
Introduction Expressing Syntax A parser generator Summary

Computer Languages
Describing Syntax

Context Free Grammars

1 Introduction
2 Expressing Syntax
3 A parser generator
4 Summary

January 27

Introduction Expressing Syntax A parser generator Summary

Plan

What we know

1 How we can describe the words
that can be used in a computer
language.

2 How to generate programs that
recognize legal words in source
code.

3 How to use such a program to
generate a sequence of tokens
and eliminate irrelevant
fragments (white spaces,
new-lines, comments).

What we will learn today

1 How we can describe the
valid sentences on a
computer language.

2 That we can use a parser
generator to use this
descriptions and get a
program that does things
while recognizing legal
source code.

Introduction Expressing Syntax A parser generator Summary

Plan

What we know

1 How we can describe the words
that can be used in a computer
language.

2 How to generate programs that
recognize legal words in source
code.

3 How to use such a program to
generate a sequence of tokens
and eliminate irrelevant
fragments (white spaces,
new-lines, comments).

What we will learn today

1 How we can describe the
valid sentences on a
computer language.

2 That we can use a parser
generator to use this
descriptions and get a
program that does things
while recognizing legal
source code.

Introduction Expressing Syntax A parser generator Summary

Plan

What we know

1 How we can describe the words
that can be used in a computer
language.

2 How to generate programs that
recognize legal words in source
code.

3 How to use such a program to
generate a sequence of tokens
and eliminate irrelevant
fragments (white spaces,
new-lines, comments).

What we will learn today

1 How we can describe the
valid sentences on a
computer language.

2 That we can use a parser
generator to use this
descriptions and get a
program that does things
while recognizing legal
source code.

Introduction Expressing Syntax A parser generator Summary

Plan

What we know

1 How we can describe the words
that can be used in a computer
language.

2 How to generate programs that
recognize legal words in source
code.

3 How to use such a program to
generate a sequence of tokens
and eliminate irrelevant
fragments (white spaces,
new-lines, comments).

What we will learn today

1 How we can describe the
valid sentences on a
computer language.

2 That we can use a parser
generator to use this
descriptions and get a
program that does things
while recognizing legal
source code.

Introduction Expressing Syntax A parser generator Summary

Plan

What we know

1 How we can describe the words
that can be used in a computer
language.

2 How to generate programs that
recognize legal words in source
code.

3 How to use such a program to
generate a sequence of tokens
and eliminate irrelevant
fragments (white spaces,
new-lines, comments).

What we will learn today

1 How we can describe the
valid sentences on a
computer language.

2 That we can use a parser
generator to use this
descriptions and get a
program that does things
while recognizing legal
source code.

Introduction Expressing Syntax A parser generator Summary

Plan

What we know

1 How we can describe the words
that can be used in a computer
language.

2 How to generate programs that
recognize legal words in source
code.

3 How to use such a program to
generate a sequence of tokens
and eliminate irrelevant
fragments (white spaces,
new-lines, comments).

What we will learn today

1 How we can describe the
valid sentences on a
computer language.

2 That we can use a parser
generator to use this
descriptions and get a
program that does things
while recognizing legal
source code.

Introduction Expressing Syntax A parser generator Summary

Plan

What we know

1 How we can describe the words
that can be used in a computer
language.

2 How to generate programs that
recognize legal words in source
code.

3 How to use such a program to
generate a sequence of tokens
and eliminate irrelevant
fragments (white spaces,
new-lines, comments).

What we will learn today

1 How we can describe the
valid sentences on a
computer language.

2 That we can use a parser
generator to use this
descriptions and get a
program that does things
while recognizing legal
source code.

Introduction Expressing Syntax A parser generator Summary

Context-Free Grammars

We need a notation

that can capture the
syntactic structure of
computer languages

and that leads to efficient
recognizers.

Regular expressions are not
powerful enough!

A context-free grammar G is a set of
rules describing how to form
sentences. The set of all these
sentences L(G) is the language
defined by G.

The rules are of a special form!

Example

SN → mbää SN
| mbää

Introduction Expressing Syntax A parser generator Summary

Context-Free Grammars

We need a notation

that can capture the
syntactic structure of
computer languages

and that leads to efficient
recognizers.

Regular expressions are not
powerful enough!

A context-free grammar G is a set of
rules describing how to form
sentences. The set of all these
sentences L(G) is the language
defined by G.

The rules are of a special form!

Example

SN → mbää SN
| mbää

Introduction Expressing Syntax A parser generator Summary

Context-Free Grammars

We need a notation

that can capture the
syntactic structure of
computer languages

and that leads to efficient
recognizers.

Regular expressions are not
powerful enough!

A context-free grammar G is a set of
rules describing how to form
sentences. The set of all these
sentences L(G) is the language
defined by G.

The rules are of a special form!

Example

SN → mbää SN
| mbää

Introduction Expressing Syntax A parser generator Summary

Context-Free Grammars

We need a notation

that can capture the
syntactic structure of
computer languages

and that leads to efficient
recognizers.

Regular expressions are not
powerful enough!

A context-free grammar G is a set of
rules describing how to form
sentences. The set of all these
sentences L(G) is the language
defined by G.

The rules are of a special form!

Example

SN → mbää SN
| mbää

Introduction Expressing Syntax A parser generator Summary

Context-Free Grammars

We need a notation

that can capture the
syntactic structure of
computer languages

and that leads to efficient
recognizers.

Regular expressions are not
powerful enough!

A context-free grammar G is a set of
rules describing how to form
sentences. The set of all these
sentences L(G) is the language
defined by G.

The rules are of a special form!

Example

SN → mbää SN
| mbää

Introduction Expressing Syntax A parser generator Summary

Context-Free Grammars

We need a notation

that can capture the
syntactic structure of
computer languages

and that leads to efficient
recognizers.

Regular expressions are not
powerful enough!

A context-free grammar G is a set of
rules describing how to form
sentences. The set of all these
sentences L(G) is the language
defined by G.

The rules are of a special form!

Example

SN → mbää SN
| mbää

Introduction Expressing Syntax A parser generator Summary

Context-Free Grammars

We need a notation

that can capture the
syntactic structure of
computer languages

and that leads to efficient
recognizers.

Regular expressions are not
powerful enough!

