
Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Computer Languages
minijava - Concrete & Abstract syntax

1 Parsing
2 Syntactic categories
3 Concrete syntax
4 Abstract syntax
5 Composite pattern

February 4

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of a compiler

The compiler has to

Analyze the source code to understand
what it means!

in the process of doing so it has to
reject meaningless sources!

Generate code in a language for which
a machine exists.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of a compiler

The compiler has to

Analyze the source code to understand
what it means!

in the process of doing so it has to
reject meaningless sources!

Generate code in a language for which
a machine exists.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of a compiler

The compiler has to

Analyze the source code to understand
what it means!

in the process of doing so it has to
reject meaningless sources!

Generate code in a language for which
a machine exists.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of a compiler

Compiler
source
code

machine
code

errors

Has to distinguish correct from
incorrect programs (has to
understand!)

Has to generate correct machine
code!

Has to organize memory for
variables and instructions!

Has to agree with OS on the
form of object code!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of a compiler

Compiler
source
code

machine
code

errors

Has to distinguish correct from
incorrect programs (has to
understand!)

Has to generate correct machine
code!

Has to organize memory for
variables and instructions!

Has to agree with OS on the
form of object code!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of a compiler

Compiler
source
code

machine
code

errors

Has to distinguish correct from
incorrect programs (has to
understand!)

Has to generate correct machine
code!

Has to organize memory for
variables and instructions!

Has to agree with OS on the
form of object code!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of a compiler

Compiler
source
code

machine
code

errors

Has to distinguish correct from
incorrect programs (has to
understand!)

Has to generate correct machine
code!

Has to organize memory for
variables and instructions!

Has to agree with OS on the
form of object code!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of a compiler

Compiler
source
code

machine
code

errors

Has to distinguish correct from
incorrect programs (has to
understand!)

Has to generate correct machine
code!

Has to organize memory for
variables and instructions!

Has to agree with OS on the
form of object code!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

The Front End (analysis phase)

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The Scanner (lexical analyzer) transforms a sequence of
characters (source code) into a sequence of tokens: a
representation of the lexemes of the language.

The Parser (syntactical analyzer) takes the sequence of tokens
and generates a tree representation, the Abstract Syntax.

This tree is analyzed by the type checker and is then used to
generate the intermediate representation.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

The Front End (analysis phase)

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The Scanner (lexical analyzer) transforms a sequence of
characters (source code) into a sequence of tokens: a
representation of the lexemes of the language.

The Parser (syntactical analyzer) takes the sequence of tokens
and generates a tree representation, the Abstract Syntax.

This tree is analyzed by the type checker and is then used to
generate the intermediate representation.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

The Front End (analysis phase)

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The Scanner (lexical analyzer) transforms a sequence of
characters (source code) into a sequence of tokens: a
representation of the lexemes of the language.

The Parser (syntactical analyzer) takes the sequence of tokens
and generates a tree representation, the Abstract Syntax.

This tree is analyzed by the type checker and is then used to
generate the intermediate representation.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

The Front End (analysis phase)

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The Scanner (lexical analyzer) transforms a sequence of
characters (source code) into a sequence of tokens: a
representation of the lexemes of the language.

The Parser (syntactical analyzer) takes the sequence of tokens
and generates a tree representation, the Abstract Syntax.

This tree is analyzed by the type checker and is then used to
generate the intermediate representation.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Plan for today

Syntactic categories

What kind of phrases are used in a
programming language? What
components do they have?

Concrete syntax

How do the phrases look like? What
words, separators, punctuations are
used?

Abstract syntax

What data structure can be used to
store the program so that the
structure is evident?

Composite pattern

How can we implement this
data structure in Java?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Plan for today

Syntactic categories

What kind of phrases are used in a
programming language? What
components do they have?

Concrete syntax

How do the phrases look like? What
words, separators, punctuations are
used?

Abstract syntax

What data structure can be used to
store the program so that the
structure is evident?

Composite pattern

How can we implement this
data structure in Java?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Plan for today

Syntactic categories

What kind of phrases are used in a
programming language? What
components do they have?

