
Computer Languages
Parsing

February 2nd

Is it a legal sentence?

Given an input string that alleges to be a sentence infer a
derivation (or conclude that no such exists).

Example

 CC-lab
<A> (Computing and Communication)

IS-lab
<A> (Intelligent Systems)

<A>
MI-lab
(Man and Information technology)

Is it a legal sentence?

Given an input string that alleges to be a sentence infer a
derivation (or conclude that no such exists).

Example

 CC-lab
<A> (Computing and Communication)

IS-lab
<A> (Intelligent Systems)

<A>
MI-lab
(Man and Information technology)

Discover a derivation

The string appears to the parser as a
sequence of tokens, some of them
with semantic values attached.

Example

ID x | TRUE true & ID y

Build a parse tree

The leaves are known

it is the string!

The root is known

it is the start symbol!

They have to be connected following
a derivation!

Strategies

1 Top-Down

2 Bottom-UP

What productions should be
applied?

Discover a derivation

The string appears to the parser as a
sequence of tokens, some of them
with semantic values attached.

Example

ID x | TRUE true & ID y

Build a parse tree

The leaves are known

it is the string!

The root is known

it is the start symbol!

They have to be connected following
a derivation!

Strategies

1 Top-Down

2 Bottom-UP

What productions should be
applied?

Discover a derivation

The string appears to the parser as a
sequence of tokens, some of them
with semantic values attached.

Example

ID x | TRUE true & ID y

Build a parse tree

The leaves are known

it is the string!

The root is known

it is the start symbol!

They have to be connected following
a derivation!

Strategies

1 Top-Down

2 Bottom-UP

What productions should be
applied?

Discover a derivation

The string appears to the parser as a
sequence of tokens, some of them
with semantic values attached.

Example

ID x | TRUE true & ID y

Build a parse tree

The leaves are known

it is the string!

The root is known

it is the start symbol!

They have to be connected following
a derivation!

Strategies

1 Top-Down

2 Bottom-UP

What productions should be
applied?

Discover a derivation

The string appears to the parser as a
sequence of tokens, some of them
with semantic values attached.

Example

ID x | TRUE true & ID y

Build a parse tree

The leaves are known

it is the string!

The root is known

it is the start symbol!

They have to be connected following
a derivation!

Strategies

1 Top-Down

2 Bottom-UP

What productions should be
applied?

Discover a derivation

The string appears to the parser as a
sequence of tokens, some of them
with semantic values attached.

Example

ID x | TRUE true & ID y

Build a parse tree

The leaves are known

it is the string!

The root is known

it is the start symbol!

They have to be connected following
a derivation!

Strategies

1 Top-Down

2 Bottom-UP

What productions should be
applied?

Discover a derivation

The string appears to the parser as a
sequence of tokens, some of them
with semantic values attached.

Example

ID x | TRUE true & ID y

Build a parse tree

The leaves are known

it is the string!

The root is known

it is the start symbol!

They have to be connected following
a derivation!

Strategies

1 Top-Down

2 Bottom-UP

What productions should be
applied?

Discover a derivation

The string appears to the parser as a
sequence of tokens, some of them
with semantic values attached.

Example

ID x | TRUE true & ID y

Build a parse tree

The leaves are known

it is the string!

The root is known

it is the start symbol!

They have to be connected following
a derivation!

Strategies

1 Top-Down

2 Bottom-UP

What productions should be
applied?

Discover a derivation

The string appears to the parser as a
sequence of tokens, some of them
with semantic values attached.

Example

ID x | TRUE true & ID y

Build a parse tree

The leaves are known

it is the string!

The root is known

it is the start symbol!

They have to be connected following
a derivation!

Strategies

1 Top-Down

2 Bottom-UP

What productions should be
applied?

Discover a derivation

The string appears to the parser as a
sequence of tokens, some of them
with semantic values attached.

Example

ID x | TRUE true & ID y

Build a parse tree

The leaves are known

it is the string!

The root is known

it is the start symbol!

They have to be connected following
a derivation!

Strategies

1 Top-Down

2 Bottom-UP

What productions should be
applied?