A context-free grammar G is a set of
rules describing how to form
sentences. The set of all these
sentences L(G) is the language
defined by G.

The rules are of a special form!

Example

SN → mbää SN
| mbää

Introduction Expressing Syntax A parser generator Summary

Example

SN → mbää SN
| mbää

SN → mbää SN
is called a production and is said to
derive sentences built by the word
mbää followed by more SN.

SN is like a variable standing for a
type of sentences or syntactic
category. It is called a non-terminal.

The words that appear in the
sentences, e.g. mbää, are called
terminals.

Introduction Expressing Syntax A parser generator Summary

Example

SN → mbää SN
| mbää

SN → mbää SN
is called a production and is said to
derive sentences built by the word
mbää followed by more SN.

SN is like a variable standing for a
type of sentences or syntactic
category. It is called a non-terminal.

The words that appear in the
sentences, e.g. mbää, are called
terminals.

Introduction Expressing Syntax A parser generator Summary

Example

SN → mbää SN
| mbää

SN → mbää SN
is called a production and is said to
derive sentences built by the word
mbää followed by more SN.

SN is like a variable standing for a
type of sentences or syntactic
category. It is called a non-terminal.

The words that appear in the
sentences, e.g. mbää, are called
terminals.

Introduction Expressing Syntax A parser generator Summary

Example

SN → mbää SN
| mbää

SN → mbää SN
is called a production and is said to
derive sentences built by the word
mbää followed by more SN.

SN is like a variable standing for a
type of sentences or syntactic
category. It is called a non-terminal.

The words that appear in the
sentences, e.g. mbää, are called
terminals.

Introduction Expressing Syntax A parser generator Summary

Deriving sentences

To derive a sentence

1 Start with the start
symbol
(one non-terminal!)
and replace it by one right
hand side in a production.

2 Pick a non-terminal in the
string and replace it by
the right hand side of one
of its productions.

3 Continue like this until
there are no more
non-terminals in the
string.

Example

1 SN → mbää SN
2 | mbää

Example

Prod. String
SN

1 mbää SN
1 mbää mbää SN
1 mbää mbää mbää SN
2 mbää mbää mbää mbää

Introduction Expressing Syntax A parser generator Summary

Deriving sentences

To derive a sentence

1 Start with the start
symbol
(one non-terminal!)
and replace it by one right
hand side in a production.

2 Pick a non-terminal in the
string and replace it by
the right hand side of one
of its productions.

3 Continue like this until
there are no more
non-terminals in the
string.

Example

1 SN → mbää SN
2 | mbää

Example

Prod. String
SN

1 mbää SN
1 mbää mbää SN
1 mbää mbää mbää SN
2 mbää mbää mbää mbää

Introduction Expressing Syntax A parser generator Summary

Deriving sentences

To derive a sentence

1 Start with the start
symbol
(one non-terminal!)
and replace it by one right
hand side in a production.

2 Pick a non-terminal in the
string and replace it by
the right hand side of one
of its productions.

3 Continue like this until
there are no more
non-terminals in the
string.

Example

1 SN → mbää SN
2 | mbää

Example

Prod. String
SN

1 mbää SN
1 mbää mbää SN
1 mbää mbää mbää SN
2 mbää mbää mbää mbää

Introduction Expressing Syntax A parser generator Summary

Deriving sentences

To derive a sentence

1 Start with the start
symbol
(one non-terminal!)
and replace it by one right
hand side in a production.

2 Pick a non-terminal in the
string and replace it by
the right hand side of one
of its productions.

3 Continue like this until
there are no more
non-terminals in the
string.

Example

1 SN → mbää SN
2 | mbää

Example

Prod. String
SN

1 mbää SN
1 mbää mbää SN
1 mbää mbää mbää SN
2 mbää mbää mbää mbää

Introduction Expressing Syntax A parser generator Summary

Deriving sentences

To derive a sentence

1 Start with the start
symbol
(one non-terminal!)
and replace it by one right
hand side in a production.

2 Pick a non-terminal in the
string and replace it by
the right hand side of one
of its productions.

3 Continue like this until
there are no more
non-terminals in the
string.

Example

1 SN → mbää SN
2 | mbää

Example

Prod. String
SN

1 mbää SN
1 mbää mbää SN
1 mbää mbää mbää SN
2 mbää mbää mbää mbää

Introduction Expressing Syntax A parser generator Summary

Deriving sentences

To derive a sentence

1 Start with the start
symbol
(one non-terminal!)
and replace it by one right
hand side in a production.

2 Pick a non-terminal in the
string and replace it by
the right hand side of one
of its productions.

3 Continue like this until
there are no more
non-terminals in the
string.

Example

1 SN → mbää SN
2 | mbää

Example

Prod. String
SN

1 mbää SN
1 mbää mbää SN
1 mbää mbää mbää SN
2 mbää mbää mbää mbää

Introduction Expressing Syntax A parser generator Summary

Deriving sentences

To derive a sentence

1 Start with the start
symbol
(one non-terminal!)
and replace it by one right
hand side in a production.

2 Pick a non-terminal in the
string and replace it by
the right hand side of one
of its productions.

3 Continue like this until
there are no more
non-terminals in the
string.

Example

1 SN → mbää SN
2 | mbää

Example

Prod. String
SN

1 mbää SN
1 mbää mbää SN
1 mbää mbää mbää SN
2 mbää mbää mbää mbää

Introduction Expressing Syntax A parser generator Summary

Deriving sentences

To derive a sentence

1 Start with the start
symbol
(one non-terminal!)
and replace it by one right
hand side in a production.

2 Pick a non-terminal in the
string and replace it by
the right hand side of one
of its productions.

3 Continue like this until
there are no more
non-terminals in the
string.

Example

1 SN → mbää SN
2 | mbää

Example

Prod. String
SN

1 mbää SN
1 mbää mbää SN
1 mbää mbää mbää SN
2 mbää mbää mbää mbää

Introduction Expressing Syntax A parser generator Summary

Deriving sentences

To derive a sentence

1 Start with the start
symbol
(one non-terminal!)
and replace it by one right
hand side in a production.

2 Pick a non-terminal in the
string and replace it by
the right hand side of one
of its productions.

3 Continue like this until
there are no more
non-terminals in the
string.

Example

1 SN → mbää SN
2 | mbää

Example

Prod. String
SN

1 mbää SN
1 mbää mbää SN
1 mbää mbää mbää SN
2 mbää mbää mbää mbää

Introduction Expressing Syntax A parser generator Summary

Deriving sentences

To derive a sentence

1 Start with the start
symbol
(one non-terminal!)
and replace it by one right
hand side in a production.

2 Pick a non-terminal in the
string and replace it by
the right hand side of one
of its productions.

3 Continue like this until
there are no more
non-terminals in the
string.

Example

1 SN → mbää SN
2 | mbää

Example

Prod. String
SN

1 mbää SN
1 mbää mbää SN
1 mbää mbää mbää SN
2 mbää mbää mbää mbää

Introduction Expressing Syntax A parser generator Summary

More formally

A context-free grammar consists of four parts T, NT, s and P.

