
Finite automata Lexical analysis

Computer Languages
Finite automata & Lexical analysis

1 Finite automata
Recognizing words
Deterministic automata
Nondeterministic automata

2 Lexical analysis

January 21st

Finite automata Lexical analysis

Plan

What we know

1 Regular expressions can be used
to describe some (not so
elaborate) languages.

Numbers in a programming
language, keywords in a
programming language, e-mail
addresses, dates.

2 Scanner Generators can be used
to create a program that reads a
sequence of characters and
identifies the words of the
language described by a regular
expression!

What we will learn today

1 What kind of program is a
scanner?

2 How can such a program
be generated by another
program?

3 How can a scanner be
used to do lexical
analysis?

Finite automata Lexical analysis

Plan

What we know

1 Regular expressions can be used
to describe some (not so
elaborate) languages.

Numbers in a programming
language, keywords in a
programming language, e-mail
addresses, dates.

2 Scanner Generators can be used
to create a program that reads a
sequence of characters and
identifies the words of the
language described by a regular
expression!

What we will learn today

1 What kind of program is a
scanner?

2 How can such a program
be generated by another
program?

3 How can a scanner be
used to do lexical
analysis?

Finite automata Lexical analysis

Plan

What we know

1 Regular expressions can be used
to describe some (not so
elaborate) languages.

Numbers in a programming
language, keywords in a
programming language, e-mail
addresses, dates.

2 Scanner Generators can be used
to create a program that reads a
sequence of characters and
identifies the words of the
language described by a regular
expression!

What we will learn today

1 What kind of program is a
scanner?

2 How can such a program
be generated by another
program?

3 How can a scanner be
used to do lexical
analysis?

Finite automata Lexical analysis

Plan

What we know

1 Regular expressions can be used
to describe some (not so
elaborate) languages.

Numbers in a programming
language, keywords in a
programming language, e-mail
addresses, dates.

2 Scanner Generators can be used
to create a program that reads a
sequence of characters and
identifies the words of the
language described by a regular
expression!

What we will learn today

1 What kind of program is a
scanner?

2 How can such a program
be generated by another
program?

3 How can a scanner be
used to do lexical
analysis?

Finite automata Lexical analysis

Plan

What we know

1 Regular expressions can be used
to describe some (not so
elaborate) languages.

Numbers in a programming
language, keywords in a
programming language, e-mail
addresses, dates.

2 Scanner Generators can be used
to create a program that reads a
sequence of characters and
identifies the words of the
language described by a regular
expression!

What we will learn today

1 What kind of program is a
scanner?

2 How can such a program
be generated by another
program?

3 How can a scanner be
used to do lexical
analysis?

Finite automata Lexical analysis

Plan

What we know

1 Regular expressions can be used
to describe some (not so
elaborate) languages.

Numbers in a programming
language, keywords in a
programming language, e-mail
addresses, dates.

2 Scanner Generators can be used
to create a program that reads a
sequence of characters and
identifies the words of the
language described by a regular
expression!

What we will learn today

1 What kind of program is a
scanner?

2 How can such a program
be generated by another
program?

3 How can a scanner be
used to do lexical
analysis?

Finite automata Lexical analysis

Plan

What we know

1 Regular expressions can be used
to describe some (not so
elaborate) languages.

Numbers in a programming
language, keywords in a
programming language, e-mail
addresses, dates.

2 Scanner Generators can be used
to create a program that reads a
sequence of characters and
identifies the words of the
language described by a regular
expression!

What we will learn today

1 What kind of program is a
scanner?

2 How can such a program
be generated by another
program?

3 How can a scanner be
used to do lexical
analysis?

Finite automata Lexical analysis

Plan

What we know

1 Regular expressions can be used
to describe some (not so
elaborate) languages.

Numbers in a programming
language, keywords in a
programming language, e-mail
addresses, dates.

