = τ1}
CsJ∃ v.CKΓ = CsJCKΓwherev is fresh
CsJ∃F vf .CKΓ = CsJCKΓwherevf is fresh
CsJdef x : χ in CKΓ = if χ is a ground type,CsJCK(x 7→ χ)::Γ

if χ is a schemeCsJCK(x 7→ (Γ,χ))::Γ

CsJinst x τKΓ = if Γ(x) is a ground type,{Γ(x) = τ}
if Γ(x) is is a scheme(Γ′,∀ v[C].v), CsJ∃ v.C ∧ v = τKΓ′

Figure 3.2: Constraint solving

The constraint solving algorithm is parametrized by an environmentΓ from program variables to enriched
constrained type schemes. When instantiating constraints, we must ensure that they are solved in their original
environment, not the environment at instantiation point. Hence we enrich the type schemes with an environment,
denoted by(Γ,∀ v[C].v). The constraint solving algorithmCs is defined in Fig. 3.2.

The unification module must solve the equations for the typeshapes(as in any standard type inference system)
but also for theflowscontained in them. The method employed is simple: when unifying two terms, we compute
the new flow as the minimum of the flows of the two terms being unified. The≤F equations are accumulated
during the solving phase and solved apart. There are many ways of achieving this, but we use an union-find tree
parametrized with ad-hoc operations (merging two descriptors is defined as taking the minimum of two flows).

3.4 Monomorphisation.

The partial CPS transformation needs simple types. Thus, weneed to monomorphise the whole program. After
type inference, the syntax tree is annotated with either ground types or type schemes, which are introduced only
at let bindings. Each of these bindings is possibly instantiated with different types. Monomorphisation is the act
of duplicating these bindings for each instantiation type.

3.4.1 The instantiation graph.

In the following, we assume that each expressione is annotated with an unique integer idi, denotedei. We also
assume that type schemesχi are annotated with the unique idi of the expression binding them. Finally, we ignore
particular cases induced by the value restriction without loss of generality.

Any polymorphically typed function can in turn instantiateany previously defined polymorphic functions (ex-
cept itself). Thus, the instantiation type of a function call may depend on the instantiation type of the enclosing
function. This describes an instantiation graph. The main task of monomorphisation is to compute this graph,
which is then easily used to specialize functions when they need to be. We define acontextc to be either empty
or equal to a couple(i, τ) formed by a polymorphic function and an instantiation type,wherei is the unique id of
the let-binding. The instantiation graphG is a mapping from non-empty contexts to instantiation types, indexed
by program points :G (i0, τ) i1 is the type of the program pointi1 when the functioni0 is instantiated byτ . In
order to computeG we parametrizeCs by a context, and the resolution rule forinst is modified as follow :

CsJinst xi τKc
Γ = if Γ(x)j is a ground type,

If c = ∅, add(j, τ) to G
If c = (ic, τc), add a mapping fromc to τ indexed byi in G
{Γ(x) = τ}

if Γ(x) is is a scheme(Γ′, (∀ v[C].v)j),
If c = ∅, add(j, τ) to G
If c = (ic, τc), add a mapping fromc to τ indexed byi in G
CsJ∃ v.C ∧ v = τK

(j,τ)
Γ′

Initially, the context parameter is empty.

16



3.4.2 Code duplication.

Since we are typing the whole program, we know exactly each instantiation type for each binding, allowing us
to create as many ground versions ofx as we need. In order to avoid variable capture problem, we bind each
specialized code to a fresh name, and update the instantiation points accordingly. The freshness is ensured by
performing an alpha-conversion pass on the whole program after type inference and before monomorphisation.
The instantiation graph stays valid, since we rely on uniqueids. The duplication algorithm is simple : when
encountering a let bindinglet vi = e in . . . we instantiate the code for each node(i, τ) in G. Thee expression
must also be recursively monomorphised, each pointj in e beeing instantiated with the typeG (i, τ) j.

Monomorphisation can make the code exponentially bigger, but this worst case is very unlikely in real-world,
numerical code. On the other hand, we can then safely remove from the program any binding whose type still
contains variables. Even more importantly, constraining each type to be ground allowsOCaml to use efficient
unboxed data representations wherever possible (e.g. arrays of floats). In our case, performing monomorphisation
is a clear advantage from any standpoint.

3.5 Monoflowisation.

A step in the compilation process is what we call “monoflowisation”. This process is similar to monomorphisa-
tion, but instead of duplicating functions based on types, we duplicate them based on flows. This is of utmost
importance for widely used functionals: if these functionsare used with an impure argument throughout the code,
they are flagged as impure foreverycall site (even with pure arguments). This is a consequence of our flow anal-
ysis being monovariant. A solution would be to take the flows into account when doing the monomorphisation.
Polymorphically-typed functions would then have a polyvariant behavior. From an implementer standpoint, it
means that the instantiation graph should be able to distinguish instances based on their flows. Another approach
would be to directly use a polyvariant flow, but it would have been far more difficult to prove and to implement.

3.6 Partial CPS transformation.

Once the program is transformed into simply-typed form, we can apply the partial CPS transformation, as defined
earlier. But the standard CPS transformation is known to generate may administrative redexes, which may greatly
hamper the performance of the resulting program. To avoid them, we use the optimizing transformation defined
in [15]. The transformation uses a “smart application” constructor @β which reduces on the fly administrative
redexes:λx.b @β c = [c/x]b.

T2JxK ⊲ k = k @β x
T2JcK ⊲ k = k @β c
T2J(λx.e)IK ⊲ k = k @β (λx.λk.T2JeK ⊲ k)
T2J(fix h λx.e)IK ⊲ k = k @β (fix h λx.λk.T2JeK ⊲ k)
T2J(e1 eI

2
)IK ⊲ k = T2Je1K ⊲ λv1.T2Je2K ⊲ λv2.v1 v2 k

T2J(e1 eP
2

)IK ⊲ k = T2Je1K ⊲ λv1.v1 e2 k
T2J(let v = eI

1
in e2)

IK ⊲ k = T2Je1K ⊲ λv.T2Je2K ⊲ k
T2J(let v = eP

1
in e2)

IK ⊲ k = let v = e1 in T2Je2K ⊲ k
T2J(e1, e2)

IK ⊲ k = T2Je1K ⊲ λv1.T2Je2K ⊲ λv2.k @β (v1, v2)
T2J(κ e)IK ⊲ k = T2JeK ⊲ λv.k @β κ v
T1Jmatch e with

| κi xi → ei K ⊲ k = T2JeK ⊲ (λv.match v with
| κi xi → T2JeiK ⊲ k)

T2Je
PK ⊲ k = k e

This transformation generates no administrative redex, but has the flaw that we lose our semantic preservation
theorem.
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3.7 Implementation details and issues.

Our implementation language is the same as the target language : OCaml. The code itself is written in a purely
functional style (the only exception being a unique id generator while creating the abstract syntax tree), allowing
an “easier” job for future certified developments with e.g. Coq.

The most problematic part of the source language was constructs binding multiple variables at once, such as
patterns. The constraint generation of these is quite involved, as is the monomorphisation of such bindings. We
think that our whole code base’s size could be reduced by at least 30% if the source language were to have only
one-variable bindings. Transforming the whole input code to an equivalent form with simple bindings could be
worth considering, as it would also lower the gap between ourformal developments and the language - but the
added let-bindings could introduce the allocation of new values and a performance loss.

Also, mutually-recursive bindings are convertible into non-mutually recursive bindings by a simple transforma-
tion that we still haven’t implemented. The constraint generation for this kind of bindings would be a lot simpler
if mutual recursion were to be hoisted. For the time beeing, we haven’t defined monomorphisation for these.
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Chapter 4

Application to algorithmic skeletons

Algorithmic skeletons languages are generally defined by introducing a limited set of parallel patterns (also called
operators or combinators) to be composed in order to build a full parallel application. In general, in skeleton
languages, the only admitted parallelims is usually that ofskeletons, in order to keep low the complexity of finding
an efficient implementation. The expressiveness of the skeletal approach is achieved using as based skeletons a set
of well-known and usefull parallel paradigm (farm, pipe, divide-and-conqueretc.).

We here present a naive implementation of the OCamlP3L skeletons language (P3L’s set of skeletons for
OCaml), based on our parallel superposition primitive.

4.1 Algorithmic skeletons approach

It observes that many parallel algorithms can be characterised and classified by their adherence to one or more of
a number of generic patterns of computation and interaction. For example, many diverse applications share the
underlying control and data flow of the pipeline paradigm [8].

Skeletal programming proposes that such patterns be abstracted and provided as a programmer’s toolkit, with
specifications which transcend architectural variations but implementations which recognise these to enhance per-
formance. The core principle of skeletal programming is conceptually straightforward. Its simplicity is a strength.

4.1.1 Definition, advantages and problems

The idea behind a strict skeletal approach is that such restriction of programs parallel structure does not affect
the expressiveness of the methodology more than eliminating goto affected sequential imperative programming.
On the contrary, skeletons programming helps in a making parallel software simple and easy to maintain since
low-level details do not appear in the programs anymore.