Concrete syntax

How do the phrases look like? What
words, separators, punctuations are
used?

Abstract syntax

What data structure can be used to
store the program so that the
structure is evident?

Composite pattern

How can we implement this
data structure in Java?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Plan for today

Syntactic categories

What kind of phrases are used in a
programming language? What
components do they have?

Concrete syntax

How do the phrases look like? What
words, separators, punctuations are
used?

Abstract syntax

What data structure can be used to
store the program so that the
structure is evident?

Composite pattern

How can we implement this
data structure in Java?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Plan for today

Syntactic categories

What kind of phrases are used in a
programming language? What
components do they have?

Concrete syntax

How do the phrases look like? What
words, separators, punctuations are
used?

Abstract syntax

What data structure can be used to
store the program so that the
structure is evident?

Composite pattern

How can we implement this
data structure in Java?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in programming languages

Example

class Small{
public static void main(String args[]){

System.out.println("Hello "+args[0]);
}

}

Example

resource small()
string[10] user
getarg(1,user)
write("Hello",user)

end

Example

import System

main =
do (user:_) <- getArgs

print("Hello " ++ user)

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in programming languages

Example

class Small{
public static void main(String args[]){

System.out.println("Hello "+args[0]);
}

}

Example

resource small()
string[10] user
getarg(1,user)
write("Hello",user)

end

Example

import System

main =
do (user:_) <- getArgs

print("Hello " ++ user)

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in programming languages

Example

class Small{
public static void main(String args[]){

System.out.println("Hello "+args[0]);
}

}

Example

resource small()
string[10] user
getarg(1,user)
write("Hello",user)

end

Example

import System

main =
do (user:_) <- getArgs

print("Hello " ++ user)

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in programming languages

Example

class Small{
public static void main(String args[]){

System.out.println("Hello "+args[0]);
}

}

Example

resource small()
string[10] user
getarg(1,user)
write("Hello",user)

end

Example

import System

main =
do (user:_) <- getArgs

print("Hello " ++ user)

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in programming languages

What is a Program?

In Java and minijava: a class with a static main method!

and some class declarations!

In C and C++: a main function (a static method!)!

and some function or class declarations!

In other languages it could be something else.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in programming languages

What is a Program?

In Java and minijava: a class with a static main method!

and some class declarations!

In C and C++: a main function (a static method!)!

and some function or class declarations!

In other languages it could be something else.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in programming languages

What is a Program?

In Java and minijava: a class with a static main method!

and some class declarations!

In C and C++: a main function (a static method!)!

and some function or class declarations!

In other languages it could be something else.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in programming languages

What is a Program?

In Java and minijava: a class with a static main method!

and some class declarations!

In C and C++: a main function (a static method!)!

and some function or class declarations!

In other languages it could be something else.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in programming languages

Declarations

What we use to build
abstractions: we give names to
entities.

Expressions

Entities that have a value.
Expressions usually have an
associated type.

Statements

Entities that change state.

Some programming languages
have no statements (Haskell). In
some languages statements and
expressions are mixed up (C).
Different programming paradigms
support different kinds of values
and abstractions.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in programming languages

Declarations

What we use to build
abstractions: we give names to
entities.

Expressions

Entities that have a value.
Expressions usually have an
associated type.

Statements

Entities that change state.

Some programming languages
have no statements (Haskell). In
some languages statements and
expressions are mixed up (C).
Different programming paradigms
support different kinds of values
and abstractions.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in programming languages

Declarations

What we use to build
abstractions: we give names to
entities.

Expressions

Entities that have a value.
Expressions usually have an
associated type.

Statements

Entities that change state.

Some programming languages
have no statements (Haskell). In
some languages statements and
expressions are mixed up (C).
Different programming paradigms
support different kinds of values
and abstractions.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in programming languages

Declarations

What we use to build
abstractions: we give names to
entities.

Expressions

Entities that have a value.
Expressions usually have an
associated type.

Statements

Entities that change state.

Some programming languages
have no statements (Haskell). In
some languages statements and
expressions are mixed up (C).
Different programming paradigms
support different kinds of values
and abstractions.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in programming languages

Declarations

What we use to build
abstractions: we give names to
entities.