Running example

The grammar

bexp → bexp | conj
| conj

conj → conj & neg
| neg

neg → ¬ atom
| atom

atom → TRUE
| FALSE
| ID
| (bexp)

The sentence

x | true & y

The parse tree

bexp

bexp

|

conj
conj

&

neg

atom

ID

neg

atom

TRUE

conj

neg

atom

ID

Running example

The grammar

bexp → bexp | conj
| conj

conj → conj & neg
| neg

neg → ¬ atom
| atom

atom → TRUE
| FALSE
| ID
| (bexp)

The sentence

x | true & y

The parse tree

bexp

bexp

|

conj
conj

&

neg

atom

ID

neg

atom

TRUE

conj

neg

atom

ID

Running example

The grammar

bexp → bexp | conj
| conj

conj → conj & neg
| neg

neg → ¬ atom
| atom

atom → TRUE
| FALSE
| ID
| (bexp)

The sentence

x | true & y

The parse tree

bexp

bexp

|

conj
conj

&

neg

atom

ID

neg

atom

TRUE

conj

neg

atom

ID

Running example

The grammar

bexp → bexp | conj
| conj

conj → conj & neg
| neg

neg → ¬ atom
| atom

atom → TRUE
| FALSE
| ID
| (bexp)

The sentence

x | true & y

The parse tree

bexp

bexp

|

conj
conj

&

neg

atom

ID

neg

atom

TRUE

conj

neg

atom

ID

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!

Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)

Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)

Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)

Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)

Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)

Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)

Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)

Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)

Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)

Potential handles

Example

When the frontier is bexp|conj

should we reduce conj with
bexp→conj?

or should we build a larger conj
before reducing?

It depends on the look ahead!

We describe potential handles using

1 rules of the grammar

2 the state of the parser

3 the look ahead

Example

With our frontier the potential
handles are
<bexp→bexp|conj• >
<conj→conj•&neg>

If the next token is a & we
extend the frontier! Otherwise,
we reduce to a bexp!

We use a bullet • to mark the
state of the parser!

Potential handles

Example

When the frontier is bexp|conj

should we reduce conj with
bexp→conj?

or should we build a larger conj
before reducing?

It depends on the look ahead!

We describe potential handles using

1 rules of the grammar

2 the state of the parser

3 the look ahead

Example

With our frontier the potential
handles are
<bexp→bexp|conj• >
<conj→conj•&neg>

If the next token is a & we
extend the frontier! Otherwise,
we reduce to a bexp!

We use a bullet • to mark the
state of the parser!

Potential handles

Example

When the frontier is bexp|conj

should we reduce conj with
bexp→conj?

or should we build a larger conj
before reducing?

It depends on the look ahead!

We describe potential handles using

1 rules of the grammar

2 the state of the parser

3 the look ahead

Example

With our frontier the potential
handles are
<bexp→bexp|conj• >
<conj→conj•&neg>

If the next token is a & we
extend the frontier! Otherwise,
we reduce to a bexp!

We use a bullet • to mark the
state of the parser!

Potential handles

Example

When the frontier is bexp|conj

should we reduce conj with
bexp→conj?

or should we build a larger conj
before reducing?

It depends on the look ahead!

We describe potential handles using

1 rules of the grammar

2 the state of the parser

3 the look ahead

Example

With our frontier the potential
handles are
<bexp→bexp|conj• >
<conj→conj•&neg>

If the next token is a & we
extend the frontier! Otherwise,
we reduce to a bexp!

We use a bullet • to mark the
state of the parser!

Potential handles

Example

When the frontier is bexp|conj

should we reduce conj with
bexp→conj?

or should we build a larger conj
before reducing?

It depends on the look ahead!

We describe potential handles using

1 rules of the grammar

2 the state of the parser

3 the look ahead

Example

With our frontier the potential
handles are
<bexp→bexp|conj• >
<conj→conj•&neg>

If the next token is a & we
extend the frontier! Otherwise,
we reduce to a bexp!

We use a bullet • to mark the
state of the parser!

Potential handles

Example

When the frontier is bexp|conj

should we reduce conj with
bexp→conj?

or should we build a larger conj
before reducing?

It depends on the look ahead!

We describe potential handles using

1 rules of the grammar

2 the state of the parser

3 the look ahead

Example

With our frontier the potential
handles are
<bexp→bexp|conj• >
<conj→conj•&neg>

If the next token is a & we
extend the frontier! Otherwise,
we reduce to a bexp!

We use a bullet • to mark the
state of the parser!

Potential handles

Example

When the frontier is bexp|conj

should we reduce conj with
bexp→conj?

or should we build a larger conj
before reducing?

It depends on the look ahead!

We describe potential handles using

1 rules of the grammar

2 the state of the parser

3 the look ahead

Example

With our frontier the potential
handles are
<bexp→bexp|conj• >
<conj→conj•&neg>

If the next token is a & we
extend the frontier! Otherwise,
we reduce to a bexp!

We use a bullet • to mark the
state of the parser!

Potential handles

Example

When the frontier is bexp|conj

should we reduce conj with
bexp→conj?

or should we build a larger conj
before reducing?