Algorithmic skeletons are thus high-level primitives (also called “parallel patterns”1) designed to be safely com-
posable2. Efficiency is usually easier to achieve since programs can be compiled by composing already optimised
implementations. Skeletons languages are usually recognizes as a portable programming approach since they do
not assume any particular features of the target machine.

Performance and easer programming have been the two main reasons to introduce skeletons, since the problem
of exploiting the computational resources for parallel computing is harder than in the sequential case. A higher
number of decisions should be taken when implementing parallel sofwares and so support is needed to make
clever choices (e.g. mapping processes onto processors to optimise a given communication pattern is known to be
in general a NP-hard problem and thus could be not not a full human decision procedure). The idea is that limiting
the structure of the problem we also diminish the complexityof the implementation choices.

In this way, it promises to address many of the traditional issues within the parallel software engineering process:

• it will simplifyprogramming by raising the level of abstraction;

1A generic definition of a pattern : it is the abstraction from aconcrete form which keeps recurring in specific non-arbitrary contexts.
2Definition of Murray Cole isEach skeleton captures the essential structure of some particular problem solving style or technique.
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• it will enhanceportability andre-useby absolving the programmer of responsibility for detailedrealisation
of the underlying patterns;

• it will improve performanceby providing access to carefully optimised, architecture specific implementa-
tions of the patterns;

• it will offer scope for static and dynamicoptimisation, by explicitly documenting information on algorith-
mic structure (e.g. sharing and dependencies) which would often be impossible to extract from equivalent
unstructured programs.

Yet skeletal programming has still to make a substantial impact on mainstream practice in parallel applications
programming. In contrast, MPI was designed to address similar issues (to varying degrees) and has proved very
popular3.

While initially targeting issues of synchronisation and nondeterminism more relevant to distributed computing,
recent work has moved closer to the concerns ofHigh Performance Computing(HPC) and the connection to
skeletons has become increasingly apparent.

4.1.2 Disadvantages and mixing skeletons with ad-hoc parallelism

Despite all the advantages of the skeleton approach, they conserve some non-minor drawbacks. A well know dis-
advantage of skeleton language is the problem of efficiency of some combination of skeletons on certain archiec-
tures. Finding the minimal set of skeletons (and have efficient and portable implementations) is still an open field
of research.

Also, skeleton and pattern based parallel programming promise significant benefits but remain absent from
mainstream practice because many parallel applications are not obviously expressible as instances of skeletons.
Some have phases which require the use of less structured interaction primitives. Other applications have concep-
tually layered parallelism, in which skeletal behaviour atone layer controls the invocation of operations involving
ad-hoc parallelism within. It is unrealistic to assume thatskeletons can provide all the parallelism we need. Skele-
tons’s languages must be constructed in the way to allow the integration of skeletal and ad-hoc parallelism in a
welldefined way.

For example,MPI_Broadcast, MPI_Reduce and MPI’s other collective operations are useful tools. However,
the experienced parallel programmer is aware that there areother “patterns of computation and interaction” which
occur in a range of applications but which are not catered fordirectly. For example, pipelines and task farms are
well-established concepts, helpful during program design, but must be implemented directly in terms of MPI’s
simpler operations. The goal of the a skeleton library for MPI is to add such higher level collective operations to
the MPI programmer’s toolbox.

Despite parallel programming, using just skeleton to have parallel programs from sequential ones is quite rea-
sonable when the goal is to build a stream processing networkdescribed by the skeletons. However, it has several
drawbacks in the general case:

• breaks uniformity Though the skeletons look like ordinary functions, they areactually in different classes
and can never been uniformly mixed together; hence, the programmers have to program in a style that
strictly conforms with a two-level style, especially, in general, the skeletons cannot be invoked as ordinary
functions from sequential code, even if they could have appropriate types.

• may produce contrived programst Many applications boil down to simple nested loops, some of which
can be easily parallelized, and some cannot; in some cases, like numerical algorithms, what the user was
really asking for, is the possibility of just parallelizinga particular very heavy computation deep inside the
sequential code, while pure skeletons language enforced the user to rewrite all the program logic in a very
unnatural way with some control parallel skeletons;

• prevents sharingIn various numerical algorithms, some operation, like multiplying some vectorv by the
very same large matrixA, may be performed at different places of the sequential algorithm, and the user

3Noting the increasing stability and portability of direct parallel programming frameworks (and in particular MPI).
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naturally wants to a way to assure that this computation be performed by the same processing resources
(sharing the large matrix A). Most of pure skeleton languages does not allow the user to specify this sharing.

In this way, having skeleton in BSML would have the advantageof the BSP pattern of communications (col-
lective ones) and the expressivity of the skeleton approach. Even, if the implementation is less efficient compare
to a dedicated skeletons language (or MPI send/received implementation), programmer could compose skeleton
when it is natural for him and used a BSP programming style when it is necessary. Note that, for the sequential
parts (which cannot be parallelized) of a programs, BSML (and the BSP model) forces them to be replicated or
in a specific processors but, in all the cases, as efficient as in a pure sequential implementation. This is the main
advantage to have both BSP and skeletons paragdim in one shot.

For our purpose and to also have interesting benchmarks, we take for example the implemenation of the
OCamlP3L skeletons language (P3L’s set of skeletons forOCaml).

4.1.3 The P3L set of skeletons

Our work is about the P3L (“Pisa Parallel Programming Language”) set of skeletons. P3L provides three kinds
of skeletons: task parallel skeletons, data parallel skeletons and control skeletons. Each skeleton is a stream
processor, i.e. a function which transforms an input streamof incoming data into an output stream of outgoing
data. Skeletons can be composed to define the parallel behavior of programs.

Task parallel skeletons model the parallelism of independent processing activities related to different input
data. They transform a stream of independent input data intoa stream of results. Data parallel skeletons exploit
parallelism in the computation of different parts of the same input data. Control skeletons are combinators which
do not express parallelismper se, but orchestrate the interaction and control flow among the sequential and parallel
parts of an application. The core P3L skeletons are:

• Task parallelism:

– pipeA stream of tasks (the type of the stream is defined in the inputlist) flows along the stages, hence
the input list of the stagei and the output list of the stagei − 1 should coincide; The pipe exploits
parallelism in the execution of a sequence of skeletons defining independent stages of a computation.

– farm The computation on different input data items is executed inparallel over a set of worker; The
stream of tasks with type defined in the inpuit list are distributed among the worker with some kind
of load balancing strategies; The farm replicates a skeleton into a pool of identical copies (the farm
workers) each one computing independent data items in the input stream.

• Data parallelism:

– map modeling a data parallelism; a set of input structures is distributed according to a user-defined
strategy and then the function is executed in parallel over aset of worker

– reducemodeling binary tree computations of an associative operator on an dimensional input param-
eter giving a(n − 1)-th dimensional output parameter;

• Control parallelism:

– loop modeling iterative computations; the execution of a function is repeated until a termination con-
dition is true; at each iteration the argument of feedback becomes another input for the skeleton,

– seqmodelling the inclusion of a sequential code, written in thesequential host language; this code
must have no side-effect

The possibility of nesting skeletons is the most relevant feature of such a language. The P3L set of skeletons has
been added to many imperative language as C++ or Java. OCamlP3L is an extention ofOCaml with an adapation
of the P3L skeletons for functionnal programming. This set of skeletons would be our case study.
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val seq : (unit →α →β ) →unit →α stream →β stream

val parfun : (unit →unit →α stream →β stream) →α stream →β stream

val pardo : (unit →α ) →α

val loop : (α →bool) ∗ (unit →α stream →α stream) →unit →α stream →α stream

val farm : (unit →β stream →γ stream) ∗ int →unit →β stream →γ stream

val ( ||| ) : (unit →α stream →β stream) →(unit →β stream →γ stream) →unit →α stream →γ stream

val mapvector : (unit →β stream →γ stream) ∗ int →unit →β array stream →γ array stream

val reducevector : (unit →(β ∗ β ) stream →β stream) ∗ int →unit →β array stream →β stream

Figure 4.1: The (complete) types of the OCamlP3L skeleton combinators

4.2 The OCamlP3L Skeletons

OcamlP3L imported the skeletal model proposed by P3L with some minor changes due to the functional nature
of the OCaml. The OCamlP3L system is a programming environment that provides a skeletal model for OCaml
and at the same time provides seamless integration of parallel programming and functional programming with
advanced features like sequential logical debugging (i.e.functional debugging of a parallel programvia execution
of all parallel code onto a sequential machine) and strong typing, useful both as a testbed for innovative parallel
programming style and a practical tool in building full-scale applications for scientific computation.

Figure 4.1 resumes the ML type of the OCamlP3L skeletons. Next of the text comes from the usual manual of
OCamlP3L.