Expressions

Entities that have a value.
Expressions usually have an
associated type.

Statements

Entities that change state.

Some programming languages
have no statements (Haskell). In
some languages statements and
expressions are mixed up (C).
Different programming paradigms
support different kinds of values
and abstractions.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - declarations

class A {
int x;
...

public int f(){
int y;
...

}

...

}

classes

A class can be used as the
type of an object.

fields

A field is a global variable
inside a class, stands for a
place in memory.

methods

A method can be used instead
of a statement or an
expression.

local variables

Local to a method, stands for
a register or a place in
memory.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - declarations

class A {
int x;
...

public int f(){
int y;
...

}

...

}

classes

A class can be used as the
type of an object.

fields

A field is a global variable
inside a class, stands for a
place in memory.

methods

A method can be used instead
of a statement or an
expression.

local variables

Local to a method, stands for
a register or a place in
memory.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - declarations

class A {
int x;
...

public int f(){
int y;
...

}

...

}

classes

A class can be used as the
type of an object.

fields

A field is a global variable
inside a class, stands for a
place in memory.

methods

A method can be used instead
of a statement or an
expression.

local variables

Local to a method, stands for
a register or a place in
memory.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - declarations

class A {
int x;
...

public int f(){
int y;
...

}

...

}

classes

A class can be used as the
type of an object.

fields

A field is a global variable
inside a class, stands for a
place in memory.

methods

A method can be used instead
of a statement or an
expression.

local variables

Local to a method, stands for
a register or a place in
memory.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - declarations

class A {
int x;
...

public int f(){
int y;
...

}

...

}

classes

A class can be used as the
type of an object.

fields

A field is a global variable
inside a class, stands for a
place in memory.

methods

A method can be used instead
of a statement or an
expression.

local variables

Local to a method, stands for
a register or a place in
memory.

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - expressions

3 true false
x
x+98*y<x*y*y
a.f()
new A()
arr[39]

constants

identifiers

using operators

calling a method

object creation

array element

What are the values of these expressions?

What are the values of identifiers? Are the
expressions meaningful?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - expressions

3 true false
x
x+98*y<x*y*y
a.f()
new A()
arr[39]

constants

identifiers

using operators

calling a method

object creation

array element

What are the values of these expressions?

What are the values of identifiers? Are the
expressions meaningful?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - expressions

3 true false
x
x+98*y<x*y*y
a.f()
new A()
arr[39]

constants

identifiers

using operators

calling a method

object creation

array element

What are the values of these expressions?

What are the values of identifiers? Are the
expressions meaningful?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - expressions

3 true false
x
x+98*y<x*y*y
a.f()
new A()
arr[39]

constants

identifiers

using operators

calling a method

object creation

array element

What are the values of these expressions?

What are the values of identifiers? Are the
expressions meaningful?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - expressions

3 true false
x
x+98*y<x*y*y
a.f()
new A()
arr[39]

constants

identifiers

using operators

calling a method

object creation

array element

What are the values of these expressions?

What are the values of identifiers? Are the
expressions meaningful?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - expressions

3 true false
x
x+98*y<x*y*y
a.f()
new A()
arr[39]

constants

identifiers

using operators

calling a method

object creation

array element

What are the values of these expressions?

What are the values of identifiers? Are the
expressions meaningful?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - expressions

3 true false
x
x+98*y<x*y*y
a.f()
new A()
arr[39]

constants

identifiers

using operators

calling a method

object creation

array element

What are the values of these expressions?

What are the values of identifiers? Are the
expressions meaningful?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - expressions

3 true false
x
x+98*y<x*y*y
a.f()
new A()
arr[39]

constants

identifiers

using operators

calling a method

object creation

array element

What are the values of these expressions?

What are the values of identifiers? Are the
expressions meaningful?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - expressions

3 true false
x
x+98*y<x*y*y
a.f()
new A()
arr[39]

constants

identifiers

using operators

calling a method

object creation

array element

What are the values of these expressions?