It depends on the look ahead!

We describe potential handles using

1 rules of the grammar

2 the state of the parser

3 the look ahead

Example

With our frontier the potential
handles are
<bexp→bexp|conj• >
<conj→conj•&neg>

If the next token is a & we
extend the frontier! Otherwise,
we reduce to a bexp!

We use a bullet • to mark the
state of the parser!

Observations

We always inspect the rightmost
part of the frontier to find
patterns in order to decide on new
actions!

We can use a stack to store the
frontier!

The operations on the stack are

shift a new token from the
input sequence

reduce some items from the
top of the stack to one non
terminal according to some
handle.

Observations

We always inspect the rightmost
part of the frontier to find
patterns in order to decide on new
actions!

We can use a stack to store the
frontier!

The operations on the stack are

shift a new token from the
input sequence

reduce some items from the
top of the stack to one non
terminal according to some
handle.

Observations

We always inspect the rightmost
part of the frontier to find
patterns in order to decide on new
actions!

We can use a stack to store the
frontier!

The operations on the stack are

shift a new token from the
input sequence

reduce some items from the
top of the stack to one non
terminal according to some
handle.

Observations

We always inspect the rightmost
part of the frontier to find
patterns in order to decide on new
actions!

We can use a stack to store the
frontier!

The operations on the stack are

shift a new token from the
input sequence

reduce some items from the
top of the stack to one non
terminal according to some
handle.

Observations

We always inspect the rightmost
part of the frontier to find
patterns in order to decide on new
actions!

We can use a stack to store the
frontier!

The operations on the stack are

shift a new token from the
input sequence

reduce some items from the
top of the stack to one non
terminal according to some
handle.

The number of potential handles is finite!

the number of rules
*

the lengths of the right hand sides.

We can use a finite automata to inspect the top of the stack
looking for patterns!

The workings of the parser can be explained by saying what is to
be done with a given stack and a lookahead!

All the knowledge is stored in two tables:

1 The Action table

2 The Goto table

The number of potential handles is finite!

the number of rules
*

the lengths of the right hand sides.

We can use a finite automata to inspect the top of the stack
looking for patterns!

The workings of the parser can be explained by saying what is to
be done with a given stack and a lookahead!

All the knowledge is stored in two tables:

1 The Action table

2 The Goto table

The number of potential handles is finite!

the number of rules
*

the lengths of the right hand sides.

We can use a finite automata to inspect the top of the stack
looking for patterns!

The workings of the parser can be explained by saying what is to
be done with a given stack and a lookahead!

All the knowledge is stored in two tables:

1 The Action table

2 The Goto table

The number of potential handles is finite!

the number of rules
*

the lengths of the right hand sides.

We can use a finite automata to inspect the top of the stack
looking for patterns!

The workings of the parser can be explained by saying what is to
be done with a given stack and a lookahead!

All the knowledge is stored in two tables:

1 The Action table

2 The Goto table

The tables

1 bexp → bexp | conj
2 | conj
3 conj → conj & neg
4 | neg
5 neg → ¬ atom
6 | atom
7 atom → TRUE
8 | FALSE
9 | ID
10 | (bexp)

Actions

state eof | & true ID . . .

0 s 5
1 acc
2 r 2
3 r 4
4 r 6
5 r 7

. . .

Goto

state bexp conj neg atom

0 1 2 3 4
. . .

The tables

Actions

For every state and every
lookahead there is an action that
can be

s i shift the terminal onto the
stack and change to state i.

r j reduce according to rule j.
The state is the one in the
stack before the pattern that
is replaced by a nonterminal.

acc accepting the sentence!

err to report an error
(whenever the table does not
have one of the actions
above!)

Goto

For every state and every
non-terminal on the top of the
stack, indicates to what state to
change.

The parser generator

Reads the grammar and generates
these tables and organizes a
driver!

This is not always possible! If it is
we say that the grammar is LR(1).

The tables

Actions

For every state and every
lookahead there is an action that
can be

s i shift the terminal onto the
stack and change to state i.

r j reduce according to rule j.
The state is the one in the
stack before the pattern that
is replaced by a nonterminal.

acc accepting the sentence!

err to report an error
(whenever the table does not
have one of the actions
above!)

Goto

For every state and every
non-terminal on the top of the
stack, indicates to what state to
change.

The parser generator

Reads the grammar and generates
these tables and organizes a
driver!

This is not always possible! If it is
we say that the grammar is LR(1).