4.2.1 The seq skeleton

Theseqskeleton encapsulates anOCaml functionf into a stream process which appliesf to all the inputs received
on the input stream and sends off the results on the output stream. AnyOCaml function with type(unit→α →β )
can be encapsulated in theseqskeletons as follows:seq f. The central point is that the function must be unary,
i.e. functions working on more that one argument must collect them in a single tuple before being used in aseq.

4.2.2 The farm skeleton

Thefarm skeleton computes in parallel a functionf over different data items appearing in its input stream. From
a functional viewpoint, given a stream of data itemsx1, . . . , xn and a functionf , the expressionfarm(f, k)
computesf(x1), . . . , f(xn). Parallelism is gained by havingk independent processes that computef on different
items of the input stream. Iff has type(unit→β stream→γ stream), andk has typeint, thenfarm(f, k) has
type unit→β stream→γ stream. In terms of (parallel) processes, a sequence of data appearing onto the input
stream of a farm is submitted to a set of worker processes. Each worker applies the same function (f , which can
be in turn difined using parallel skeletons) to the data itemsreceived and delivers the result onto the output stream.
The resulting process network looks like these of Figure 4.2where the emitter process takes care of task-to-worker
scheduling (possibly taking into account some load balancing strategy).

Thefarm function takes two parameters:

• the first denoting the skeleton expression representing thefarm worker computation,

• the second denoting the parallelism degree the user decidedfor the farm, i.e. the number of worker processes
that have to be set up in the farm implementation.
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Figure 4.2: The process network of afarm skeleton

4.2.3 The pipeline skeleton

The pipeline skeleton is denoted by the infix operator |||; itperforms in parallel the computations relative to different
stages of a function composition over different data items of the input stream.

Functionally,f1 ||| f2 . . . |||fn computesfn(. . . f2(f1(xi)) . . .) over all the data itemsxi in the input stream.
Parallelism is now gained by havingn independent parallel processes. Each process computes a functionfi over
the data items produced by the process computingfi−1 and delivers its results to the process computingfi +1. If
f1 has type(unit→α stream→β stream), andf2 has type(unit→β stream→γ stream), thenf1 |||f2 has type
unit→α stream→γ stream.

In terms of (parallel) processes, a sequence of data appearing onto the input stream of a pipe is submitted to
the first pipeline stage. This stage computes the functionf1 onto every data item appearing onto the input stream.
Each output data item computed by the stage is submitted to the second stage, computing the functionf2 and so
on and so on until the output of then− 1 stage is submitted to the last stage. Eventually, the last stage delivers its
own output onto the pipeline output channel. The resulting process network looks like these of Figure 4.3.
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Figure 4.3: The process network of apipe skeleton

4.2.4 The loop skeleton

Theloop skeleton computes a functionf over all the elements of its input stream until a boolean condition g is veri-
fied. A loop has type(α →bool) ∗ (unit →α stream →α stream) provided thatf has typeunit→α stream→α stream
andg has typeα →bool.

In terms of (parallel) processes, a sequence of data appearing onto the input stream of a loop is submitted
to a loop in stage. This stage just merges data coming from the input channel and from the feedback channel
and delivers them to theloop bodystage. The loop body stage computesf and delivers results to theloop end
stage. This latter stage computesg and either delivers (f x onto the output channel (in case (g (f x)) turns out
to betrue) or it delivers the value to the loop in process along the feedback channel ((g(fx)) =false). The
resulting process network looks like these of Figure 4.4.
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Figure 4.4: The process network of aloop skeleton

4.2.5 The map skeleton

The map skeleton is namedmapvector; it computes in parallel a function over all the data items ofa vector,
generating the (new) vector of the results.

Therefore, for each vectorX in the input data stream,mapvector (f, n) computes the functionf over all the
items ofX = [x1, . . . , xn], usingn distinct processes that compute f over distinct vector items([f(x1), . . . , f(xn)]).

If f has type(unit→α stream→β stream), andn has typeint, thenmapvector(f, n) has typeunit→α array stream→β arr
In terms of (parallel) processes, a vector appearing onto the input stream of amapvector is split n elements

and each element is computed by one of then workers. Workers applyf to the elements they receive. A collector
process is in charge of gluing together all the results in a single result vector (see Figure 4.5).

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��� ���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��������� ������

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

Output data Input data 

CollectorEmitter

Worker

Figure 4.5: The process network of amap skeleton

Different strategies can be used to distribute a vector[|x1; · · · ;xm|] appearing in the input data stream to the
workers. As an example the emitter:

• may round robin eachxi to the workers (w1, · · · , wn). The workers in this case simply compute the function
f α →β over all the elements appearing onto their input stream (channel).

• may split the input data vector in exactlyn sub-vectors to be delivered one to each one of the worker
processes. The workers in this case compute anArray.map f over all the elements appearing onto their
input stream (channel).

Summarizing, the emitter process takes care of (sub)task-to-worker scheduling (possibly implementing some
kind of load balancing policy), while the collector processtakes care of rebuilding the vector with the output data
items and of delivering the new vector onto the output data stream.mapvector takes two arguments:

• the skeleton expression denoting the function to be appliedto all the vector elements, and

• the parallelism degree of the skeleton, i.e. the number of processes to be used in the implementation.

4.2.6 The reduce skeleton

The reduce skeleton is namedreducevector; it folds a function over all the data items of a vector.
Therefore,reducevector(⊕, n) computesx1 ⊕ x2 ⊕ . . . ⊕ xn out of the vectorx1, . . . , xn, for each vector in

the input data stream. The computation is performed usingn different parallel processes that computef .
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If ⊕ has type(unit→α ∗α stream→α stream), andn has typeint, thenreducevector(⊕, n) has typeunit→α array stream
In terms of (parallel) processes, a vector appearing onto the input stream of a reducevector is processed by a

logical tree of processes. Each process is able to compute the binary operatorg. The resulting process network
looks like the tree of Figure 4.6.
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Figure 4.6: The process network of areduceskeleton

In this case, the emitter process is the one delivering either couples of input vector data items or couples of
sub-vectors of the input vector to the processes belonging to the tree base. In the former case,log(n) levels of
processes are needed in the tree, in the latter one, any number of process levels can be used, and the number of
sub-vectors to be produced by the emitter can be devised consequently.

Thereducevectorfunction takes two parameters as usual:

• the first parameter is the skeleton expression denoting the binary, associative and commutative operation
(these properties must be ensured by the programmer to have acorrect execution)

• the second is the parallelism degree, i.e. the number of parallel processes that have to be set up to execute
thereducevectorcomputation.

4.2.7 The parfun and pardo skeletons

The parfun (of type (unit→unit→α stream→β stream)→α stream→β stream) skeleton is the very dual of
theseqskeleton. In simple words, one used to warp a regular function to be a skeleton unit withseq, now one can
also wrap a full skeleton expression inside aparfun to obtain a regular stream processing function, usable withno
limitations in any sequential piece of code. Aparfun encapsulated skeleton function behaves exactly as a normal
function that receives a stream as input value, and returns astream as output value.

Finally, thepardo of type (unit→α )→α combinator defines the scope of the expressions that may use the
parfun encapsulated skeleton expressions.

In order to have theparfun andpardo work correctly together the following scoping rule has to besollowed:

• functions defined via theparfun combinator must bedefined beforethe occurrence of thepardo combinator,

• thoseparfun defined functions can only beexecuted withinthe body of the functional parameter of the
pardo combinator,

• no parfun can be used directly inside apardo combinator.

Thus, due to the scoping rule in thepardo, the general structure of an OCamlP3L program looks like the
following:

(∗ (1) Functions defined using parfun ∗)
let f = parfun(skeleton_expression)
let g = parfun(skeleton_expression)
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(∗ (2) code referencing these functions under abstractions ∗)
let h x = ... (f ...) ... (g ...) ...
...
(∗ NO evaluation of code containing a parfun is allowed outside pardo ∗)
...
(∗ (3) The pardo occurrence where parfun encapsulated functions can be called. ∗)
pardo
(fun () →

(∗ NO parfun combinators allowed here ∗)
(∗ code evaluating parfun defined functions ∗)
...
let a = f ...
let b = h ...
...)

(∗ finalization of sequential code here ∗)

4.2.8 Load balancing: the colors

In the OCamlP3L system, the combinators expressions governthe shape of the process network and the execution
model assumes a “virtual” processor, for each process. The mapping of virtual to physical processors is delegated
to the OCamlP3L system. The mapping is currently not optimized in the system. However, programs and machines
can be annotated by the programmer usingcolors, which can pilote the virtual-to-physical mapping process.

The idea is to have the programmer to rank the relative “weight” of skeleton instances and the machine power
in a range of integer values (the colors). Then, weights are used to generate a mapping in which load is evenly
balanced on the partecipating machine according to their relative power.

We do not present this feature here (and refear to the OCamlP3L manual for more details) because we do not
used it for our implementation.