2 Scanner Generators can be used
to create a program that reads a
sequence of characters and
identifies the words of the
language described by a regular
expression!

What we will learn today

1 What kind of program is a
scanner?

2 How can such a program
be generated by another
program?

3 How can a scanner be
used to do lexical
analysis?

Finite automata Lexical analysis

One word

We want to recognize whether a string
forms the word for

readChar(c);

if(c!=’f’) do something else

else

readChar(c);

if(c!=’o’) do something else

else

readChar(c);

if(c!=’r’) do something else

else report success

We can represent the
code fragment using the
diagram:

Finite automata Lexical analysis

One word

We want to recognize whether a string
forms the word for

readChar(c);

if(c!=’f’) do something else

else

readChar(c);

if(c!=’o’) do something else

else

readChar(c);

if(c!=’r’) do something else

else report success

We can represent the
code fragment using the
diagram:

Finite automata Lexical analysis

One word

We want to recognize whether a string
forms the word for

readChar(c);

if(c!=’f’) do something else

else

readChar(c);

if(c!=’o’) do something else

else

readChar(c);

if(c!=’r’) do something else

else report success

We can represent the
code fragment using the
diagram:

Finite automata Lexical analysis

One word

We want to recognize whether a string
forms the word for

readChar(c);

if(c!=’f’) do something else

else

readChar(c);

if(c!=’o’) do something else

else

readChar(c);

if(c!=’r’) do something else

else report success

We can represent the
code fragment using the
diagram:

Finite automata Lexical analysis

One word

We want to recognize whether a string
forms the word for

readChar(c);

if(c!=’f’) do something else

else

readChar(c);

if(c!=’o’) do something else

else

readChar(c);

if(c!=’r’) do something else

else report success

We can represent the
code fragment using the
diagram:

Finite automata Lexical analysis

One word

We want to recognize whether a string
forms the word for

readChar(c);

if(c!=’f’) do something else

else

readChar(c);

if(c!=’o’) do something else

else

readChar(c);

if(c!=’r’) do something else

else report success

We can represent the
code fragment using the
diagram:

Finite automata Lexical analysis

One word

We want to recognize whether a string
forms the word for

readChar(c);

if(c!=’f’) do something else

else

readChar(c);

if(c!=’o’) do something else

else

readChar(c);

if(c!=’r’) do something else

else report success

We can represent the
code fragment using the
diagram:

Finite automata Lexical analysis

One word

We want to recognize whether a string
forms the word for

readChar(c);

if(c!=’f’) do something else

else

readChar(c);

if(c!=’o’) do something else

else

readChar(c);

if(c!=’r’) do something else

else report success

We can represent the
code fragment using the
diagram:

Finite automata Lexical analysis

One word

We want to recognize whether a string
forms the word for

readChar(c);

if(c!=’f’) do something else

else

readChar(c);

if(c!=’o’) do something else

else

readChar(c);

if(c!=’r’) do something else

else report success

We can represent the
code fragment using the
diagram:

Finite automata Lexical analysis

One word

We want to recognize whether a string
forms the word for

readChar(c);

if(c!=’f’) do something else

else

readChar(c);

if(c!=’o’) do something else

else

readChar(c);

if(c!=’r’) do something else

else report success

We can represent the
code fragment using the
diagram:

Finite automata Lexical analysis

One word

We want to recognize whether a string
forms the word for

readChar(c);

if(c!=’f’) do something else

else

readChar(c);

if(c!=’o’) do something else

else

readChar(c);

if(c!=’r’) do something else

else report success

We can represent the
code fragment using the
diagram:

Finite automata Lexical analysis

One word

We want to recognize whether a string
forms the word for

readChar(c);

if(c!=’f’) do something else

else

readChar(c);

if(c!=’o’) do something else

else

readChar(c);

if(c!=’r’) do something else

else report success

We can represent the
code fragment using the
diagram:

Finite automata Lexical analysis

One word

We want to recognize whether a string
forms the word for

readChar(c);

if(c!=’f’) do something else

else

readChar(c);

if(c!=’o’) do something else

else

readChar(c);

if(c!=’r’) do something else

else report success

We can represent the
code fragment using the
diagram:

Finite automata Lexical analysis

States and transitions

s0, s1, s2, s3 are called states

s0 is marked as the initial state.

s3 is marked as one final state

x−−→ represent transitions from state to state
based on the input character.