The tables

Actions

For every state and every
lookahead there is an action that
can be

s i shift the terminal onto the
stack and change to state i.

r j reduce according to rule j.
The state is the one in the
stack before the pattern that
is replaced by a nonterminal.

acc accepting the sentence!

err to report an error
(whenever the table does not
have one of the actions
above!)

Goto

For every state and every
non-terminal on the top of the
stack, indicates to what state to
change.

The parser generator

Reads the grammar and generates
these tables and organizes a
driver!

This is not always possible! If it is
we say that the grammar is LR(1).

The tables

Actions

For every state and every
lookahead there is an action that
can be

s i shift the terminal onto the
stack and change to state i.

r j reduce according to rule j.
The state is the one in the
stack before the pattern that
is replaced by a nonterminal.

acc accepting the sentence!

err to report an error
(whenever the table does not
have one of the actions
above!)

Goto

For every state and every
non-terminal on the top of the
stack, indicates to what state to
change.

The parser generator

Reads the grammar and generates
these tables and organizes a
driver!

This is not always possible! If it is
we say that the grammar is LR(1).

The tables

Actions

For every state and every
lookahead there is an action that
can be

s i shift the terminal onto the
stack and change to state i.

r j reduce according to rule j.
The state is the one in the
stack before the pattern that
is replaced by a nonterminal.

acc accepting the sentence!

err to report an error
(whenever the table does not
have one of the actions
above!)

Goto

For every state and every
non-terminal on the top of the
stack, indicates to what state to
change.

The parser generator

Reads the grammar and generates
these tables and organizes a
driver!

This is not always possible! If it is
we say that the grammar is LR(1).

The tables

Actions

For every state and every
lookahead there is an action that
can be

s i shift the terminal onto the
stack and change to state i.

r j reduce according to rule j.
The state is the one in the
stack before the pattern that
is replaced by a nonterminal.

acc accepting the sentence!

err to report an error
(whenever the table does not
have one of the actions
above!)

Goto

For every state and every
non-terminal on the top of the
stack, indicates to what state to
change.

The parser generator

Reads the grammar and generates
these tables and organizes a
driver!

This is not always possible! If it is
we say that the grammar is LR(1).

The tables

Actions

For every state and every
lookahead there is an action that
can be

s i shift the terminal onto the
stack and change to state i.

r j reduce according to rule j.
The state is the one in the
stack before the pattern that
is replaced by a nonterminal.

acc accepting the sentence!

err to report an error
(whenever the table does not
have one of the actions
above!)

Goto

For every state and every
non-terminal on the top of the
stack, indicates to what state to
change.

The parser generator

Reads the grammar and generates
these tables and organizes a
driver!

This is not always possible! If it is
we say that the grammar is LR(1).

The tables

Actions

For every state and every
lookahead there is an action that
can be

s i shift the terminal onto the
stack and change to state i.

r j reduce according to rule j.
The state is the one in the
stack before the pattern that
is replaced by a nonterminal.

acc accepting the sentence!

err to report an error
(whenever the table does not
have one of the actions
above!)

Goto

For every state and every
non-terminal on the top of the
stack, indicates to what state to
change.

The parser generator

Reads the grammar and generates
these tables and organizes a
driver!

This is not always possible! If it is
we say that the grammar is LR(1).

Shift or Reduce?

goal → stm
stm → if<exp>then stm else stm

| if<exp>then stm
| <assign>

Example

if<exp>then if<exp>then <assign> • else <assign>

Shift or Reduce?

goal → stm
stm → if<exp>then stm else stm

| if<exp>then stm
| <assign>

Example

if<exp>then if<exp>then <assign> • else <assign>

Shift or reduce?

Example

if<exp>then if<exp>then <assign> • else <assign>

Reduce

if<exp>then stm • else <assign>

Shift

if<exp>then if<exp>then <assign> else • <assign>

jacc if.jacc
WARNING: conflicts: 1 shift/reduce, 0 reduce/reduce

Shift or reduce?

Example

if<exp>then if<exp>then <assign> • else <assign>

Reduce

if<exp>then stm • else <assign>

Shift

if<exp>then if<exp>then <assign> else • <assign>

jacc if.jacc
WARNING: conflicts: 1 shift/reduce, 0 reduce/reduce

Shift or reduce?

Example

if<exp>then if<exp>then <assign> • else <assign>

Reduce

if<exp>then stm • else <assign>

Shift

if<exp>then if<exp>then <assign> else • <assign>

jacc if.jacc
WARNING: conflicts: 1 shift/reduce, 0 reduce/reduce

Shift or reduce?