4.3 BSML Implementation.

At this time, the approach taken when implementing these skeletons in BSML was relatively naive. But there are
already some advantages to using BSML-based skeletons: BSML can be used on a wide variety of communication
libraries, such as PUB, MPI and TCP/IP; whereas OcamlP3L is stuck with TCP/IP. Thus, our skeletons can run on
high-end parallel hardware.

For simplicity, we although generate the program in meta fashion as a simple string, we will use a MetaOCaml-
like syntax: the meta-code will be quoted between “.<>.”.

4.3.1 Execution of process networks

The combination of P3L’s skeletons generate a process network (a graph). This network takes in input a stream of
data. Then each datum is transformated by the network independtly of other data and finally the ouput is another
stream of data of the same arity.

The most important information is that each execution of a process network is completly independant from an-
other ones. In this way, they can be composed. We will used ourparallel composition operator (thesuperposition)
to do that. Thus, if we suppose that the stream containsn data,n times the execution of the network would be
composed using thesuperpositon. The general execution of a network (skeletonpardo) is coded as follow:

let pardo eval_net datas =
super_list (Array.to_list (Array.mapi
(fun i d () →eval_net (ref (i mod (bsp_p()))) d) (Array.of_list datas)))

if we suppose thatdatas is the stream of data (here a list) andeval_net is the execution of a process network. Each
evaluation is depending of a reference counter parameter which design the placement of the first computation. This
placement of the tasks, using this counter, is just a naive round robin.

To n-compose execution of the networks, we usedsuper_list which is a simplen-ary superposition:
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let rec super_list = function
[] →[]

| hd::tl →let nhd,ntl = super hd (fun () →super_list tl)
in nhd::ntl

To execute just one network, we thus need as parameters a counter and a data. Then, we define a function that
incremente this counter (modulop), defined the triplet which represent the network (input,output and the parallel
stream computation) from a skeleton expression and executeit. This is the goal of theeval_net function which
have the following code (generated from a skeleton expression s):

let eval_net place data =
let noSome (Some x) = x in
let incr_place () = place:=(!place+1) mod (bsp_p()) in
let inf,outf,flow = .<bsml_trans s>. in
noSome ((proj (flow (mkpar (fun pid →if pid=inf then Some data else None)))) outf)

flow is the execution of the network which haveinf has processor input andoutf as output. After the execution of
the network, the result is globally exchanged using the primitive proj. The stream is created usingmkpar such
that only processorinf has a non empty value.

Now, let see how to produce this process network from a skeleton expression (functionbsml_trans).

4.3.2 From skeletons to BSML codes

Our implementation takes a skeleton description and generates BSML code from it which symbolise the execution
of the network. Our expressions of skeletons are represented by the following type:

type skel_tree =
Seq of code_ocaml

| Pipe of skel_tree ∗ skel_tree
| Farm of int ∗ skel_tree
| MapVector of int ∗ skel_tree
| Loop of code_ocaml ∗ skel_tree

Noting that once can thinks that we can implement OCamlP3L’sskeletons as a library of combinators for
BSML. This is certainly possible but not in a natural way and this further work is not clear to be very usefull.

In our setting, a skeleton (sub-part of the network) is the data of aninput CPU, anoutputCPU and a BSML
function:

in out
node

where “node” is a function that takes a data from processor “in” and return a data to processor “out”. This will
be implemented in BSML as a tripletint∗int∗(α option par→β option par) where the two first parameters are
respectively input and output of the network and the last one, the function that compute the data on the stream.
The P3L stream is implemented as a parallel vector of option value where one and only one processor keeps a non
empty value (the data of the stream). The full stream could bethus a list of these vectors.

The BSML code is recursively generated on a skeleton expression using a functionbsml_trans : skel_tree →
code_BSML, from which we will excerpt the relevant parts.

Each skeleton is parametrized by a placement reference (theplace counter). This allows to distribute the tasks
in a round robin fashion. Also, they are parametrized by adata variable, representing the data stream.

In order to transfer data from CPU to CPU, we define the tools functionsendto:

let sendto outf inf data =
apply (put (apply (mkpar (fun pid →

if pid=outf then
(fun d dest →if dest=inf then d else None)

else
(fun _ _ →None)))

data)) (replicate outf)
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which sends a data from processoroutf to processorinf.
In Figure in the next of the text, the big arrow represent the functionbsml_trans and its recursive calls (generate

a new network from another networks).

4.3.3 Implementation of seq(f).

Given a sequential OCaml functionf , the generated code for this skeleton is:

let pl=(!place) in
incr_place ();
(pl,pl,(fun data →

apply (mkpar (fun pid →
if pid=pl
then (function Some d →(Some ((.<f>. ()) d)) | None →None)
else (fun _ →None)))) data)

that is the resulting network is thus the triplet(pl,pl,(fun data →new_data)) where the functionf only executes
itself on the designated CPU (pl) designated by the counterplace), returningNone elsewhere.

4.3.4 Implementation of farm(n,s).

Because we have a fix numberp of processors, we ignore then parameter which represent the “number of work-
ers”. The parallelism degree (n in this skeleton expression) is thus all the timep. This is not a problem since be
distributed the workers in a round robin manner (even if thisis naive).

Thus, the code generated forfarm(n, s) is simply the code generated for the skeletons.

4.3.5 Implementation of pipeline(s1,s2).

The generated code for this skeleton is:

let in1,out1,flow1= .<bsml_trans s1>.
and in2,out2,flow2= .<bsml_trans s2>. in

if (out1=in2) then
(in1,out2,(fun data→ flow2 (flow1 data)))

else
(in1,out2,(fun data →flow2 (sendto out1 in2 (flow1 data))))

that is we recursively genereted the triplet representing the networks fors1 ands2 and compact then to generate a
new triplet refleting the pipe network:

in1 out1

in2 out2

in1 out2node 1

node 2

node 1 node 2

Then, if the output ofs1 and the input ofs2 are on the same CPU, we directly compose them. If they are on distinct
CPUs, we perform asendto to connect the output ofs1 to the input ofs2. This is exactly what is reflected in the
code. As attended, the input of the resulting network is the input of the network ofs1 and the output that ofs2.

Noting that for a BSP machine withp processors and a skeleton expression using one pipe of two sequential
processus, the tasks would be distributed on all processors(we suppose a typical stream of more thanp elements).
Then, a single barrier would occurs sending data from a processor to another one. This is clearly not the most
efficient manner to execute the whole program but this is alsoclearly not an inefficient one.
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4.3.6 Implementation of loop(f ,s).

Our implementation ofloop is a simple recursive function, which executes thes skeleton until thef condition
holds true:

let i,o,task= .<bsml_trans s>. in
(i,o, (let rec tmp data =

if (proj (applyat i (fun d →.<f>. (noSome d)) (fun _ →false) data) i)
then (sendto i o data)
else tmp (sendto o i (task data))))

that is:

in out
node

outnode
in

sendto out in

4.3.7 Implementation of map(n,s).

Our implementation ofmapvector is probably the most interesting one. Once again, then parameter (parallelism
degree) is not unused due to a fix number of processor and our round robin strategy for the placement of the tasks.
The method for this skeleton is as follow:

First, a new task is dynamically created for each element of the input vector of the stream and stored in the list
of tasks call ntasks!. Each task is the execution of the network generated by the recursive call ofbsml_trans on
s.

Then, once all the tasks created, their execution aresuperposedusingsuper_list. For each execution, the input
processorpl of the network send a data of the vector to the processor that have been dynamically designated to
execute the sub-network (that ofs). The parallelism arises from the input data stream being distributed over all
superposed processors.

Finnaly, once the processing terminated, the function tools rebuild gathers the results to the processor which
has been designated to be the output of the full generated network. This is exactly what is reflected in the code:

let pl=(!place) in (pl,pl,(fun data →
let ntasks = ref [] in
let size =

noSome ((proj (applyat pl
(fun t →Some (Array.length (noSome t))) (fun _ →Some 0) data)) pl) in

for j=0 to (size−1) do
incr_place ();
let i,o,task= .<bsml_trans s>. in
let new_task=

(fun () →sendto o pl
(task (sendto pl i

(parfun (function Some t →Some t.(j) | None →None) data)))) in
ntasks:=new_task::(!ntasks);

done;
rebuild pl (super_list !ntasks)))

Whererebuild transforms a list of vector (data only on processorpl) to a vector of array (array only on processor
pl):

let rebuild pl l_vector =
let rec tmp = function

[] →mkpar (fun pid →if pid=pl then Some [] else None)
| hd::tl →parfun2 (function (Some d) →(function (Some l) →(Some (d::l)) | None →None) | None →(fun _ →None))

hd (tmp tl)
in parfun (function Some l →Some (Array.of_list l) | None →None) (tmp l_vector)
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let PDE_solver =
parfun (fun () →

(loop ((fun (v,continue) →continue),
seq(fun _ →fun (v,_) →v)

||| mapvector(seq(fun _ →compute_sub_domain),3)
||| seq(fun _ →projection) ||| seq(fun _ →bicgstab) ||| seq(fun _ →plot))))

Figure 4.7: Skeleton code fragment from a Poisson solver

This figure resume the idea of the implementation wheren is the dynamic size of the input vector :

in 0 out 0
task 0

task n

in n

in out

out n

This skeleton is a good sample where system threads would notbe sufficient: the size of typical data of skeletons
programs would make the old implementation of the superposition unusable.