T, the set of terminal symbols (words,
tokens).

NT, the set of non-terminal symbols
(syntactic categories)

s, the start symbol (goal), one non-terminal
standing for the syntactic category whose
sentences we are describing.

P, the set of productions. Each member of
P maps one non terminal onto a string
formed by terminals and nonterminals.

Introduction Expressing Syntax A parser generator Summary

More formally

A context-free grammar consists of four parts T, NT, s and P.

T, the set of terminal symbols (words,
tokens).

NT, the set of non-terminal symbols
(syntactic categories)

s, the start symbol (goal), one non-terminal
standing for the syntactic category whose
sentences we are describing.

P, the set of productions. Each member of
P maps one non terminal onto a string
formed by terminals and nonterminals.

Introduction Expressing Syntax A parser generator Summary

More formally

A context-free grammar consists of four parts T, NT, s and P.

T, the set of terminal symbols (words,
tokens).

NT, the set of non-terminal symbols
(syntactic categories)

s, the start symbol (goal), one non-terminal
standing for the syntactic category whose
sentences we are describing.

P, the set of productions. Each member of
P maps one non terminal onto a string
formed by terminals and nonterminals.

Introduction Expressing Syntax A parser generator Summary

More formally

A context-free grammar consists of four parts T, NT, s and P.

T, the set of terminal symbols (words,
tokens).

NT, the set of non-terminal symbols
(syntactic categories)

s, the start symbol (goal), one non-terminal
standing for the syntactic category whose
sentences we are describing.

P, the set of productions. Each member of
P maps one non terminal onto a string
formed by terminals and nonterminals.

Introduction Expressing Syntax A parser generator Summary

More formally

A context-free grammar consists of four parts T, NT, s and P.

T, the set of terminal symbols (words,
tokens).

NT, the set of non-terminal symbols
(syntactic categories)

s, the start symbol (goal), one non-terminal
standing for the syntactic category whose
sentences we are describing.

P, the set of productions. Each member of
P maps one non terminal onto a string
formed by terminals and nonterminals.

Introduction Expressing Syntax A parser generator Summary

Balanced parentheses

Example

Paren → (Bracket)
| ()

Bracket → [Paren]
| []

Depending on what start symbol we
choose we get different languages!
Paren forces outermost parentheses.
Bracket forces outermost brackets.

Example

S → Paren
| Bracket

allows both!

Introduction Expressing Syntax A parser generator Summary

Balanced parentheses

Example

Paren → (Bracket)
| ()

Bracket → [Paren]
| []

Depending on what start symbol we
choose we get different languages!
Paren forces outermost parentheses.
Bracket forces outermost brackets.

Example

S → Paren
| Bracket

allows both!

Introduction Expressing Syntax A parser generator Summary

Balanced parentheses

Example

Paren → (Bracket)
| ()

Bracket → [Paren]
| []

Depending on what start symbol we
choose we get different languages!
Paren forces outermost parentheses.
Bracket forces outermost brackets.

Example

S → Paren
| Bracket

allows both!