What are the values of identifiers? Are the
expressions meaningful?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - statements

x = a.f();
arr[38]=x;
System.out.println(x);
if (x<y) max=y;

else max=x;
while(x<y)

x=x+y;

assignment

array assign

output

conditional

loop

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - statements

x = a.f();
arr[38]=x;
System.out.println(x);
if (x<y) max=y;

else max=x;
while(x<y)

x=x+y;

assignment

array assign

output

conditional

loop

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - statements

x = a.f();
arr[38]=x;
System.out.println(x);
if (x<y) max=y;

else max=x;
while(x<y)

x=x+y;

assignment

array assign

output

conditional

loop

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - statements

x = a.f();
arr[38]=x;
System.out.println(x);
if (x<y) max=y;

else max=x;
while(x<y)

x=x+y;

assignment

array assign

output

conditional

loop

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - statements

x = a.f();
arr[38]=x;
System.out.println(x);
if (x<y) max=y;

else max=x;
while(x<y)

x=x+y;

assignment

array assign

output

conditional

loop

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Syntactic categories in minijava - statements

x = a.f();
arr[38]=x;
System.out.println(x);
if (x<y) max=y;

else max=x;
while(x<y)

x=x+y;

assignment

array assign

output

conditional

loop

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of the grammar for minijava

goal → mainClass classDeclarationList

mainClass → CLASS ID ’{’ PUBLIC STATIC VOID MAIN ’(’
STRING ’[’ ’]’ ID ’)’ ’{’ statement ’}’

classDeclarationList → classDeclarationList classDeclaration
| ∈

classDeclaration → CLASS ID ’{’ varDeclarationList
metDeclarationList ’}’

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of the grammar for minijava

goal → mainClass classDeclarationList

mainClass → CLASS ID ’{’ PUBLIC STATIC VOID MAIN ’(’
STRING ’[’ ’]’ ID ’)’ ’{’ statement ’}’

classDeclarationList → classDeclarationList classDeclaration
| ∈

classDeclaration → CLASS ID ’{’ varDeclarationList
metDeclarationList ’}’

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of the grammar for minijava

goal → mainClass classDeclarationList

mainClass → CLASS ID ’{’ PUBLIC STATIC VOID MAIN ’(’
STRING ’[’ ’]’ ID ’)’ ’{’ statement ’}’

classDeclarationList → classDeclarationList classDeclaration
| ∈

classDeclaration → CLASS ID ’{’ varDeclarationList
metDeclarationList ’}’

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of the grammar for minijava

goal → mainClass classDeclarationList

mainClass → CLASS ID ’{’ PUBLIC STATIC VOID MAIN ’(’
STRING ’[’ ’]’ ID ’)’ ’{’ statement ’}’

classDeclarationList → classDeclarationList classDeclaration
| ∈

classDeclaration → CLASS ID ’{’ varDeclarationList
metDeclarationList ’}’

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of the grammar

metDeclaration → PUBLIC type ID ’(’ parameters ’)’ ’{’
varDeclarationList statementList
RETURN exp ’}’

statement → ’{’ statementList ’}’
| IF ’(’ exp ’)’ statement ELSE statement
| WHILE ’(’ exp ’)’ statement
| SYSTEMOUT ’(’ exp ’)’ ’;’
| ID ’=’ exp ’;’
| ID ’[’ exp ’]’ ’=’ exp ’;’

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of the grammar

metDeclaration → PUBLIC type ID ’(’ parameters ’)’ ’{’
varDeclarationList statementList
RETURN exp ’}’

statement → ’{’ statementList ’}’
| IF ’(’ exp ’)’ statement ELSE statement
| WHILE ’(’ exp ’)’ statement
| SYSTEMOUT ’(’ exp ’)’ ’;’
| ID ’=’ exp ’;’
| ID ’[’ exp ’]’ ’=’ exp ’;’

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of the grammar

metDeclaration → PUBLIC type ID ’(’ parameters ’)’ ’{’
varDeclarationList statementList
RETURN exp ’}’

statement → ’{’ statementList ’}’
| IF ’(’ exp ’)’ statement ELSE statement
| WHILE ’(’ exp ’)’ statement
| SYSTEMOUT ’(’ exp ’)’ ’;’
| ID ’=’ exp ’;’
| ID ’[’ exp ’]’ ’=’ exp ’;’