4.4 Examples

4.4.1 Code generation of a simple skeleton expression

Take the following skeleton expression:

Pipe((Seq (fun () x →float (x+1))),(Seq (fun () x →x∗.2.)))

Using our code generation, we will obtain the following BSMLcode:

let eval_net place data =
(∗ tools ∗)
let noSome (Some x) = x in

(∗ increment counter ∗)
let incr_place () = place:=(!place+1) mod (bsp_p()) in

(∗ first process of the pipe ∗)
let inf,outf,flow = ((let in1,out1,flow1= (let pl=(!place) in incr_place ();(pl,pl,(fun data →

apply (mkpar (fun pid →if pid=pl
then (function Some d →(Some (((fun () x →float (x+1)) ()) d)) | None →None)

else (fun _ →None)))) data))
(∗ second process of the pipe ∗)
and in2,out2,flow2= (let pl=(!place) in incr_place ();(pl,pl,(fun data →

apply (mkpar (fun pid →if pid=pl
then (function Some d →(Some (((fun () x →x∗.2.) ()) d)) | None →None)

else (fun _ →None)))) data)) in
(∗ combination of these twi processes ∗)
if (out1=in2) then (in1,out2,(fun data→ flow2 (flow1 data)))

else (in1,out2,(fun data →flow2 (sendto out1 in2 (flow1 data)))))) in
(∗ final execution of the network ∗)

noSome ((proj (flow (mkpar (fun pid →if pid=inf then Some data else None)))) outf)

4.4.2 A PDE solver on multiple domains

Our second example is a parallel PDE solver which works on a set of subdomains, taken from [11]. On each
subdomain it applies a fast Poisson solver written in C. The skeleton expression of the code is shown in Figure 4.7
and the coupling technique (and full equations) could be findin [11].
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All the tests were run on the new LACL cluster composed of 20 Intel Pentium dual core E2180 2Ghz with
2GBytes of RAM interconnected with a Gigabyte Ethernet network (Ubuntu as OS).

We present the benchmarks when the interface meshes match using random generated sub-domains (different
cases on real life inputs are described in [11]). The principle of this extensibility test is as follow: increases the
number of processors as well as size of data. The goal is to keep as much as possible a constant computation time,
although the overall number of tasks is increased and communications are required to couple the global problem.
In this context, for each input, one processor is associatedwith one sub-domain and the global domain is divided
into 1, then into 2,4 ... sub-domains.

Various manners of decomposing the global domain in a structured way are explored. The number of sub-
domains along the axis is denoted byNx (resp. Ny, Nz) and each sub-domain possesses approximately 50000
cells (time to sequentially decompose a sub-domain is approximately linear). There will be at least as many
generated super-threads.

Performances (minutes and seconds) of OCamlP3l and skeletons in BSML (using its MPI implementation) are
summarised in the following table:

(Nx, Ny, Nz) Nb procs OCamlP3l BSML

1 × 1 × 1 1 20.56 21.29
1 × 1 × 2 2 24.06 27.63
1 × 1 × 4 4 24.78 28.23
1 × 1 × 8 8 25.05 28.97
1 × 1 × 16 16 26.53 30.67

1 × 2 × 2 4 20.78 25.14
1 × 2 × 4 8 24.45 28.36
1 × 2 × 8 16 25.56 29.84

1 × 4 × 4 16 26.89 29.89

2 × 2 × 2 8 25.88 27.21
2 × 2 × 4 16 27.89 32.75

As might be expected, OCamlP3l is faster than our naive implementation but not that much. Barriers slow down
the whole program but bulk-sending accelerates the communications: in the P3L running there exists a bottleneck
due to the fact that sub-domains are centralised and therefore the amount of communication treated by one process
may cause an important overhead. In BSML, the data are each time completely distributed, which reduces this
overhead but causes a loss of time in the division and distribution of the data.
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Chapter 5

Conclusions

5.1 Related works.

5.1.1 Divide-and-conquer paradigms.

A general data-parallel formulation for a class of divide-and-conquer problems was evaluated in [2]. A com-
bination of techniques are used to reorganise the algorithmic data-flow, providing great flexibility to efficiently
exploit data locality and to reduce communications. But those techniques are only defined for a low-level parallel
language, High Performance Fortran [28]. In [22], the authors present a new data-parallel C library for Intel’s
core-processors which have a divide-and-conquer primitive where some optimisations have been done using the
BSP model.

Many algorithmic skeletons languages offers divide-and-conquer skeletons. Different optimisations have been
designed for performance issues.

A methodology (and a language in [25]) based on a space-time mapping is presented in [24]. It uses a geometric
computational model based on coordinate transformations with which time (the schedule) and space (the proces-
sor) can be made explicit. This technique may be applied to a class of divide-and-conquer recursions, resulting in
a functional program skeleton and its parallel implementation with MPI. But cost prediction is too hard, making
algorithmic optimisations harder than in the BSP model.

In [26], the proposed approach distinguished three levels of abstraction and their instantiations. (1), a ML like
language defines the static parallel parts of the programs. The language comes with a partial evaluator which acts as
a code transformer using MetaOCaml. (2), an implementationof a divide-and-conquer skeleton demonstrates how
meta-programming can generate the appropriate set of communications for a particular process from an abstract
specification. (3), the application programmer composes the program using skeletons, without the need to consider
details of parallelism. However, no cost prediction nor efficient code generation are possible. For efficient code,
[16] proposes the same approach using C++ templates. A task skeletons C++ language is compiled into a C++
MPI code but no divide-and-conquer skeleton is at this time provided. Also, in [4], the authors have implemented
a divide-and-conquer skeleton using the functional and parallel language Eden.

5.1.2 CPS transformations.

CPS has been first introduced in [30] for semantics purpose and were massively used for various implementations
of Scheme and ML the language [1]. The original CPS transformation was the most simple one; this transformation
introduce too many unnecessary reductions (called administrative redexes) and more efficients CPS were defined
in [14].

The idea of using CPS (or the call-cc operator1) for thread implementation comes from [38]. Then, many
authors used them to implement multi-threaded extensions of sequential languages [34, 32] such as ML [12, 5],
Java [3] or C [10]. Most of the time, a call-cc operator is usedbut some of them use a CPS transformation. In [17],
the authors present some generic tricks to easily add efficient threads in a sequential language. But they suppose

1A call-cc (call-with-current-continuation) primitive isa control structure which is close to a CPS transformation.
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a call-cc operator that does not exist inOCaml (at least not in an efficient form). Finally, the STALIN Scheme2

compiler seems to implement a form of a flow-directed CPS conversion.
We can notice that the formal proof using a proof assistant that programs can be systematically translated to

semantically equivalent CPS programs is a new field of research [15] and can be useful for our purpose.

5.2 Conclusion.

We have formally defined a new implementation of a multi-threading primitive (called parallel superposition) for
a high-level BSP and data-parallel language. Efficiency concerns lead us to use lightweight threads, whose im-
plementation relies on a global flow-directed CPS transformation. Our flow analysis is defined as an instrumented
type system, allowing us to both guide and feed the partial CPS transformation. In order to compile polymor-
phically typed programs, we perform a monomorphisation pass which (in conjunction with defunctorisation) also
fosters the efficiency of numerical code. Our implementation relies on a semantic investigation, allowing us to
better trust our transformations - and it works on an important subset of theOCaml language.

The ease of use of this new implementation of the superposition will be experimented by implementing BSP
algorithms described as divide-and-conquer algorithms inthe literature and creating a less naive implementation
of the ocamlp3l skeletons [13]. Our current implementationdistributes the tasks in a simple round robin fashion;
and in the interest of load balancing a smarter heuristic could be developed.

We will also investigate new kinds of optimisations such as apolyvariant flow analysis to generate less CPS
code (which are less efficients inOCaml than direct-style ones).

2See ftp://ftp.ecn.purdue.edu/qobi/research-statement.pdf.
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Appendix A

Longer BSML examples

To illustrate our programming language BSML, we present 2 classic problems: sieve of Eratosthenes and a parallel
sorting.

A.1 Sieve of Eratosthenes

The sieve of Eratosthenes generates a list of primary numbers below a given integern. We study 3 parallelization
methods. We generate only the integers that are not multipleof the 4 first prime numbers and we classically iterate
only to

√
n.

Fig. A.1 gives the BSML code of the 3 methods. We used the following functions:elim:int list→int→int list
which deletes from a list all the integers multiple of the given parameter;final_elim:int list→int list→int list
iterateselim; seq_generate:int →int→int list which returns the list of integers between 2 bounds; andselect:int
→int list→int list which gives the

√
nth first prime numbers of a list.