Introduction Expressing Syntax A parser generator Summary

Boolean expressions

Example

true & true | false
true | true & false
¬ true & ¬ false

A CFG for boolean expressions

1 Bexp → Bexp & Bexp
2 | Bexp | Bexp
3 | ¬ Bexp
4 | true
5 | false

Example

Prod. String
Bexp

2 Bexp | Bexp
1 Bexp | Bexp & Bexp
5 Bexp | Bexp & false
4 Bexp | true & false
4 true | true & false

Introduction Expressing Syntax A parser generator Summary

Boolean expressions

Example

true & true | false
true | true & false
¬ true & ¬ false

A CFG for boolean expressions

1 Bexp → Bexp & Bexp
2 | Bexp | Bexp
3 | ¬ Bexp
4 | true
5 | false

Example

Prod. String
Bexp

2 Bexp | Bexp
1 Bexp | Bexp & Bexp
5 Bexp | Bexp & false
4 Bexp | true & false
4 true | true & false

Introduction Expressing Syntax A parser generator Summary

Boolean expressions

Example

true & true | false
true | true & false
¬ true & ¬ false

A CFG for boolean expressions

1 Bexp → Bexp & Bexp
2 | Bexp | Bexp
3 | ¬ Bexp
4 | true
5 | false

Example

Prod. String
Bexp

2 Bexp | Bexp
1 Bexp | Bexp & Bexp
5 Bexp | Bexp & false
4 Bexp | true & false
4 true | true & false

Introduction Expressing Syntax A parser generator Summary

Boolean expressions

Example

true & true | false
true | true & false
¬ true & ¬ false

A CFG for boolean expressions

1 Bexp → Bexp & Bexp
2 | Bexp | Bexp
3 | ¬ Bexp
4 | true
5 | false

Example

Prod. String
Bexp

2 Bexp | Bexp
1 Bexp | Bexp & Bexp
5 Bexp | Bexp & false
4 Bexp | true & false
4 true | true & false

Introduction Expressing Syntax A parser generator Summary

Boolean expressions

Example

true & true | false
true | true & false
¬ true & ¬ false

A CFG for boolean expressions

1 Bexp → Bexp & Bexp
2 | Bexp | Bexp
3 | ¬ Bexp
4 | true
5 | false

Example

Prod. String
Bexp

2 Bexp | Bexp
1 Bexp | Bexp & Bexp
5 Bexp | Bexp & false
4 Bexp | true & false
4 true | true & false

Introduction Expressing Syntax A parser generator Summary

Boolean expressions

Example

true & true | false
true | true & false
¬ true & ¬ false

A CFG for boolean expressions

1 Bexp → Bexp & Bexp
2 | Bexp | Bexp
3 | ¬ Bexp
4 | true
5 | false

Example

Prod. String
Bexp

2 Bexp | Bexp
1 Bexp | Bexp & Bexp
5 Bexp | Bexp & false
4 Bexp | true & false
4 true | true & false

Introduction Expressing Syntax A parser generator Summary

Boolean expressions

Example

true & true | false
true | true & false
¬ true & ¬ false

A CFG for boolean expressions

1 Bexp → Bexp & Bexp
2 | Bexp | Bexp
3 | ¬ Bexp
4 | true
5 | false

Example

Prod. String
Bexp

2 Bexp | Bexp
1 Bexp | Bexp & Bexp
5 Bexp | Bexp & false
4 Bexp | true & false
4 true | true & false

Introduction Expressing Syntax A parser generator Summary

Boolean expressions

Example

true & true | false
true | true & false
¬ true & ¬ false

A CFG for boolean expressions

1 Bexp → Bexp & Bexp
2 | Bexp | Bexp
3 | ¬ Bexp
4 | true
5 | false

Example

Prod. String
Bexp

2 Bexp | Bexp
1 Bexp | Bexp & Bexp
5 Bexp | Bexp & false
4 Bexp | true & false
4 true | true & false

Introduction Expressing Syntax A parser generator Summary

Parse trees

We can depict the derivation

Bexp

Bexp

|

Bexp

Bexp

&

Bexp

falsetruetrue

Structure and meaning

This parse tree will lead the
way we understand the source
code!

Example

What is the value of true |
true & false?

Traverse the tree in post-order
calculating values!

Example

true

Introduction Expressing Syntax A parser generator Summary

Parse trees

We can depict the derivation

Bexp

Bexp

|

Bexp

Bexp

&

Bexp

falsetruetrue

Structure and meaning

This parse tree will lead the
way we understand the source
code!

Example

What is the value of true |
true & false?

Traverse the tree in post-order
calculating values!

Example

true

Introduction Expressing Syntax A parser generator Summary

Parse trees

We can depict the derivation

Bexp

Bexp

|

Bexp

Bexp

&

Bexp

falsetruetrue

Structure and meaning

This parse tree will lead the
way we understand the source
code!

Example

What is the value of true |
true & false?

Traverse the tree in post-order
calculating values!

Example

true

Introduction Expressing Syntax A parser generator Summary

Parse trees

We can depict the derivation

Bexp

Bexp

|

Bexp

Bexp

&

Bexp

falsetruetrue

Structure and meaning

This parse tree will lead the
way we understand the source
code!

Example

What is the value of true |
true & false?

Traverse the tree in post-order
calculating values!

Example

true

Introduction Expressing Syntax A parser generator Summary

Parse trees

We can depict the derivation

Bexp

Bexp

|

Bexp

Bexp

&

Bexp

falsetruetrue

Structure and meaning

This parse tree will lead the
way we understand the source
code!

Example

What is the value of true |
true & false?

Traverse the tree in post-order
calculating values!

Example

true

Introduction Expressing Syntax A parser generator Summary

Ambiguity

What about this parse tree?

Bexp

Bexp

&

Bexp

Bexp

|

Bexp

true true false

Example

Results in false!

A grammar where more than
one parse tree is possible for a
given sentence is said to be
ambiguous.

We will try to avoid them!
Source code writers could not
be certain about how the
compiler interpreted the
source!

Introduction Expressing Syntax A parser generator Summary

Ambiguity

What about this parse tree?

Bexp

Bexp

&

Bexp

Bexp

|

Bexp

true true false

Example

Results in false!

A grammar where more than
one parse tree is possible for a
given sentence is said to be
ambiguous.

We will try to avoid them!
Source code writers could not
be certain about how the
compiler interpreted the
source!

Introduction Expressing Syntax A parser generator Summary

Ambiguity

What about this parse tree?

Bexp

Bexp

&

Bexp

Bexp

|

Bexp

true true false

Example

Results in false!

A grammar where more than
one parse tree is possible for a
given sentence is said to be
ambiguous.

We will try to avoid them!
Source code writers could not
be certain about how the
compiler interpreted the
source!

Introduction Expressing Syntax A parser generator Summary

Ambiguity

What about this parse tree?

Bexp

Bexp

&

Bexp

Bexp

|

Bexp

true true false

Example

Results in false!

A grammar where more than
one parse tree is possible for a
given sentence is said to be
ambiguous.

We will try to avoid them!
Source code writers could not
be certain about how the
compiler interpreted the
source!

Introduction Expressing Syntax A parser generator Summary

Rearranging the grammar

A new grammar can be designed for
the same language.

We have in mind the conventions we
are used to for

associativity

precedence

to avoid the need for too many
parenthesis.

& and | associate to the left.

& has higher precedence than |.

¬ has higher precedence than &.

Bexp → Bexp | Conj
| Conj

Conj → Conj & Neg
| Neg

Neg → ¬ Atom
| Atom

Atom → true
| false
| (Bexp)

Try the parse tree for the same
sentence we inspected before!

Introduction Expressing Syntax A parser generator Summary

Rearranging the grammar

A new grammar can be designed for
the same language.

We have in mind the conventions we
are used to for

associativity

precedence

to avoid the need for too many
parenthesis.

& and | associate to the left.

& has higher precedence than |.

¬ has higher precedence than &.

Bexp → Bexp | Conj
| Conj

Conj → Conj & Neg
| Neg

Neg → ¬ Atom
| Atom

Atom → true
| false
| (Bexp)

Try the parse tree for the same
sentence we inspected before!

Introduction Expressing Syntax A parser generator Summary

Rearranging the grammar

A new grammar can be designed for
the same language.

We have in mind the conventions we
are used to for

associativity

precedence

to avoid the need for too many
parenthesis.

& and | associate to the left.

& has higher precedence than |.

¬ has higher precedence than &.

Bexp → Bexp | Conj
| Conj

Conj → Conj & Neg
| Neg

Neg → ¬ Atom
| Atom

Atom → true
| false
| (Bexp)

Try the parse tree for the same
sentence we inspected before!