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of the grammar

metDeclaration → PUBLIC type ID ’(’ parameters ’)’ ’{’
varDeclarationList statementList
RETURN exp ’}’

statement → ’{’ statementList ’}’
| IF ’(’ exp ’)’ statement ELSE statement
| WHILE ’(’ exp ’)’ statement
| SYSTEMOUT ’(’ exp ’)’ ’;’
| ID ’=’ exp ’;’
| ID ’[’ exp ’]’ ’=’ exp ’;’

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of the grammar

metDeclaration → PUBLIC type ID ’(’ parameters ’)’ ’{’
varDeclarationList statementList
RETURN exp ’}’

statement → ’{’ statementList ’}’
| IF ’(’ exp ’)’ statement ELSE statement
| WHILE ’(’ exp ’)’ statement
| SYSTEMOUT ’(’ exp ’)’ ’;’
| ID ’=’ exp ’;’
| ID ’[’ exp ’]’ ’=’ exp ’;’

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of the grammar

metDeclaration → PUBLIC type ID ’(’ parameters ’)’ ’{’
varDeclarationList statementList
RETURN exp ’}’

statement → ’{’ statementList ’}’
| IF ’(’ exp ’)’ statement ELSE statement
| WHILE ’(’ exp ’)’ statement
| SYSTEMOUT ’(’ exp ’)’ ’;’
| ID ’=’ exp ’;’
| ID ’[’ exp ’]’ ’=’ exp ’;’

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of the grammar

metDeclaration → PUBLIC type ID ’(’ parameters ’)’ ’{’
varDeclarationList statementList
RETURN exp ’}’

statement → ’{’ statementList ’}’
| IF ’(’ exp ’)’ statement ELSE statement
| WHILE ’(’ exp ’)’ statement
| SYSTEMOUT ’(’ exp ’)’ ’;’
| ID ’=’ exp ’;’
| ID ’[’ exp ’]’ ’=’ exp ’;’

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Overview of the grammar

metDeclaration → PUBLIC type ID ’(’ parameters ’)’ ’{’
varDeclarationList statementList
RETURN exp ’}’

statement → ’{’ statementList ’}’
| IF ’(’ exp ’)’ statement ELSE statement
| WHILE ’(’ exp ’)’ statement
| SYSTEMOUT ’(’ exp ’)’ ’;’
| ID ’=’ exp ’;’
| ID ’[’ exp ’]’ ’=’ exp ’;’

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Remarks

The grammar in the appendix of
the book describes a small subset
of Java called minijava. Do not
add things to it! We will compile
minijava!

When understanding the
grammar, start from the goal.
But when implementing it in
jacc start with expressions, then
statements and then the
declarations!

Read in the jacc manual how to
do lists, lists with separators, etc.

The grammar will have some
conflicts. Test it a lot in order to
decide whether you can let jacc
solve them or whether you will
have to modify the grammar!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Remarks

The grammar in the appendix of
the book describes a small subset
of Java called minijava. Do not
add things to it! We will compile
minijava!

When understanding the
grammar, start from the goal.
But when implementing it in
jacc start with expressions, then
statements and then the
declarations!

Read in the jacc manual how to
do lists, lists with separators, etc.

The grammar will have some
conflicts. Test it a lot in order to
decide whether you can let jacc
solve them or whether you will
have to modify the grammar!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Remarks

The grammar in the appendix of
the book describes a small subset
of Java called minijava. Do not
add things to it! We will compile
minijava!

When understanding the
grammar, start from the goal.
But when implementing it in
jacc start with expressions, then
statements and then the
declarations!

Read in the jacc manual how to
do lists, lists with separators, etc.

The grammar will have some
conflicts. Test it a lot in order to
decide whether you can let jacc
solve them or whether you will
have to modify the grammar!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Remarks

The grammar in the appendix of
the book describes a small subset
of Java called minijava. Do not
add things to it! We will compile
minijava!