A.1.1 Logarithmic reduce method.

For our first method we use the classical parallel prefix computation (also call folding reduce) :

scan ⊕ v0 · · · vp−1 = v0 v0 ⊕ v1 · · · ⊕p−1
k=0vk

We use a divide-and-conquer BSP algorithm (implemented using thesuper primitive) where the processors are
divided into two parts and the scan is recursively applied tothose parts; the value held by the last processor of
the first part is broadcasted to all the processors of the second part, then this value and the values held locally are
combined together by the associative operator⊕ on the second part. In our computation, the sent values are first
modified by a given function (select to just sent the

√
nth first prime numbers)

The parallel methods is thus very simple: each processori holds the integers betweeni× n
p

+1 and(i+1)× n
p

.
Each processor computes a local sieve (the processor0 contains thus the first prime numbers) and then ourscan
is applied. We then eliminate on processori the integers that are multiple of integers of processorsi−1, i−2, etc.

A.1.2 Direct method.

It is easy to see that our initial distribution (bloc of integers) gives a bad load balancing (processorp − 1 has the
bigger integers which have little probability to be prime).We will distributes integers in a cyclic way:a is given
to processori wherea modp = i). The second method works as follows: each processor computes a local sieve;
then integers that are less to

√
n are globally exchanged; a new sieve is applied to this list ofintegers (thus giving

prime numbers) and each processor eliminates, in its own list, integers that are multiples of this
√

nth first primes.

A.1.3 Recursive method.

Our last method is based on the generation of the
√

nth first primes and elimination of the multiples of this list of
integers. We generate this by a inductive function onn. We suppose that the inductive step gives the

√
nth first
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let eratosthene_scan n =
let p=bsp_p() in
let listes = mkpar (fun pid→ if pid=0 then seq_generate (n/p) 10

else seq_generate ((pid+1)∗(n/p)) (pid∗(n/p)+1)) in
let local_eras = parfun (local_eratosthene n) listes in
let scan_era = scan_super final_elim (select n) local_eras in
applyat 0 (fun l →2::3::5::7::l) (fun l→l) scan_era

let eratosthene_direct n =
let listes = mkpar (fun pid→ local_generation n pid) in
let etape1 = parfun (local_eratosthene n) listes in
let selects = parfun (select n) etape1 in
let echanges = replicate_total_exchange selects in
let premiers = local_eratosthene n

(List.fold_left (List.merge compare) [] echanges) in
let etape2 = parfun (final_elim premiers) etape1 in
applyat 0 (fun l→2::3::5::7::(premiers@l)) (fun l→l) etape2

let rec eratosthene n =
if (fin_recursion n) then apply (mkpar distribution) (replicate (seq_eratosthene n))
else
let carre_n = int_of_float (sqrt (float_of_int n)) in
let prems_distr = eratosthene carre_n in
let listes = mkpar (fun pid →local_generation2 n carre_n pid) in
let echanges = replicate_total_exchange prems_distr in
let prems = (List.fold_left (List.merge compare) [] echanges) in
parfun (final_elim prems) listes

let eratosthene_rec n =
applyat 0 (fun l→2::3::5::7::l) (fun l→l) (eratosthene n)

Figure A.1: BSML code of the the parallel versions of the sieve of Eratosthenes.

primes and we perform a total exchange on them to eliminates the non-primes. End of this induction comes from
the BSP cost: we end whenn is small enough so that the sequential methods is faster thanthe parallel one.

After some benchmark (not presented here), we obtain a super-linear acceleration for the recursive method.
This is due to the fact that, using a parallel method, each processor has a smaller list of integers and thus the
garbage collector ofOCaml is called less often.

A.2 Parallel sorting

Sorting is a classical problem of parallel algorithms whichis complex and covers a huge range of program con-
structions. Many parallel algorithms, including the graphs [9], require that data be sorted on processors and also
between them: the processori contains data smaller than those of processori+1. Moreover, we must that data are
well distributed over the processors for a good load-balancing. It is not so easy to write a correct implementation
of parallel sorting algorithms, even without any optimization, since a small mistake in such complex algorithms
immediately has some catastrophic consequences.

Take a set of elementsX of sizen. We assume that the initial data structurex was been partitioned intop
sub-structuresx1, . . . , xp of sizen/p with a sub-structure by processor. We note〈a, b〉 an open intervali.e. the set
of all elementsc ∈ X such thata < c < b.

A naif algorithm would be to gather data on one processor, then to sort them and scatter on all processors this
set of data. It is easy to see that this method is completly inefficient.

Many parallel sorting algorithm have been proposed with different complexities. Here, we are interested by the
sampling sort algorithm(PSSR) in its BSP version [35].

The PSRS algorithm proceeds as follows. First, all sub-structuresxq (we assume that their lengths are≥ p3) are
sorted independently with a sequential sort algorithm on each processorq. The problem now consists of merging
thep sorted sub-structures. Each process selects from its sub-structurep + 1 elements (the first and last elements
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(∗ generic functions :
compare:(α →α →int) = compare two elements
seq_sort:((α →α →int) →α →β ) = sequential sorting
select:(int →β →γ ) = selection of a sample
merge:((α →α →int) →γ list →β ) = merging the samples (sorted)
to_be_send:((α →α →int) →int →γ →β → δ ) =construction of the

blocks to be send
get:( δ →int → ǫ ) = select the ith block to be send
merge_block:((α →α →int) → ǫ → ǫ → ǫ ) = merge 2 received blocks

and return the final result
vec:β Bsml.par = the parallel vector to sort ∗)

let tiskin_bsp_sample_sort_wide compare seq_sort select merge_samples to_be_send
get merge_block vec =

(∗ number of processors ∗)
let p=bsp_p() in
(∗ merge the sending blocks at the end ∗)
let final_merge f =
let rec final n tmp =

if n=p then tmp else final (n+1) (merge_block compare tmp (f n))
in final 1 (f 0)

in
(∗ Super−step 1 ∗)
let vec_sort = parfun (seq_sort compare) vec in
let primary_sample = parfun (select p) vec_sort in
let totex_prim_sample = replicate_total_exchange primary_sample in
(∗ Super−step 2 ∗)
let scd_sample = select p (merge_samples compare totex_prim_sample) in
let elts_to_send = parfun (to_be_send compare p scd_sample) vec_sort in
let to_send = put (parfun get elts_to_send) in
(∗ Super−step 3 ∗)
parfun final_merge to_send

Figure A.2: BSML code of a generic BSP sample sorting algorithm.

must be selected) for the primary sample and there is a total exchange of these samples. We notex̄q
0, . . . , x̄

q
p the

first sample of the sub-structurexq (of processorq). It cut the sub-structurexq into p primary blocks (of sizen/p2)
and we note them[x̄q

0, x̄
q
1], . . . , [x̄

q
p−1, x̄

q
p].

In the second super-step, each process reads thep × (p + 1) primary samples, sorts them and selectsp + 1
secondary samples (in the same manner). We note these sortedsub-structuresyq. The second primary sample is
noted ¯̄x0, . . . , ¯̄xp. Note that this sample is the same on each processor. This sample cuts the elements ofx (and
not ofxq) into p secondary blocks which are open intervals〈¯̄x0, ¯̄x1〉, . . . , 〈¯̄xp−1, ¯̄xp〉.

In the third super-step, each processor discards the valuesthat do not belong to the assigned secondary block :
each processorq takes the elements (from other processors) from the open interval 〈¯̄xq, ¯̄xq+1〉 (with 0 ≤ q < p)
and then merged the receveid values.

Figure A.2 shows a generic implementation of this BSP algorithm.
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Appendix B

Proof of lemmas and theorems

Proof for lemma 2.3.1 (stability of typings by substitution). We proceed by induction on the derivation ofΓ, x :
τ ⊢ e : τ ′.

• If e = x, [v/x]e = v andτ = τ ′. By hypothesis,Γ ⊢ v : τ ′.

• If e = y wherex 6= y, [v/x]e = y. The type of the expression is unchanged.

• If e = a b, [v/x]e = [v/x]a [v/x]b. By induction hypothesis, the types ofa andb are preserved during the
substitution. Using the typing rule for application, we deduce the type of[v/x]e:

Γ ⊢ [v/x]a : 〈fa, τ0 → τ1〉 Γ ⊢ [v/x]b : τ0

Γ, x : τ ⊢ [v/x]e : 〈fa ∨ flow(τ0), annot(τ1)〉
.

• If e = λy.b, the type derivation is of the following shape:

Γ, x : τ, y : τ0,⊢ b : τ1

Γ, x : τ ⊢ e : 〈flow(τ0) ∨ flow(τ1), τ0 → τ1〉
– If x = y, [v/x]e = e. The type of the expression is unchanged.