Introduction Expressing Syntax A parser generator Summary

Rearranging the grammar

A new grammar can be designed for
the same language.

We have in mind the conventions we
are used to for

associativity

precedence

to avoid the need for too many
parenthesis.

& and | associate to the left.

& has higher precedence than |.

¬ has higher precedence than &.

Bexp → Bexp | Conj
| Conj

Conj → Conj & Neg
| Neg

Neg → ¬ Atom
| Atom

Atom → true
| false
| (Bexp)

Try the parse tree for the same
sentence we inspected before!

Introduction Expressing Syntax A parser generator Summary

Rearranging the grammar

A new grammar can be designed for
the same language.

We have in mind the conventions we
are used to for

associativity

precedence

to avoid the need for too many
parenthesis.

& and | associate to the left.

& has higher precedence than |.

¬ has higher precedence than &.

Bexp → Bexp | Conj
| Conj

Conj → Conj & Neg
| Neg

Neg → ¬ Atom
| Atom

Atom → true
| false
| (Bexp)

Try the parse tree for the same
sentence we inspected before!

Introduction Expressing Syntax A parser generator Summary

Using a parser generator

From a context free grammar
a program can be generated
that recognizes the sentences
of the language described by
the grammar!

The generated program is
called a parser. The generating
program is called a parser
generator

We will use jacc with special
permission of Mark P. Jones
from OHSU.

%token TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’
%%
bexp : bexp ’|’ conj

| conj
;

conj : conj ’&’ neg
| neg
;

neg : ’-’ atom
| atom
;

atom : TRUE|FALSE|’(’bexp’)’;
%%

Introduction Expressing Syntax A parser generator Summary

Using a parser generator

From a context free grammar
a program can be generated
that recognizes the sentences
of the language described by
the grammar!

The generated program is
called a parser. The generating
program is called a parser
generator

We will use jacc with special
permission of Mark P. Jones
from OHSU.

%token TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’
%%
bexp : bexp ’|’ conj

| conj
;

conj : conj ’&’ neg
| neg
;

neg : ’-’ atom
| atom
;

atom : TRUE|FALSE|’(’bexp’)’;
%%

Introduction Expressing Syntax A parser generator Summary

Using a parser generator

From a context free grammar
a program can be generated
that recognizes the sentences
of the language described by
the grammar!

The generated program is
called a parser. The generating
program is called a parser
generator

We will use jacc with special
permission of Mark P. Jones
from OHSU.

%token TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’
%%
bexp : bexp ’|’ conj

| conj
;

conj : conj ’&’ neg
| neg
;

neg : ’-’ atom
| atom
;

atom : TRUE|FALSE|’(’bexp’)’;
%%

Introduction Expressing Syntax A parser generator Summary

Using a parser generator

From a context free grammar
a program can be generated
that recognizes the sentences
of the language described by
the grammar!

The generated program is
called a parser. The generating
program is called a parser
generator

We will use jacc with special
permission of Mark P. Jones
from OHSU.

%token TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’
%%
bexp : bexp ’|’ conj

| conj
;

conj : conj ’&’ neg
| neg
;

neg : ’-’ atom
| atom
;

atom : TRUE|FALSE|’(’bexp’)’;
%%

Introduction Expressing Syntax A parser generator Summary

Using a parser generator

From a context free grammar
a program can be generated
that recognizes the sentences
of the language described by
the grammar!

The generated program is
called a parser. The generating
program is called a parser
generator

We will use jacc with special
permission of Mark P. Jones
from OHSU.

%token TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’
%%
bexp : bexp ’|’ conj

| conj
;

conj : conj ’&’ neg
| neg
;

neg : ’-’ atom
| atom
;

atom : TRUE|FALSE|’(’bexp’)’;
%%

Introduction Expressing Syntax A parser generator Summary

Precedence and Associativity

The kind of ambiguity we
discussed for binary
expressions arised from using
binary infix operators.

The solution, including
conventions for avoiding too
many parenthesis, is standard.

The modified grammar can be
generated automatically if
proper directives are given!

%token TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’

%left ’|’
%left ’&’
%nonassoc ’-’
%%
bexp : bexp ’|’ bexp

| bexp ’&’ bexp
| ’-’ bexp
| TRUE
| FALSE
| ’(’ bexp ’)’
;

%%

Introduction Expressing Syntax A parser generator Summary

Precedence and Associativity

The kind of ambiguity we
discussed for binary
expressions arised from using
binary infix operators.

The solution, including
conventions for avoiding too
many parenthesis, is standard.

The modified grammar can be
generated automatically if
proper directives are given!

%token TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’

%left ’|’
%left ’&’
%nonassoc ’-’
%%
bexp : bexp ’|’ bexp

| bexp ’&’ bexp
| ’-’ bexp
| TRUE
| FALSE
| ’(’ bexp ’)’
;

%%

Introduction Expressing Syntax A parser generator Summary

Precedence and Associativity

The kind of ambiguity we
discussed for binary
expressions arised from using
binary infix operators.

The solution, including
conventions for avoiding too
many parenthesis, is standard.

The modified grammar can be
generated automatically if
proper directives are given!

%token TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’

%left ’|’
%left ’&’
%nonassoc ’-’
%%
bexp : bexp ’|’ bexp

| bexp ’&’ bexp
| ’-’ bexp
| TRUE
| FALSE
| ’(’ bexp ’)’
;

%%

Introduction Expressing Syntax A parser generator Summary

Precedence and Associativity

The kind of ambiguity we
discussed for binary
expressions arised from using
binary infix operators.

The solution, including
conventions for avoiding too
many parenthesis, is standard.

The modified grammar can be
generated automatically if
proper directives are given!

%token TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’

%left ’|’
%left ’&’
%nonassoc ’-’
%%
bexp : bexp ’|’ bexp

| bexp ’&’ bexp
| ’-’ bexp
| TRUE
| FALSE
| ’(’ bexp ’)’
;

%%

Introduction Expressing Syntax A parser generator Summary

Precedence and Associativity

The kind of ambiguity we
discussed for binary
expressions arised from using
binary infix operators.

The solution, including
conventions for avoiding too
many parenthesis, is standard.

The modified grammar can be
generated automatically if
proper directives are given!