Finite automata Lexical analysis

States and transitions

s0, s1, s2, s3 are called states

s0 is marked as the initial state.

s3 is marked as one final state

x−−→ represent transitions from state to state
based on the input character.

Finite automata Lexical analysis

States and transitions

s0, s1, s2, s3 are called states

s0 is marked as the initial state.

s3 is marked as one final state

x−−→ represent transitions from state to state
based on the input character.

Finite automata Lexical analysis

States and transitions

s0, s1, s2, s3 are called states

s0 is marked as the initial state.

s3 is marked as one final state

x−−→ represent transitions from state to state
based on the input character.

Finite automata Lexical analysis

States and transitions

s0, s1, s2, s3 are called states

s0 is marked as the initial state.

s3 is marked as one final state

x−−→ represent transitions from state to state
based on the input character.

Finite automata Lexical analysis

More than one word

Just add proper code in the do something else fragments!

Finite automata Lexical analysis

More than one word

Just add proper code in the do something else fragments!

Finite automata Lexical analysis

Encoding an automata

Transitions (δ)

δ f i n o r t Other
s0 s5 s1 sE sE sE sE sE
s1 s2 sE s3 sE sE sE sE
s2 sE sE sE sE sE sE sE
s3 sE sE sE sE sE s4 sE
s4 sE sE sE sE sE sE sE
s5 sE sE sE s6 sE sE sE
s6 sE sE sE sE s7 sE sE
sE sE sE sE sE sE sE sE

The automaton accepts
or rejects a string as
follows.

Starting in the start
state, for each char c in
the input change state
according to δ(s, c).
After making n
transitions for an
n-character string accept
if the state is a final
state. Reject otherwise.

Finite automata Lexical analysis

Encoding an automata

Transitions (δ)

δ f i n o r t Other
s0 s5 s1 sE sE sE sE sE
s1 s2 sE s3 sE sE sE sE
s2 sE sE sE sE sE sE sE
s3 sE sE sE sE sE s4 sE
s4 sE sE sE sE sE sE sE
s5 sE sE sE s6 sE sE sE
s6 sE sE sE sE s7 sE sE
sE sE sE sE sE sE sE sE

The automaton accepts
or rejects a string as
follows.

Starting in the start
state, for each char c in
the input change state
according to δ(s, c).
After making n
transitions for an
n-character string accept
if the state is a final
state. Reject otherwise.

Finite automata Lexical analysis

Encoding an automata

Transitions (δ)

δ f i n o r t Other
s0 s5 s1 sE sE sE sE sE
s1 s2 sE s3 sE sE sE sE
s2 sE sE sE sE sE sE sE
s3 sE sE sE sE sE s4 sE
s4 sE sE sE sE sE sE sE
s5 sE sE sE s6 sE sE sE
s6 sE sE sE sE s7 sE sE
sE sE sE sE sE sE sE sE

The automaton accepts
or rejects a string as
follows.

Starting in the start
state, for each char c in
the input change state
according to δ(s, c).
After making n
transitions for an
n-character string accept
if the state is a final
state. Reject otherwise.

Finite automata Lexical analysis

More complex words

What automaton recognizes
numbers?

Doesn’t work for numbers with more
than 4 digits!

We want to say that
δ(s2, 0) = s2, δ(s2, 1) = s2,
δ(s2, 2) = s2,. . . δ(s2, 9) = s2.

Finite automata Lexical analysis

More complex words

What automaton recognizes
numbers?