Example

if<exp>then if<exp>then <assign> • else <assign>

Reduce

if<exp>then stm • else <assign>

Shift

if<exp>then if<exp>then <assign> else • <assign>

jacc if.jacc
WARNING: conflicts: 1 shift/reduce, 0 reduce/reduce

Reformulating the grammar

statement → if<exp>then statement
| if<exp>then withElse else statement
| <assign>

withElse → if<exp>then withElse else withElse
| <assign>

Example

if<exp>then if<exp>then <assign> • else <assign>
can only be followed by a shift!

In jacc we can leave the conflict unresolved, in which case it
solves it in favour of shift (the same as we achieved with the
corrected grammar).

Reformulating the grammar

statement → if<exp>then statement
| if<exp>then withElse else statement
| <assign>

withElse → if<exp>then withElse else withElse
| <assign>

Example

if<exp>then if<exp>then <assign> • else <assign>
can only be followed by a shift!

In jacc we can leave the conflict unresolved, in which case it
solves it in favour of shift (the same as we achieved with the
corrected grammar).

Reformulating the grammar

statement → if<exp>then statement
| if<exp>then withElse else statement
| <assign>

withElse → if<exp>then withElse else withElse
| <assign>

Example

if<exp>then if<exp>then <assign> • else <assign>
can only be followed by a shift!

In jacc we can leave the conflict unresolved, in which case it
solves it in favour of shift (the same as we achieved with the
corrected grammar).

Generating the push-down automaton

%token TRUE FALSE ID
%token ’-’ ’&’ ’|’ ’(’ ’)’
%%
bexp : bexp ’|’ conj

| conj
;

conj : conj ’&’ neg
| neg
;

neg : ’-’ atom
| atom
;

atom : TRUE | FALSE
| ID | ’(’ bexp ’)’;

%%

Trace the workings without having to
write a lexer:

jacc -pt bexp.jacc -r file

Inspect the push down automaton to
understand conflicts:

jacc -h bexp.jacc

generates an html version of the
tables with

hyperlinks to change state on
shift and goto,

and the back button for
reductions!

Generating the push-down automaton

%token TRUE FALSE ID
%token ’-’ ’&’ ’|’ ’(’ ’)’
%%
bexp : bexp ’|’ conj

| conj
;

conj : conj ’&’ neg
| neg
;

neg : ’-’ atom
| atom
;

atom : TRUE | FALSE
| ID | ’(’ bexp ’)’;

%%

Trace the workings without having to
write a lexer:

jacc -pt bexp.jacc -r file

Inspect the push down automaton to
understand conflicts:

jacc -h bexp.jacc

generates an html version of the
tables with

hyperlinks to change state on
shift and goto,

and the back button for
reductions!

Generating the push-down automaton

%token TRUE FALSE ID
%token ’-’ ’&’ ’|’ ’(’ ’)’
%%
bexp : bexp ’|’ conj

| conj
;

conj : conj ’&’ neg
| neg
;

neg : ’-’ atom
| atom
;

atom : TRUE | FALSE
| ID | ’(’ bexp ’)’;

%%

Trace the workings without having to
write a lexer:

jacc -pt bexp.jacc -r file

Inspect the push down automaton to
understand conflicts:

jacc -h bexp.jacc

generates an html version of the
tables with

hyperlinks to change state on
shift and goto,

and the back button for
reductions!

Generating the push-down automaton

%token TRUE FALSE ID
%token ’-’ ’&’ ’|’ ’(’ ’)’
%%
bexp : bexp ’|’ conj

| conj
;

conj : conj ’&’ neg
| neg
;

neg : ’-’ atom
| atom
;

atom : TRUE | FALSE
| ID | ’(’ bexp ’)’;

%%

Trace the workings without having to
write a lexer:

jacc -pt bexp.jacc -r file

Inspect the push down automaton to
understand conflicts:

jacc -h bexp.jacc

generates an html version of the
tables with

hyperlinks to change state on
shift and goto,

and the back button for
reductions!

Generating the push-down automaton

%token TRUE FALSE ID
%token ’-’ ’&’ ’|’ ’(’ ’)’
%%
bexp : bexp ’|’ conj

| conj
;

conj : conj ’&’ neg
| neg
;

neg : ’-’ atom
| atom
;

atom : TRUE | FALSE
| ID | ’(’ bexp ’)’;

%%

Trace the workings without having to
write a lexer:

jacc -pt bexp.jacc -r file

Inspect the push down automaton to
understand conflicts:

jacc -h bexp.jacc

generates an html version of the
tables with

hyperlinks to change state on
shift and goto,

and the back button for
reductions!

	The problem
	Bottom-Up parsing
	Shift-Reduce parsing
	Conflicts
	jacc support