When understanding the
grammar, start from the goal.
But when implementing it in
jacc start with expressions, then
statements and then the
declarations!

Read in the jacc manual how to
do lists, lists with separators, etc.

The grammar will have some
conflicts. Test it a lot in order to
decide whether you can let jacc
solve them or whether you will
have to modify the grammar!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Remarks

The grammar in the appendix of
the book describes a small subset
of Java called minijava. Do not
add things to it! We will compile
minijava!

When understanding the
grammar, start from the goal.
But when implementing it in
jacc start with expressions, then
statements and then the
declarations!

Read in the jacc manual how to
do lists, lists with separators, etc.

The grammar will have some
conflicts. Test it a lot in order to
decide whether you can let jacc
solve them or whether you will
have to modify the grammar!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Storing the structure

While the parser recognizes a
program, we cannot calculate a value
but we can calculate a representation
of the structure!

We forget about connecting
terminals and about the derivation
and concentrate in the other
syntactic categories that are used!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Storing the structure

While the parser recognizes a
program, we cannot calculate a value
but we can calculate a representation
of the structure!

We forget about connecting
terminals and about the derivation
and concentrate in the other
syntactic categories that are used!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

What do we need?

Main class

We only need the name and the statement!

Class Declaration

We only need the name, the list of variable declarations and the
list of method declarations.

Method declaration

We only need the result type, the name, the list of parameters, the
list of variable declarations, the statement list and the returned
expression.

For a statement, it depends . . .

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

What do we need?

Main class

We only need the name and the statement!

Class Declaration

We only need the name, the list of variable declarations and the
list of method declarations.

Method declaration

We only need the result type, the name, the list of parameters, the
list of variable declarations, the statement list and the returned
expression.

For a statement, it depends . . .

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

What do we need?

Main class

We only need the name and the statement!

Class Declaration

We only need the name, the list of variable declarations and the
list of method declarations.

Method declaration

We only need the result type, the name, the list of parameters, the
list of variable declarations, the statement list and the returned
expression.

For a statement, it depends . . .

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

What do we need?

Main class

We only need the name and the statement!

Class Declaration

We only need the name, the list of variable declarations and the
list of method declarations.

Method declaration

We only need the result type, the name, the list of parameters, the
list of variable declarations, the statement list and the returned
expression.

For a statement, it depends . . .

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

What do we need?

Main class

We only need the name and the statement!

Class Declaration

We only need the name, the list of variable declarations and the
list of method declarations.

Method declaration

We only need the result type, the name, the list of parameters, the
list of variable declarations, the statement list and the returned
expression.

For a statement, it depends . . .

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Statements

Assign

We need the identifier and the
expression.

Array element assign

We need the identifier, the
indexing expression and the right
hand side expression.

If

We need the expression and two
statements!

While

We need and expression and a
statement!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Statements

Assign

We need the identifier and the
expression.

Array element assign

We need the identifier, the
indexing expression and the right
hand side expression.

If

We need the expression and two
statements!

While

We need and expression and a
statement!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Statements

Assign

We need the identifier and the
expression.

Array element assign

We need the identifier, the
indexing expression and the right
hand side expression.

If

We need the expression and two
statements!

While

We need and expression and a
statement!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Statements

Assign

We need the identifier and the
expression.

Array element assign

We need the identifier, the
indexing expression and the right
hand side expression.

If

We need the expression and two
statements!

While

We need and expression and a
statement!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Statements

Assign

We need the identifier and the
expression.

Array element assign

We need the identifier, the
indexing expression and the right
hand side expression.

If

We need the expression and two
statements!

While

We need and expression and a
statement!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Trees

All this looks very much like trees with diferent type and number
of children for different types of nodes!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Abstract syntax in Java

We need a datastructure in
Java for the abstract syntax
trees.

Problem

There will be a class for each
type of node. But we want
that all types of statement
nodes can be used where a
statement is needed! (and the
same for expressions by the
way.)

Containers and components

Bricks are used as components,
contained in a construction.
But the construction can be
used as a component in a
larger construction!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Abstract syntax in Java

We need a datastructure in
Java for the abstract syntax
trees.