Doesn’t work for numbers with more
than 4 digits!

We want to say that
δ(s2, 0) = s2, δ(s2, 1) = s2,
δ(s2, 2) = s2,. . . δ(s2, 9) = s2.

Finite automata Lexical analysis

More complex words

What automaton recognizes
numbers?

Doesn’t work for numbers with more
than 4 digits!

We want to say that
δ(s2, 0) = s2, δ(s2, 1) = s2,
δ(s2, 2) = s2,. . . δ(s2, 9) = s2.

Finite automata Lexical analysis

More complex words

What automaton recognizes
numbers?

Doesn’t work for numbers with more
than 4 digits!

We want to say that
δ(s2, 0) = s2, δ(s2, 1) = s2,
δ(s2, 2) = s2,. . . δ(s2, 9) = s2.

Finite automata Lexical analysis

More complex words

What automaton recognizes
numbers?

Doesn’t work for numbers with more
than 4 digits!

We want to say that
δ(s2, 0) = s2, δ(s2, 1) = s2,
δ(s2, 2) = s2,. . . δ(s2, 9) = s2.

Finite automata Lexical analysis

Deterministic finite state automata

1 Finite number of states

2 From each state only one
transition for a given character.

For every regular expression there is
a deterministic finite state automata
that recognizes its language.

For every finite automata there is a
regular expression that describes the
language it recognizes.

The proof of this theorem is
the algorithm that is used by a
scanner generator!

Finite automata Lexical analysis

Deterministic finite state automata

1 Finite number of states

2 From each state only one
transition for a given character.

For every regular expression there is
a deterministic finite state automata
that recognizes its language.

For every finite automata there is a
regular expression that describes the
language it recognizes.

The proof of this theorem is
the algorithm that is used by a
scanner generator!

Finite automata Lexical analysis

Deterministic finite state automata

1 Finite number of states

2 From each state only one
transition for a given character.

For every regular expression there is
a deterministic finite state automata
that recognizes its language.

For every finite automata there is a
regular expression that describes the
language it recognizes.

The proof of this theorem is
the algorithm that is used by a
scanner generator!

Finite automata Lexical analysis

Deterministic finite state automata

1 Finite number of states

2 From each state only one
transition for a given character.

For every regular expression there is
a deterministic finite state automata
that recognizes its language.

For every finite automata there is a
regular expression that describes the
language it recognizes.

The proof of this theorem is
the algorithm that is used by a
scanner generator!

Finite automata Lexical analysis

Sketch of the proof (algorithm)

We will see how to associate a nondeterministic finite automata to
each regular expression!

There might be more than one edge labeled with the same
symbol leaving a state.

There might be transitions on the empty string (labeled ∈)

They are easier to construct, but they do not help as
programs!

We will then see how to associate a deterministic finite automata
to a nondeterministic one!

Finite automata Lexical analysis

Sketch of the proof (algorithm)

We will see how to associate a nondeterministic finite automata to
each regular expression!

There might be more than one edge labeled with the same
symbol leaving a state.

There might be transitions on the empty string (labeled ∈)

They are easier to construct, but they do not help as
programs!

We will then see how to associate a deterministic finite automata
to a nondeterministic one!

Finite automata Lexical analysis

Sketch of the proof (algorithm)

We will see how to associate a nondeterministic finite automata to
each regular expression!

There might be more than one edge labeled with the same
symbol leaving a state.

There might be transitions on the empty string (labeled ∈)

They are easier to construct, but they do not help as
programs!

We will then see how to associate a deterministic finite automata
to a nondeterministic one!