– If y 6= x and (y 6∈ fv(v) or x 6∈ fv(b)), [v/x]e = λy.[v/x]b. By induction hypothesis, the type ofb is
preserved during substitution. Thus, we can derive:

Γy : τ0,⊢ [v/x]b : τ1

Γ ⊢ [v/x]e : 〈flow(τ0) ∨ flow(τ1), τ0 → τ1〉
– If y 6= x and (y ∈ fv(v) andx ∈ fv(b)); with z fresh,[v/x]e = λz.[v/x]([z/y]b). We won’t prove

that substituting a fresh variable for another variable is type preserving, but we use this lemma to state
thatΓ, x : τ, z : τ0,⊢ ([z/y]b) : τ1. We can then derive :

Γ, x : τ, z : τ0,⊢ [z/y]b : τ1

Γ, x : τ ⊢ λz.[z/y]b : 〈flow(τ0) ∨ flow(τ1), τ0 → τ1〉
Using the induction hypothesis, we can perform a type-preserving substitution such that:

Γ ⊢ [v/x](λz.[z/y]b) : 〈flow(τ0) ∨ flow(τ1), τ0 → τ1〉
As shown in a previous case, this reduces to:

Γ ⊢ (λz.[v/x]([z/y]b)) : 〈flow(τ0) ∨ flow(τ1), τ0 → τ1〉
Proof for theorem 2.3.2 (soundness w.r.t.yield reductions). We will prove this theorem on a subset of the source
language, namely the core lambda-calculus plusyield . Before proceeding to the proof, we state thatyield is not

a value, and we recall the small-step operational semanticsof the lambda-calculus under the
βv→reduction rule:

(λx.e) v
βv→ [v/x]e

APPRIGHT

e2 → e′2

e1 e2 → e1 e′2

APPLEFT

e1 → e′1

e1 v → e′1 v yield → ()

We proceed by induction on the reduction sequence ofe.
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• If e = yield , the theorem trivially holds.

• If e = e1 v →e′1 v, and ayield is reduced ine1 →e′1; by induction hypothesis, flow(e1) = I. Using the typing
rule for application, flow(e) = I.

• If e = e1 e2 →e1 e′2, and ayield is reduced ine2 →e′2; by induction hypothesis, flow(e2) = I. Using the
typing rule for application, flow(e) = I.

• If e = (λx.b) v →[v/x]b, a yield is reduced while normalizing[v/x]b and flow([v/x]b) = I. Typings are
stable by substitution (Lemma 2.3.1), so flow(b) = I. Using the typing rules for abstraction then application,
we derive flow(e) = I.

Proof for lemma 2.3.4 (extended monadic substitution). We proceed by induction on the shape ofa:

• If a = x: the proof follows by reduction and application of lemma 2.3.3.

• If a = c or a = yield : trivial case.

• If a = c d where flow(a) = I:

We derive from Fig. 2.2 that flow(c) = P is not possible.

– If flow(d) = I:
T1J[v/x]aK = T1J[v/x]c [v/x]dK

= T1J[v/x]cK @T1J[v/x]dK (definition ofT1)
= [JvKv/x]T1JcK @ [JvKv/x]T1JdK (ind. hyp.)
= [JvKv/x](T1JcK @T1JdK)
= [JvKv/x](T1Jc dK)

– If flow(d) = P:
T1J[v/x]aK = T1J[v/x]c [v/x]dK

= T1J[v/x]cK T1J[v/x]dK
= [JvKv/x]T1JcK [JvKv/x]T1JdK (ind. hyp.)
= [JvKv/x](T1JcK T1JdK)
= [JvKv/x](T1Jc dK)

• If a = c d where flow(a) = P:

T1J[v/x]aK = T1J[v/x]c [v/x]dK
= ret [v/x](c d)
= [v/x] ret (c d) = [v/x] T1J(c d)K

• If a = λy.b where flow(a) = I:

– If x = y: easy.

– If x 6= y and (y 6∈ fv(v) or x 6∈ fv(b)):
T1J[v/x]aK = T1Jλy.T1J[v/x]/bKK

= ret λy.T1J[v/x]/bK

At this point, two cases may arise. If flow(b) = P, then flow(x) = Iandb contains no free occurences of
x (proof by induction on the type derivation, easy and admitted). We can thus forget the substitution,
and the proof follows easily. If flow(b) = I, we can apply the induction hypothesis onb:
T1J[v/x]aK = T1Jλy.[JvKv/x]T1JbKK

= [JvKv/x]T1Jλy.T1JbKK

– If y 6= x and (y ∈ fv(v) andx ∈ fv(b)) with z fresh: we must avoid variable capture, so we state that
a = λz.[z/y]b. Sincex ∈ fv(b), flow(b) = flow([z/y]b) = I, allowing us to prune a case. Except that
point, the proof is similar to the previous case.
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• If a = λy.b where flow(a) = P: the proof is similar to the pure application case.

• If a = fix hλy.b : proof similar to the lambda-abstraction, with added casesto handle the fixpoint binderh.

• If a = match e with | κ xi → ei. This proof is quite tedious if we don’t work moduloα-conversion, we
will thus adopt this hypothesis for the case at hand. The casewhere flow(a) = P is as easy as the application
case and won’t be exposed.

We first observe that the lemma holds for matching branches :T1J[v/x](κxi → ei)K = [JvKv/x]T1J(κxi →
ei)K. The proof is by case on wetherx = xi, and by induction hypothesis onei wheneverx 6= xi.

Using this fact, the proof is easy, by using the induction hypothesis one and the matching branches.

• If a = (c, d), a = κ e : easy.

This ends the proof of the extended monadic substitution lemma.

We also need these easily provable properties:

• Prop. 1: (λx.a) v ≈ [v/x]a

• Prop. 2:bind (ret v) (λx.b) ≈ [v/x]b (first monadic law +
βv→)

• Prop. 3: Ifa ≈ a′, bind a (λx.b) ≈ bind a′ (λx.b).

• Prop. 4: If flow(a) = Panda ⇒ v, T1JaK ≈ T1JvK.

• Prop. 5: Ifb ≈ b′, ab ≈ ab′ (proof by induction ona).

Proof for theorem 2.3.5 (soundness of the partial CPS transformation). We proceed by induction one ⇒ v. Please
refer to Fig. 2.1 for the definition of the rules. The casest = c, t = x, t = λx.b, t = fix hλx.b, t = (a, b), t = κ a are
trivial (an application of lemma 2.3.3 is enough). If flow(t) = P, the result is immediate.

• LET rule:

– If flow(e1) = I,
T1JtK = bind T1Je1K (λa.T1Je2K)

≈ bind ret Jv1Kv (λa.T1Je2K) (ind. hyp. one1, Prop. 3)

∗ If flow(e2) = P, a doesn’t appear ine2. The proof goes on as follow:
T1JtK ≈ T1Je2K (forgetting the substitution)

≈ ret Jv2Kv (ind. hyp.)
∗ If flow(e2) = I, we can apply the induction hypothesis such that:

T1JtK ≈ [Jv1Kv/a]T1Je2K = T1J[v1/a]e2K (Prop. 2, Lemma 2.3.4)
≈ ret Jv2Kv (ind. hyp.)

– If flow(e1) = P,
T1JtK = let a = e1 in T1Je2K

≈ [v1/a]T1Je2K
≈ T1J[v1/a]e2K (Lemma 2.3.4)
≈ ret Jv2Kv (ind. hyp.)

• APP rule:

Since flow(t) = I, flow(e1) = I (c.f. Fig. 2.2). Only the flow ofe2 may vary.

– If flow(e2) = I,
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T1JtK = bind (T1Je1K) (λv1.bind (T1Je2K) (λv2.v1 v2))
≈ bind (ret Jλx.eKv) (λv1.bind (T1Je2K) (λv2.v1 v2)) (ind. hyp., Prop. 3)
≈ [Jλx.eKv/v1](bind T1Je2K (λv2.v1 v2)) (Prop. 2)
≈ [λx.T1JeK/v1](bind T1Je2K (λv2.v1 v2)) (definition ofJKv)
≈ bind (T1Je2K) (λv2.(λx.T1JeK) v2)
≈ bind (ret Jv′Kv) (λv2.(λx.T1JeK) v2) (ind. hyp., Prop. 3)
≈ [Jv′Kv/v2]((λx.T1JeK)v2) (Prop. 2)
≈ ((λx.T1JeK) Jv′Kv)
≈ ([Jv′Kv/x]T1JeK)

We have flow(e2) = I. Hence, flow(x) = I (c.f. Fig. 2.2).

∗ If flow(e) = P, e doesn’t contain any free occurence ofx, and we obtain:
T1JtK ≈ T1JeK (forgetting the substitution)

≈ ret JvKv = ret v (ind. hyp.)
∗ If flow(e) = I:

T1JtK ≈ T1J[v
′/x]eK (Lemma 2.3.4)

≈ ret JvKv (ind. hyp.)

