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Is it a legal sentence?

Given an input string that alleges to be a sentence infer a
derivation (or conclude that no such exists).

Example

<A HREF="http://www.hh.se/CC-lab"> <li>CC-lab</A>
<A> </A>(Computing and Communication)
<BR>
<A HREF="http://www.hh.se/IS-lab"><li>IS-lab</A>
<A> </A>(Intelligent Systems)
<BR>
<A></A>
<A HREF="http://www.hh.se/MI-lab"><li>MI-lab</A>
(Man and Information technology)
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Discover a derivation

The string appears to the parser as a
sequence of tokens, some of them
with semantic values attached.

Example

ID x | TRUE true & ID y

Build a parse tree

The leaves are known

it is the string!

The root is known

it is the start symbol!

They have to be connected following
a derivation!

Strategies

1 Top-Down

2 Bottom-UP

What productions should be
applied?
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Running example

The grammar

bexp → bexp | conj
| conj

conj → conj & neg
| neg

neg → ¬ atom
| atom

atom → TRUE
| FALSE
| ID
| (bexp)

The sentence

x | true & y

The parse tree

bexp

bexp

|

conj
conj

&

neg

atom

ID

neg

atom

TRUE
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neg

atom

ID
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Bottom-Up

The rightmost derivation . . .

bexp
bexp | conj
bexp | conj & neg
bexp | conj & atom
bexp | conj & ID
bexp | neg & ID
bexp | atom & ID
bexp | TRUE & ID
conj | TRUE & ID
neg | TRUE & ID
atom | TRUE & ID
ID | TRUE & ID

. . . could be discovered in reverse
order when inspecting the input from
left to right!

For doing so we say that

1 we build a frontier in the parse
tree by either

taking in one more token from
the input or
reducing to a nonterminal
using some rule from the
grammar.

2 For doing this we need handles
that tell us what can be
reduced!
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Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)



Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)



Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)



Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)



Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)



Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)



Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)



Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)



Handles

Example

On getting the first token ID

There is one rule atom→ID

so building the frontier proceeds to
reduce ID to atom.

There is one rule neg→atom

so building the frontier proceeds to
reduce atom to neg .

How long should we continue to
reduce before taking in the next
token?

We can make a decision by
looking ahead in the input
sequence!

Example

While working with ID we look
ahead 1 token (without
retrieving it!) and see it is |.

There is a rule
bexp→bexp|conj so we will
proceed reducing until we form
the bexp to the left of the |
before taking in the next token
(|)



Potential handles

Example

When the frontier is bexp|conj

should we reduce conj with
bexp→conj?

or should we build a larger conj
before reducing?

It depends on the look ahead!

We describe potential handles using

1 rules of the grammar

2 the state of the parser

3 the look ahead

Example

With our frontier the potential
handles are
<bexp→bexp|conj• >
<conj→conj•&neg>

If the next token is a & we
extend the frontier! Otherwise,
we reduce to a bexp!

We use a bullet • to mark the
state of the parser!
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If the next token is a & we
extend the frontier! Otherwise,
we reduce to a bexp!

We use a bullet • to mark the
state of the parser!
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Observations

We always inspect the rightmost
part of the frontier to find
patterns in order to decide on new
actions!

We can use a stack to store the
frontier!

The operations on the stack are

shift a new token from the
input sequence

reduce some items from the
top of the stack to one non
terminal according to some
handle.
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The number of potential handles is finite!

the number of rules
*

the lengths of the right hand sides.

We can use a finite automata to inspect the top of the stack
looking for patterns!

The workings of the parser can be explained by saying what is to
be done with a given stack and a lookahead!

All the knowledge is stored in two tables:

1 The Action table

2 The Goto table
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The tables

1 bexp → bexp | conj
2 | conj
3 conj → conj & neg
4 | neg
5 neg → ¬ atom
6 | atom
7 atom → TRUE
8 | FALSE
9 | ID
10 | (bexp)

Actions

state eof | & true ID . . .

0 s 5
1 acc
2 r 2
3 r 4
4 r 6
5 r 7

. . .

Goto

state bexp conj neg atom

0 1 2 3 4
. . .



The tables

Actions

For every state and every
lookahead there is an action that
can be

s i shift the terminal onto the
stack and change to state i.

r j reduce according to rule j.
The state is the one in the
stack before the pattern that
is replaced by a nonterminal.

acc accepting the sentence!

err to report an error
(whenever the table does not
have one of the actions
above!)

Goto

For every state and every
non-terminal on the top of the
stack, indicates to what state to
change.

The parser generator

Reads the grammar and generates
these tables and organizes a
driver!

This is not always possible! If it is
we say that the grammar is LR(1).
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Shift or Reduce?

goal → stm
stm → if<exp>then stm else stm

| if<exp>then stm
| <assign>

Example

if<exp>then if<exp>then <assign> • else <assign>
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Reformulating the grammar

statement → if<exp>then statement
| if<exp>then withElse else statement
| <assign>

withElse → if<exp>then withElse else withElse
| <assign>

Example

if<exp>then if<exp>then <assign> • else <assign>
can only be followed by a shift!

In jacc we can leave the conflict unresolved, in which case it
solves it in favour of shift (the same as we achieved with the
corrected grammar).
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Generating the push-down automaton

%token TRUE FALSE ID
%token ’-’ ’&’ ’|’ ’(’ ’)’
%%
bexp : bexp ’|’ conj

| conj
;

conj : conj ’&’ neg
| neg
;

neg : ’-’ atom
| atom
;

atom : TRUE | FALSE
| ID | ’(’ bexp ’)’;

%%

Trace the workings without having to
write a lexer:

jacc -pt bexp.jacc -r file

Inspect the push down automaton to
understand conflicts:

jacc -h bexp.jacc

generates an html version of the
tables with

hyperlinks to change state on
shift and goto,

and the back button for
reductions!
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