Finite automata Lexical analysis

Thompson’s construction

In the following arbitrary NFAs can be used in place of the NFAs
for a and b

a is a RE for a ∈ Σ

is a NFA for a

b is a RE for b ∈ Σ

is a NFA for b

ab is a regular expression

is a NFA for ab

Finite automata Lexical analysis

Thompson’s construction

In the following arbitrary NFAs can be used in place of the NFAs
for a and b

a is a RE for a ∈ Σ

is a NFA for a

b is a RE for b ∈ Σ

is a NFA for b

ab is a regular expression

is a NFA for ab

Finite automata Lexical analysis

Thompson’s construction

In the following arbitrary NFAs can be used in place of the NFAs
for a and b

a is a RE for a ∈ Σ

is a NFA for a

b is a RE for b ∈ Σ

is a NFA for b

ab is a regular expression

is a NFA for ab

Finite automata Lexical analysis

Thompson’s construction

In the following arbitrary NFAs can be used in place of the NFAs
for a and b

a is a RE for a ∈ Σ

is a NFA for a

b is a RE for b ∈ Σ

is a NFA for b

ab is a regular expression

is a NFA for ab

Finite automata Lexical analysis

Thompson’s construction

In the following arbitrary NFAs can be used in place of the NFAs
for a and b

a is a RE for a ∈ Σ

is a NFA for a

b is a RE for b ∈ Σ

is a NFA for b

ab is a regular expression

is a NFA for ab

Finite automata Lexical analysis

Thompson’s construction

a|b is a regular expression

is a NFA for a|b

a∗ is a regular expression

is a NFA for a∗

Finite automata Lexical analysis

Thompson’s construction

a|b is a regular expression

is a NFA for a|b

a∗ is a regular expression

is a NFA for a∗

Finite automata Lexical analysis

Thompson’s construction

a|b is a regular expression

is a NFA for a|b

a∗ is a regular expression

is a NFA for a∗

Finite automata Lexical analysis

Thompson’s construction

a|b is a regular expression

is a NFA for a|b

a∗ is a regular expression

is a NFA for a∗

Finite automata Lexical analysis

Thompson’s construction

a|b is a regular expression

is a NFA for a|b

a∗ is a regular expression

is a NFA for a∗

Finite automata Lexical analysis

And now?

As we see, NFAs recognizing
the languages generated by
regular expressions are easy to
construct!

However, they are no so easy
to implement! (How do we
deal with guessing?)

Finite automata Lexical analysis

And now?

As we see, NFAs recognizing
the languages generated by
regular expressions are easy to
construct!

However, they are no so easy
to implement! (How do we
deal with guessing?)

Finite automata Lexical analysis

And now?

As we see, NFAs recognizing
the languages generated by
regular expressions are easy to
construct!

However, they are no so easy
to implement! (How do we
deal with guessing?)

Finite automata Lexical analysis

NFA to DFA

There is a way to transform a NFA to a deterministic automata by
simulating that we make all possible choices at once!

Example

Finite automata Lexical analysis

NFA to DFA

There is a way to transform a NFA to a deterministic automata by
simulating that we make all possible choices at once!

Example

Finite automata Lexical analysis

NFA to DFA

There is a way to transform a NFA to a deterministic automata by
simulating that we make all possible choices at once!

Example

Finite automata Lexical analysis

Why all this?

The lexical structure of computer languages is described using
regular expressions.

The first part of the compiler reads a sequence of characters

Ignores comments and white spaces.

Finds lexemes that correspond to the lexical structure of the
language.

Generates a sequence of tokens for the rest of the compiler!

It is a deterministic finite state automaton generated by a scanner
generator!

Finite automata Lexical analysis

Why all this?

The lexical structure of computer languages is described using
regular expressions.

The first part of the compiler reads a sequence of characters

Ignores comments and white spaces.

Finds lexemes that correspond to the lexical structure of the
language.

Generates a sequence of tokens for the rest of the compiler!

It is a deterministic finite state automaton generated by a scanner
generator!

Finite automata Lexical analysis

Why all this?

The lexical structure of computer languages is described using
regular expressions.

The first part of the compiler reads a sequence of characters

Ignores comments and white spaces.