– If flow(e2) = P,
T1JtK = T1Je1K T1Je2K

≈ T1Je1K T1Jv
′K = T1Je1K ret v′ (Prop. 4, Prop. 5)

≈ T1Jλx.eK (ret v′) = (ret λx.T1JeK) (ret v′) (definition of≈, ind. hyp.)
≈ [v′/x]T1JeK
≈ T1J[v

′/x]eK (Lemma 2.3.4)
≈ ret JvKv (ind. hyp.)

• MATCH rule:

– If flow(e) = I,
T1JtK = bind T1JeK (λve.matchvewith κi xi → T1JeiK)

≈ bind ret κ JvKv (λve.matchvewith κi xi → T1JeiK)
≈ [κ JvKv/ve](matchvewith κi xi → T1JeiK)
≈ match κ JvKvwith κi xi → T1JeiK
≈ [JvKv/x]T1Je

′K]

Now, if flow(e′) = Pthen e′ contains no free occurence ofx and the lemma holds. Otherwise:
T1JtK ≈ T1J[v/x]e′K (Lemma 2.3.4)

≈ ret v′ (ind. hyp.)

– If flow(e) = P, then the branches have all a flow equal toI.
T1JtK = bind T1JeK (λve.matchvewith κi xi → T1JeiK)

≈ bind ret κ v (λve.matchvewith κi xi → T1JeiK)
≈ [κ v/ve](matchvewith κi xi → T1JeiK)
≈ match κ vwith κi xi → T1JeiK
≈ [v/x]T1Je

′K]
≈ T1J[v/x]e′K] (Lemma 2.3.4)
≈ ret v′ (ind. hyp.)

• Y IELD rule: follows from our definition of≈.

• SUPER rule: assuming thatsuper always terminates, an induction followed by a case analysison the code
of supershows that the final case is aret (v1, v2).

This terminates the proof of soundness for our partial CPS transformation.
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Appendix C

Coq script of Chapter 2

Using Coq version 8.1pl3.

Set Implicit Arguments.

Module Type MONAD.

Parameter M : forall (A : Type), Type.
Parameter ret : forall (A : Type), A →(M A).
Parameter bind : forall (A B : Type), M A →(A →M B) →M B.
Parameter run : forall (A : Type), M A →A.

Parameter equivalence : forall (A : Type), M A →M A →Prop.

Axiom is_reflexive : forall (A : Type) (x : M A), equivalence x x.
Axiom is_symmetric : forall (A : Type) (x y : M A), equivalence x y →equivalence y x.
Axiom is_transitive : forall (A : Type) (x y z: M A), equivalence x y →equivalence y z →equivalence x z.

Axiom left_neutral : forall (A B : Type) (f : A →M B) (a : A),
equivalence (bind (ret a) f) (f a).

Axiom right_neutral : forall (A B : Type) (m : M A),
equivalence (bind m (fun a : A => ret a)) m.

Axiom assoc : forall (A B C : Type) (m : M A) (k : A →M B) (h : B →M C),
equivalence (bind m (fun x : A => bind (k x) h)) (bind (bind m k) h).

End MONAD.

Inductive thread (a : Type) : Type :=
| Terminated : a →thread a
| Waiting : (unit →thread a) →thread a.

Inductive superthread_reduc (a b : Type) : thread a →thread b →Type :=
| Both_terminated : forall x0 x1,

superthread_reduc (Terminated x0) (Terminated x1)
| Left_terminated : forall x susp,

superthread_reduc (Terminated x) (susp tt) →
superthread_reduc (Terminated x) (Waiting susp)

| Right_terminated : forall x susp,
superthread_reduc (susp tt) (Terminated x) →
superthread_reduc (Waiting susp) (Terminated x)

| Both_running : forall (s0 : unit →thread a) (s1 : unit →thread b),
superthread_reduc (s0 tt) (s1 tt) →
superthread_reduc (Waiting s0) (Waiting s1).

Lemma thread_terminates (A B : Type) :
forall (t0 : thread A) (t1 : thread B), superthread_reduc t0 t1.

Proof.
induction t0.
induction t1.
exact (Both_terminated a a0).
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exact (Left_terminated t (X tt)).
induction t1.
exact (Right_terminated t (X tt (Terminated a))).
exact (Both_running t t0 (X tt (t0 tt))).
Qed.

Module SuperMonad <: MONAD.

Definition M (A : Type) := forall anstype, (A →thread anstype) →thread anstype.

Definition ret (A : Type) : A →M A :=
fun (x : A) anstype (k : A →thread anstype) => k x.

Definition bind (A B : Type) : M A →(A →M B) →M B := fun (m : M A) (f : A →M B) =>
fun ans k => m ans (fun (v : A) => f v ans k).

Definition yield := fun ans (k : unit →thread ans) => Waiting k.

Definition apply (A B : Type) : M (A →M B) →M A →M B :=
fun f arg => bind f (fun vf => bind arg (fun varg => vf varg)).

Definition run (A : Type) : M A →A :=
fun (e : M A) =>

let loop := (fix loop (m : thread A) :=
match m with
| Terminated x => x
| Waiting s => loop (s tt)

end)
in loop (e A (fun x => Terminated x)).

Fixpoint super_aux (a b : Type)
(t1 : thread a) (t2 : thread b)
(h : (superthread_reduc t1 t2)) { struct h } : M (a ∗ b) :=

bind yield (fun u =>
match h return M (a ∗ b) with
| Both_terminated x0 x1 =>

ret (x0, x1)
| Left_terminated x susp h0 =>

super_aux h0
| Right_terminated x susp h0 =>

super_aux h0
| Both_running s0 s1 h0 =>

super_aux h0
end).

Definition super := fun (A B : Type) => ret (fun f1 => ret (fun f2 =>
let r1 : thread A := apply (ret f1) (ret tt) (fun x => Terminated x) in
let r2 : thread B := apply (ret f2) (ret tt) (fun x => Terminated x) in
match r1, r2 return M (A ∗ B) with
| Terminated x1, Terminated x2 =>

ret (x1, x2)
| Terminated x, Waiting s =>

super_aux (thread_terminates r1 r2)
| Waiting s, Terminated x =>

super_aux (thread_terminates r1 r2)
| Waiting s0, Waiting s1 =>

super_aux (thread_terminates r1 r2)
end)).

(∗ Prove that super f g evaluates to (f tt, g tt). ∗)
Check super.

(∗ We need functional extensionality to prove the monadic laws ... ∗)
Axiom functional_extensionality :
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forall (A B : Type), forall (f g : A →B),
(forall x,f x = g x) →f = g.

(∗ This lemma is much weaker than functional_extensionality. ∗)
Lemma eta_conversion :

forall (A B: Type) (f : A →B), (fun x : A => f x) = f.
Proof.
intros.
assert (forall x, (fun x => f x) x = f x).
intros; reflexivity.
apply (functional_extensionality (fun x => f x) f).
intro;reflexivity.
Qed.

Definition equivalence : forall (A : Type), M A →M A →Prop :=
fun (A : Type) a1 a2 => forall k,exists a, (a1 k = a) /\ (a2 k = a).

Lemma is_reflexive : forall (A : Type) (x : M A), equivalence x x.
Proof.
compute.
intros.
exists (x k).
auto.
Qed.

Lemma is_symmetric : forall (A : Type) (x y : M A), equivalence x y →equivalence y x.
Proof.
compute.
intros.
elim (H k).
intros.
elim H0.
intros.
rewrite H1.
rewrite H2.
exists x0; auto.
Qed.

Lemma is_transitive : forall (A : Type) (x y z: M A), equivalence x y →equivalence y z →equivalence x z.
Proof.
compute.
intros.
elim (H k).
intros.
elim (H0 k).
intros.
elim H1.
elim H2.
intros.
rewrite H4 in ∗.
rewrite H5 in ∗.
rewrite H3 in H6.
rewrite H6.
exists x0; auto.
Qed.

Lemma left_neutral : forall (A B : Type) (f : A →M B) (a : A),
equivalence (bind (ret a) f) (f a).

Proof.
intros.
compute.
intro.
exists (f a k).
split.
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apply eta_conversion.
reflexivity.
Qed.

Lemma right_neutral : forall (A B : Type) (m : M A),
equivalence (bind m (fun a : A => ret a)) m.

Proof.
compute.
intros.
exists (fun k0 => m k (fun v => k0 v)).
split.
reflexivity.
symmetry.
assert (forall arg, (fun k0 => m k (fun v => k0 v)) arg = m k arg).
intro.
assert ((fun v => arg v) = arg).
rewrite <− eta_conversion.
reflexivity.
rewrite H.
reflexivity.
apply functional_extensionality.
exact H.
Qed.

Lemma assoc : forall (A B C : Type) (m : M A) (k : A →M B) (h : B →M C),
equivalence (bind m (fun x : A => bind (k x) h)) (bind (bind m k) h).

Proof.
compute.
intros.
exists (fun k1 => m k0 (fun v => k v k0 (fun v0 => h v0 k0 k1))).
auto.
Qed.

End SuperMonad.
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