%token TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’

%left ’|’
%left ’&’
%nonassoc ’-’
%%
bexp : bexp ’|’ bexp

| bexp ’&’ bexp
| ’-’ bexp
| TRUE
| FALSE
| ’(’ bexp ’)’
;

%%

Introduction Expressing Syntax A parser generator Summary

Precedence and Associativity

The kind of ambiguity we
discussed for binary
expressions arised from using
binary infix operators.

The solution, including
conventions for avoiding too
many parenthesis, is standard.

The modified grammar can be
generated automatically if
proper directives are given!

%token TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’

%left ’|’
%left ’&’
%nonassoc ’-’
%%
bexp : bexp ’|’ bexp

| bexp ’&’ bexp
| ’-’ bexp
| TRUE
| FALSE
| ’(’ bexp ’)’
;

%%

Introduction Expressing Syntax A parser generator Summary

Using jacc

As it is we have not said how
to connect to a lexer
generating tokens!

We can anyway test our
grammar without generating a
parser and connecting it to a
lexer!

The file containing our
sentence must consist of
tokens and nonterminals

Example

An input file for the parser could be

TRUE ’&’ bexp ’|’ FALSE

Example

And the way of using jacc for
recognizing the sentences described
with the cfg is to use the command

jacc -pt bexpP.jacc -r test1

Introduction Expressing Syntax A parser generator Summary

Using jacc

As it is we have not said how
to connect to a lexer
generating tokens!

We can anyway test our
grammar without generating a
parser and connecting it to a
lexer!

The file containing our
sentence must consist of
tokens and nonterminals

Example

An input file for the parser could be

TRUE ’&’ bexp ’|’ FALSE

Example

And the way of using jacc for
recognizing the sentences described
with the cfg is to use the command

jacc -pt bexpP.jacc -r test1

Introduction Expressing Syntax A parser generator Summary

Using jacc

As it is we have not said how
to connect to a lexer
generating tokens!

We can anyway test our
grammar without generating a
parser and connecting it to a
lexer!

The file containing our
sentence must consist of
tokens and nonterminals

Example

An input file for the parser could be

TRUE ’&’ bexp ’|’ FALSE

Example

And the way of using jacc for
recognizing the sentences described
with the cfg is to use the command

jacc -pt bexpP.jacc -r test1

Introduction Expressing Syntax A parser generator Summary

Using jacc

As it is we have not said how
to connect to a lexer
generating tokens!

We can anyway test our
grammar without generating a
parser and connecting it to a
lexer!

The file containing our
sentence must consist of
tokens and nonterminals

Example

An input file for the parser could be

TRUE ’&’ bexp ’|’ FALSE

Example

And the way of using jacc for
recognizing the sentences described
with the cfg is to use the command

jacc -pt bexpP.jacc -r test1

Introduction Expressing Syntax A parser generator Summary

Using jacc

As it is we have not said how
to connect to a lexer
generating tokens!

We can anyway test our
grammar without generating a
parser and connecting it to a
lexer!

The file containing our
sentence must consist of
tokens and nonterminals

Example

An input file for the parser could be

TRUE ’&’ bexp ’|’ FALSE

Example

And the way of using jacc for
recognizing the sentences described
with the cfg is to use the command

jacc -pt bexpP.jacc -r test1

Introduction Expressing Syntax A parser generator Summary

Running example from "test1.be"
start : _ TRUE ...
shift : TRUE _ ’&’ ...
reduce : _ bexp ’&’ ...
goto : bexp _ ’&’ ...
shift : bexp ’&’ _ bexp ...
goto : bexp ’&’ bexp _ ’|’ ...
reduce : _ bexp ’|’ ...
goto : bexp _ ’|’ ...
shift : bexp ’|’ _ FALSE ...
shift : bexp ’|’ FALSE _
reduce : bexp ’|’ _ bexp $end
goto : bexp ’|’ bexp _ $end
reduce : _ bexp $end
goto : bexp _ $end
Accept!

Introduction Expressing Syntax A parser generator Summary

Generating a parser

If we want to generate a
parser, we have to connect it
to a lexer that provides the
tokens!

We have to use directives and
program a little to do so!

We will at the same time see
how to use the parser to
compute while recognizing
structure!

Directives:

%class Evaluator
%interface BooleanTokens
%next nextToken()
%get lexer.token
%semantic boolean: lexer.val

%token <boolean> TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’
%left ’|’
%left ’&’
%left ’-’
%type <boolean> bexp
%%

Introduction Expressing Syntax A parser generator Summary

Generating a parser

If we want to generate a
parser, we have to connect it
to a lexer that provides the
tokens!

We have to use directives and
program a little to do so!

We will at the same time see
how to use the parser to
compute while recognizing
structure!

Directives:

%class Evaluator
%interface BooleanTokens
%next nextToken()
%get lexer.token
%semantic boolean: lexer.val

%token <boolean> TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’
%left ’|’
%left ’&’
%left ’-’
%type <boolean> bexp
%%

Introduction Expressing Syntax A parser generator Summary

Generating a parser

If we want to generate a
parser, we have to connect it
to a lexer that provides the
tokens!

We have to use directives and
program a little to do so!

We will at the same time see
how to use the parser to
compute while recognizing
structure!

Directives:

%class Evaluator
%interface BooleanTokens
%next nextToken()
%get lexer.token
%semantic boolean: lexer.val

%token <boolean> TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’
%left ’|’
%left ’&’
%left ’-’
%type <boolean> bexp
%%

Introduction Expressing Syntax A parser generator Summary

Generating a parser

If we want to generate a
parser, we have to connect it
to a lexer that provides the
tokens!

We have to use directives and
program a little to do so!

We will at the same time see
how to use the parser to
compute while recognizing
structure!

Directives:

%class Evaluator
%interface BooleanTokens
%next nextToken()
%get lexer.token
%semantic boolean: lexer.val

%token <boolean> TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’
%left ’|’
%left ’&’
%left ’-’
%type <boolean> bexp
%%

Introduction Expressing Syntax A parser generator Summary

Generating a parser

If we want to generate a
parser, we have to connect it
to a lexer that provides the
tokens!

We have to use directives and
program a little to do so!

We will at the same time see
how to use the parser to
compute while recognizing
structure!