Finds lexemes that correspond to the lexical structure of the
language.

Generates a sequence of tokens for the rest of the compiler!

It is a deterministic finite state automaton generated by a scanner
generator!

Finite automata Lexical analysis

Why all this?

The lexical structure of computer languages is described using
regular expressions.

The first part of the compiler reads a sequence of characters

Ignores comments and white spaces.

Finds lexemes that correspond to the lexical structure of the
language.

Generates a sequence of tokens for the rest of the compiler!

It is a deterministic finite state automaton generated by a scanner
generator!

Finite automata Lexical analysis

Why all this?

The lexical structure of computer languages is described using
regular expressions.

The first part of the compiler reads a sequence of characters

Ignores comments and white spaces.

Finds lexemes that correspond to the lexical structure of the
language.

Generates a sequence of tokens for the rest of the compiler!

It is a deterministic finite state automaton generated by a scanner
generator!

Finite automata Lexical analysis

Why all this?

The lexical structure of computer languages is described using
regular expressions.

The first part of the compiler reads a sequence of characters

Ignores comments and white spaces.

Finds lexemes that correspond to the lexical structure of the
language.

Generates a sequence of tokens for the rest of the compiler!

It is a deterministic finite state automaton generated by a scanner
generator!

Finite automata Lexical analysis

Some notation

Lexeme

A legal word in a language.
For example, in Java the words

while, class, A, empty, {

are all lexeme.

Token

A category of lexeme. For example, in Java, there are tokens for

WHILE where the only lexeme is while

IDENTIFIER where there are infinitely many lexemes, for
example A, empty.

OPENBRACE where the only lexeme is {

Finite automata Lexical analysis

Some notation

Lexeme

A legal word in a language.
For example, in Java the words

while, class, A, empty, {

are all lexeme.

Token

A category of lexeme. For example, in Java, there are tokens for

WHILE where the only lexeme is while

IDENTIFIER where there are infinitely many lexemes, for
example A, empty.

OPENBRACE where the only lexeme is {

Finite automata Lexical analysis

Some notation

Lexeme

A legal word in a language.
For example, in Java the words

while, class, A, empty, {

are all lexeme.

Token

A category of lexeme. For example, in Java, there are tokens for

WHILE where the only lexeme is while

IDENTIFIER where there are infinitely many lexemes, for
example A, empty.

OPENBRACE where the only lexeme is {

Finite automata Lexical analysis

Some notation

Lexeme

A legal word in a language.
For example, in Java the words

while, class, A, empty, {

are all lexeme.

Token

A category of lexeme. For example, in Java, there are tokens for

WHILE where the only lexeme is while

IDENTIFIER where there are infinitely many lexemes, for
example A, empty.

OPENBRACE where the only lexeme is {

Finite automata Lexical analysis

Some notation

Lexeme

A legal word in a language.
For example, in Java the words

while, class, A, empty, {

are all lexeme.

Token

A category of lexeme. For example, in Java, there are tokens for

WHILE where the only lexeme is while

IDENTIFIER where there are infinitely many lexemes, for
example A, empty.

OPENBRACE where the only lexeme is {

Finite automata Lexical analysis

Some notation

Lexeme

A legal word in a language.
For example, in Java the words

while, class, A, empty, {

are all lexeme.

Token

A category of lexeme. For example, in Java, there are tokens for

WHILE where the only lexeme is while

IDENTIFIER where there are infinitely many lexemes, for
example A, empty.

OPENBRACE where the only lexeme is {

Finite automata Lexical analysis

Some notation

Regular expressions are used to describe the legal lexeme that
belong to a token. There will be a regular expression for WHILE,
one for IDENTIFIER, one for OPENBRACE.

When we represent tokens, we can use integers (for the token) and
some extra info if needed for further understanding of the source
(for example, it is not enough with knowing that we saw an
identifier, we need to keep track of the lexeme!)