Problem

There will be a class for each
type of node. But we want
that all types of statement
nodes can be used where a
statement is needed! (and the
same for expressions by the
way.)

Containers and components

Bricks are used as components,
contained in a construction.
But the construction can be
used as a component in a
larger construction!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Abstract syntax in Java

We need a datastructure in
Java for the abstract syntax
trees.

Problem

There will be a class for each
type of node. But we want
that all types of statement
nodes can be used where a
statement is needed! (and the
same for expressions by the
way.)

Containers and components

Bricks are used as components,
contained in a construction.
But the construction can be
used as a component in a
larger construction!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Statements

Node for IF

public class If {
public Exp e;
public Statement s1,s2;

public If(Exp ae, Statement as1, Statement as2) {
e=ae; s1=as1; s2=as2;

}
}

How do we see that this builds a statement, that can be used
where a statement is required?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Statements

Node for IF

public class If {
public Exp e;
public Statement s1,s2;

public If(Exp ae, Statement as1, Statement as2) {
e=ae; s1=as1; s2=as2;

}
}

How do we see that this builds a statement, that can be used
where a statement is required?

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Statements

Node for IF

public class If extends Statement{
public Exp e;
public Statement s1,s2;

public If(Exp ae, Statement as1, Statement as2) {
e=ae; s1=as1; s2=as2;

}
}

Statements

public abstract class Statement {}

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Statements

Node for IF

public class If extends Statement{
public Exp e;
public Statement s1,s2;

public If(Exp ae, Statement as1, Statement as2) {
e=ae; s1=as1; s2=as2;

}
}

Statements

public abstract class Statement {}

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Building syntax trees

As the parser recognizes sentences of the different forms, it will
build the abstract syntax trees.

Example

statement : IF ’(’ exp ’)’ statement ELSE statement
{ $$ = new If($3, $5, $7); }

There is an abstract class for the
syntactic category statement and
one class inheriting from it for
each production for statement!

And the same idea is used for
expressions!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Building syntax trees

As the parser recognizes sentences of the different forms, it will
build the abstract syntax trees.

Example

statement : IF ’(’ exp ’)’ statement ELSE statement
{ $$ = new If($3, $5, $7); }

There is an abstract class for the
syntactic category statement and
one class inheriting from it for
each production for statement!

And the same idea is used for
expressions!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Building syntax trees

As the parser recognizes sentences of the different forms, it will
build the abstract syntax trees.

Example

statement : IF ’(’ exp ’)’ statement ELSE statement
{ $$ = new If($3, $5, $7); }

There is an abstract class for the
syntactic category statement and
one class inheriting from it for
each production for statement!

And the same idea is used for
expressions!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Building syntax trees

As the parser recognizes sentences of the different forms, it will
build the abstract syntax trees.

Example

statement : IF ’(’ exp ’)’ statement ELSE statement
{ $$ = new If($3, $5, $7); }

There is an abstract class for the
syntactic category statement and
one class inheriting from it for
each production for statement!

And the same idea is used for
expressions!

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Parsing minijava

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The project in the course
continues by using jacc to build
a parser for minijava that, in the
process of parsing a minijava
program, creates an abstract
syntax tree for the program!

You get the datastructure for the
abstract syntax! (many classes,
described in chapter 4 of the
course book).

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Parsing minijava

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The project in the course
continues by using jacc to build
a parser for minijava that, in the
process of parsing a minijava
program, creates an abstract
syntax tree for the program!

You get the datastructure for the
abstract syntax! (many classes,
described in chapter 4 of the
course book).

Parsing Syntactic categories Concrete syntax Abstract syntax Composite pattern

Parsing minijava

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The project in the course
continues by using jacc to build
a parser for minijava that, in the
process of parsing a minijava
program, creates an abstract
syntax tree for the program!

You get the datastructure for the
abstract syntax! (many classes,
described in chapter 4 of the
course book).

	Parsing
	Syntactic categories
	Concrete syntax
	Abstract syntax
	Composite pattern