Directives:

%class Evaluator
%interface BooleanTokens
%next nextToken()
%get lexer.token
%semantic boolean: lexer.val

%token <boolean> TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’
%left ’|’
%left ’&’
%left ’-’
%type <boolean> bexp
%%

Introduction Expressing Syntax A parser generator Summary

Generating a parser

If we want to generate a
parser, we have to connect it
to a lexer that provides the
tokens!

We have to use directives and
program a little to do so!

We will at the same time see
how to use the parser to
compute while recognizing
structure!

Directives:

%class Evaluator
%interface BooleanTokens
%next nextToken()
%get lexer.token
%semantic boolean: lexer.val

%token <boolean> TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’
%left ’|’
%left ’&’
%left ’-’
%type <boolean> bexp
%%

Introduction Expressing Syntax A parser generator Summary

Generating a parser

If we want to generate a
parser, we have to connect it
to a lexer that provides the
tokens!

We have to use directives and
program a little to do so!

We will at the same time see
how to use the parser to
compute while recognizing
structure!

Directives:

%class Evaluator
%interface BooleanTokens
%next nextToken()
%get lexer.token
%semantic boolean: lexer.val

%token <boolean> TRUE FALSE
%token ’-’ ’&’ ’|’
%token ’(’ ’)’
%left ’|’
%left ’&’
%left ’-’
%type <boolean> bexp
%%

Introduction Expressing Syntax A parser generator Summary

Semantic actions

We might want to use an extra
non-terminal as start symbol
to use a special action when
the complete phrase has been
recognized.

The actions refer to the values
calculated for the sub-phrases.

%%
p : bexp {System.out.println($1);} ;

bexp : bexp ’|’ bexp {$$ = $1 || $3;}

| bexp ’&’ bexp {$$ = $1 && $3;}

| ’-’ bexp {$$ = ! $2;}

| TRUE {$$ = $1;}

| FALSE {$$ = $1;}

| ’(’ bexp ’)’ {$$ = $2;}
;

Introduction Expressing Syntax A parser generator Summary

Semantic actions

We might want to use an extra
non-terminal as start symbol
to use a special action when
the complete phrase has been
recognized.

The actions refer to the values
calculated for the sub-phrases.

%%
p : bexp {System.out.println($1);} ;

bexp : bexp ’|’ bexp {$$ = $1 || $3;}

| bexp ’&’ bexp {$$ = $1 && $3;}

| ’-’ bexp {$$ = ! $2;}

| TRUE {$$ = $1;}

| FALSE {$$ = $1;}

| ’(’ bexp ’)’ {$$ = $2;}
;

Introduction Expressing Syntax A parser generator Summary

Semantic actions

We might want to use an extra
non-terminal as start symbol
to use a special action when
the complete phrase has been
recognized.

The actions refer to the values
calculated for the sub-phrases.

%%
p : bexp {System.out.println($1);} ;

bexp : bexp ’|’ bexp {$$ = $1 || $3;}

| bexp ’&’ bexp {$$ = $1 && $3;}

| ’-’ bexp {$$ = ! $2;}

| TRUE {$$ = $1;}

| FALSE {$$ = $1;}

| ’(’ bexp ’)’ {$$ = $2;}
;

Introduction Expressing Syntax A parser generator Summary

Semantic actions

We might want to use an extra
non-terminal as start symbol
to use a special action when
the complete phrase has been
recognized.

The actions refer to the values
calculated for the sub-phrases.

%%
p : bexp {System.out.println($1);} ;

bexp : bexp ’|’ bexp {$$ = $1 || $3;}

| bexp ’&’ bexp {$$ = $1 && $3;}

| ’-’ bexp {$$ = ! $2;}

| TRUE {$$ = $1;}

| FALSE {$$ = $1;}

| ’(’ bexp ’)’ {$$ = $2;}
;

Introduction Expressing Syntax A parser generator Summary

Semantic actions

We might want to use an extra
non-terminal as start symbol
to use a special action when
the complete phrase has been
recognized.

The actions refer to the values
calculated for the sub-phrases.

%%
p : bexp {System.out.println($1);} ;

bexp : bexp ’|’ bexp {$$ = $1 || $3;}

| bexp ’&’ bexp {$$ = $1 && $3;}

| ’-’ bexp {$$ = ! $2;}

| TRUE {$$ = $1;}

| FALSE {$$ = $1;}

| ’(’ bexp ’)’ {$$ = $2;}
;

Introduction Expressing Syntax A parser generator Summary

Semantic actions

We might want to use an extra
non-terminal as start symbol
to use a special action when
the complete phrase has been
recognized.

The actions refer to the values
calculated for the sub-phrases.

%%
p : bexp {System.out.println($1);} ;

bexp : bexp ’|’ bexp {$$ = $1 || $3;}

| bexp ’&’ bexp {$$ = $1 && $3;}

| ’-’ bexp {$$ = ! $2;}

| TRUE {$$ = $1;}

| FALSE {$$ = $1;}

| ’(’ bexp ’)’ {$$ = $2;}
;

Introduction Expressing Syntax A parser generator Summary

Semantic actions

We might want to use an extra
non-terminal as start symbol
to use a special action when
the complete phrase has been
recognized.

The actions refer to the values
calculated for the sub-phrases.

%%
p : bexp {System.out.println($1);} ;

bexp : bexp ’|’ bexp {$$ = $1 || $3;}

| bexp ’&’ bexp {$$ = $1 && $3;}

| ’-’ bexp {$$ = ! $2;}

| TRUE {$$ = $1;}

| FALSE {$$ = $1;}

| ’(’ bexp ’)’ {$$ = $2;}
;

Introduction Expressing Syntax A parser generator Summary

Semantic actions

We might want to use an extra
non-terminal as start symbol
to use a special action when
the complete phrase has been
recognized.

The actions refer to the values
calculated for the sub-phrases.

%%
p : bexp {System.out.println($1);} ;

bexp : bexp ’|’ bexp {$$ = $1 || $3;}

| bexp ’&’ bexp {$$ = $1 && $3;}

| ’-’ bexp {$$ = ! $2;}

| TRUE {$$ = $1;}

| FALSE {$$ = $1;}

| ’(’ bexp ’)’ {$$ = $2;}
;

Introduction Expressing Syntax A parser generator Summary

Semantic actions

We might want to use an extra
non-terminal as start symbol
to use a special action when
the complete phrase has been
recognized.