Finite automata Lexical analysis

Some notation

Regular expressions are used to describe the legal lexeme that
belong to a token. There will be a regular expression for WHILE,
one for IDENTIFIER, one for OPENBRACE.

When we represent tokens, we can use integers (for the token) and
some extra info if needed for further understanding of the source
(for example, it is not enough with knowing that we saw an
identifier, we need to keep track of the lexeme!)

Finite automata Lexical analysis

Some notation

Regular expressions are used to describe the legal lexeme that
belong to a token. There will be a regular expression for WHILE,
one for IDENTIFIER, one for OPENBRACE.

When we represent tokens, we can use integers (for the token) and
some extra info if needed for further understanding of the source
(for example, it is not enough with knowing that we saw an
identifier, we need to keep track of the lexeme!)

Finite automata Lexical analysis

The Front End

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The Scanner (lexical analyzer) transforms a sequence of
characters (source code) into a sequence of tokens: a
representation of the lexemes of the language.

The Parser (syntactical analyzer) takes the sequence of tokens
and generates a tree representation, the Abstract Syntax.

This tree is analyzed by the type checker and is then used to
generate the intermediate representation.

Finite automata Lexical analysis

The Front End

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The Scanner (lexical analyzer) transforms a sequence of
characters (source code) into a sequence of tokens: a
representation of the lexemes of the language.

The Parser (syntactical analyzer) takes the sequence of tokens
and generates a tree representation, the Abstract Syntax.

This tree is analyzed by the type checker and is then used to
generate the intermediate representation.

Finite automata Lexical analysis

The Front End

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The Scanner (lexical analyzer) transforms a sequence of
characters (source code) into a sequence of tokens: a
representation of the lexemes of the language.

The Parser (syntactical analyzer) takes the sequence of tokens
and generates a tree representation, the Abstract Syntax.

This tree is analyzed by the type checker and is then used to
generate the intermediate representation.

Finite automata Lexical analysis

The Front End

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The Scanner (lexical analyzer) transforms a sequence of
characters (source code) into a sequence of tokens: a
representation of the lexemes of the language.

The Parser (syntactical analyzer) takes the sequence of tokens
and generates a tree representation, the Abstract Syntax.

This tree is analyzed by the type checker and is then used to
generate the intermediate representation.

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer

Example

class Factorial{
public static void main(String[] a)}

System.out.println(new Fac().ComputeFac(10));
}

}

c l a s s ’ ’ F a c t o r i a l { ’\n’ ’\t’ p u b l i c ’ ’

scanner

CLASS (ID, Factorial) { PUBLIC

Finite automata Lexical analysis

The lexical analyzer - cont.

What are the tokens of minijava?
www.cambridge.org/resources/052182060X/

each keyword is a token
each punctuation symbol is a token
each operator is a token
an identifier is a token (and we are interested in its value!)
an integer literal is a token (and we are interested in its value!)
spaces, new lines, tabs and comments are ignored!

look at the appendices at the end of the book! The terminals
for the grammar are the tokens!

Finite automata Lexical analysis

The lexical analyzer - cont.

What are the tokens of minijava?
www.cambridge.org/resources/052182060X/

each keyword is a token
each punctuation symbol is a token
each operator is a token
an identifier is a token (and we are interested in its value!)
an integer literal is a token (and we are interested in its value!)
spaces, new lines, tabs and comments are ignored!

look at the appendices at the end of the book! The terminals
for the grammar are the tokens!

Finite automata Lexical analysis

The lexical analyzer - cont.

What are the tokens of minijava?
www.cambridge.org/resources/052182060X/

each keyword is a token
each punctuation symbol is a token
each operator is a token
an identifier is a token (and we are interested in its value!)
an integer literal is a token (and we are interested in its value!)
spaces, new lines, tabs and comments are ignored!

look at the appendices at the end of the book! The terminals
for the grammar are the tokens!

Finite automata Lexical analysis

The lexical analyzer - cont.