The actions refer to the values
calculated for the sub-phrases.

%%
p : bexp {System.out.println($1);} ;

bexp : bexp ’|’ bexp {$$ = $1 || $3;}

| bexp ’&’ bexp {$$ = $1 && $3;}

| ’-’ bexp {$$ = ! $2;}

| TRUE {$$ = $1;}

| FALSE {$$ = $1;}

| ’(’ bexp ’)’ {$$ = $2;}
;

Introduction Expressing Syntax A parser generator Summary

Connecting to the lexer

%%
private Scanner lexer;
Evaluator(Scanner s)lexer = s;

public static void main(String[] cmdLn){
try{
Scanner scanner =

new Scanner(new java.io.FileReader(cmdLn[0]));
scanner.yylex();
Evaluator eval = new Evaluator(scanner);
eval. parse() ;

}catch(Exception e){System.out.println(e.getMessage());}
}

Introduction Expressing Syntax A parser generator Summary

Connecting to the lexer

%%
private Scanner lexer;
Evaluator(Scanner s)lexer = s;

public static void main(String[] cmdLn){
try{
Scanner scanner =

new Scanner(new java.io.FileReader(cmdLn[0]));
scanner.yylex();
Evaluator eval = new Evaluator(scanner);
eval. parse() ;

}catch(Exception e){System.out.println(e.getMessage());}
}

Introduction Expressing Syntax A parser generator Summary

We have studied

1 Context-free grammars as a formalism to describe the syntax
of computer languages.

2 Parse trees and ambiguity.

3 How to use a parser generator to test our grammars.

How to connect a lexer generated by JFlex to a parser generated
by jacc is described in detail in the computer based exercises today
afternoon.

What is comming

1 A lecture on what kind of programs parsers are.

2 An assignment on understanding the workings of a parser.

3 A lecture on abstract syntax (one internal representation of
the source code)

4 The rest of a language processor!

Introduction Expressing Syntax A parser generator Summary

We have studied

1 Context-free grammars as a formalism to describe the syntax
of computer languages.

2 Parse trees and ambiguity.

3 How to use a parser generator to test our grammars.

How to connect a lexer generated by JFlex to a parser generated
by jacc is described in detail in the computer based exercises today
afternoon.

What is comming

1 A lecture on what kind of programs parsers are.

2 An assignment on understanding the workings of a parser.

3 A lecture on abstract syntax (one internal representation of
the source code)

4 The rest of a language processor!

Introduction Expressing Syntax A parser generator Summary

We have studied

1 Context-free grammars as a formalism to describe the syntax
of computer languages.

2 Parse trees and ambiguity.

3 How to use a parser generator to test our grammars.

How to connect a lexer generated by JFlex to a parser generated
by jacc is described in detail in the computer based exercises today
afternoon.

What is comming

1 A lecture on what kind of programs parsers are.

2 An assignment on understanding the workings of a parser.

3 A lecture on abstract syntax (one internal representation of
the source code)

4 The rest of a language processor!

Introduction Expressing Syntax A parser generator Summary

We have studied

1 Context-free grammars as a formalism to describe the syntax
of computer languages.

2 Parse trees and ambiguity.

3 How to use a parser generator to test our grammars.

How to connect a lexer generated by JFlex to a parser generated
by jacc is described in detail in the computer based exercises today
afternoon.

What is comming

1 A lecture on what kind of programs parsers are.

2 An assignment on understanding the workings of a parser.

3 A lecture on abstract syntax (one internal representation of
the source code)

4 The rest of a language processor!

Introduction Expressing Syntax A parser generator Summary

We have studied

1 Context-free grammars as a formalism to describe the syntax
of computer languages.

2 Parse trees and ambiguity.

3 How to use a parser generator to test our grammars.

How to connect a lexer generated by JFlex to a parser generated
by jacc is described in detail in the computer based exercises today
afternoon.

What is comming

1 A lecture on what kind of programs parsers are.

2 An assignment on understanding the workings of a parser.

3 A lecture on abstract syntax (one internal representation of
the source code)

4 The rest of a language processor!

Introduction Expressing Syntax A parser generator Summary

We have studied

1 Context-free grammars as a formalism to describe the syntax
of computer languages.

2 Parse trees and ambiguity.

3 How to use a parser generator to test our grammars.

How to connect a lexer generated by JFlex to a parser generated
by jacc is described in detail in the computer based exercises today
afternoon.

What is comming

1 A lecture on what kind of programs parsers are.

2 An assignment on understanding the workings of a parser.

3 A lecture on abstract syntax (one internal representation of
the source code)

4 The rest of a language processor!

Introduction Expressing Syntax A parser generator Summary

We have studied

1 Context-free grammars as a formalism to describe the syntax
of computer languages.

2 Parse trees and ambiguity.

3 How to use a parser generator to test our grammars.

How to connect a lexer generated by JFlex to a parser generated
by jacc is described in detail in the computer based exercises today
afternoon.

What is comming

1 A lecture on what kind of programs parsers are.

2 An assignment on understanding the workings of a parser.

3 A lecture on abstract syntax (one internal representation of
the source code)

4 The rest of a language processor!

Introduction Expressing Syntax A parser generator Summary

We have studied

1 Context-free grammars as a formalism to describe the syntax
of computer languages.

2 Parse trees and ambiguity.

3 How to use a parser generator to test our grammars.

How to connect a lexer generated by JFlex to a parser generated
by jacc is described in detail in the computer based exercises today
afternoon.

What is comming

1 A lecture on what kind of programs parsers are.

2 An assignment on understanding the workings of a parser.

3 A lecture on abstract syntax (one internal representation of
the source code)

4 The rest of a language processor!

Introduction Expressing Syntax A parser generator Summary

We have studied

1 Context-free grammars as a formalism to describe the syntax
of computer languages.

2 Parse trees and ambiguity.

3 How to use a parser generator to test our grammars.

How to connect a lexer generated by JFlex to a parser generated
by jacc is described in detail in the computer based exercises today
afternoon.

What is comming

1 A lecture on what kind of programs parsers are.

2 An assignment on understanding the workings of a parser.

3 A lecture on abstract syntax (one internal representation of
the source code)

4 The rest of a language processor!

	Introduction
	Expressing Syntax
	A parser generator
	Summary