What are the tokens of minijava?
www.cambridge.org/resources/052182060X/

each keyword is a token
each punctuation symbol is a token
each operator is a token
an identifier is a token (and we are interested in its value!)
an integer literal is a token (and we are interested in its value!)
spaces, new lines, tabs and comments are ignored!

look at the appendices at the end of the book! The terminals
for the grammar are the tokens!

Finite automata Lexical analysis

The lexical analyzer - cont.

What are the tokens of minijava?
www.cambridge.org/resources/052182060X/

each keyword is a token
each punctuation symbol is a token
each operator is a token
an identifier is a token (and we are interested in its value!)
an integer literal is a token (and we are interested in its value!)
spaces, new lines, tabs and comments are ignored!

look at the appendices at the end of the book! The terminals
for the grammar are the tokens!

Finite automata Lexical analysis

The lexical analyzer - cont.

What are the tokens of minijava?
www.cambridge.org/resources/052182060X/

each keyword is a token
each punctuation symbol is a token
each operator is a token
an identifier is a token (and we are interested in its value!)
an integer literal is a token (and we are interested in its value!)
spaces, new lines, tabs and comments are ignored!

look at the appendices at the end of the book! The terminals
for the grammar are the tokens!

Finite automata Lexical analysis

The lexical analyzer - cont.

What are the tokens of minijava?
www.cambridge.org/resources/052182060X/

each keyword is a token
each punctuation symbol is a token
each operator is a token
an identifier is a token (and we are interested in its value!)
an integer literal is a token (and we are interested in its value!)
spaces, new lines, tabs and comments are ignored!

look at the appendices at the end of the book! The terminals
for the grammar are the tokens!

Finite automata Lexical analysis

The lexical analyzer - cont.

What are the tokens of minijava?
www.cambridge.org/resources/052182060X/

each keyword is a token
each punctuation symbol is a token
each operator is a token
an identifier is a token (and we are interested in its value!)
an integer literal is a token (and we are interested in its value!)
spaces, new lines, tabs and comments are ignored!

look at the appendices at the end of the book! The terminals
for the grammar are the tokens!

Finite automata Lexical analysis

The lexical analyzer - cont.

What are the tokens of minijava?
www.cambridge.org/resources/052182060X/

each keyword is a token
each punctuation symbol is a token
each operator is a token
an identifier is a token (and we are interested in its value!)
an integer literal is a token (and we are interested in its value!)
spaces, new lines, tabs and comments are ignored!

look at the appendices at the end of the book! The terminals
for the grammar are the tokens!

Finite automata Lexical analysis

Source code for JFlex

JFlex specification

usercode

%%
options and declarations

%%
lexical rules

Code to be placed at the begining of the class with the generated
lexer. (package and imports.)
%%
Directives to adapt the lexer class to other programs.
Code that will be included in the generated class
Definitions used in regular expressions
%%
Regular expressions and the actions to be taken on recognizing
tokens.

Finite automata Lexical analysis

Source code for JFlex

JFlex specification

usercode

%%
options and declarations

%%
lexical rules

Code to be placed at the begining of the class with the generated
lexer. (package and imports.)
%%
Directives to adapt the lexer class to other programs.
Code that will be included in the generated class
Definitions used in regular expressions
%%
Regular expressions and the actions to be taken on recognizing
tokens.

Finite automata Lexical analysis

Source code for JFlex

JFlex specification

usercode

%%
options and declarations

%%
lexical rules

Code to be placed at the begining of the class with the generated
lexer. (package and imports.)
%%
Directives to adapt the lexer class to other programs.
Code that will be included in the generated class
Definitions used in regular expressions
%%
Regular expressions and the actions to be taken on recognizing
tokens.

Finite automata Lexical analysis

Source code for JFlex

JFlex specification

usercode

%%
options and declarations

%%
lexical rules

Code to be placed at the begining of the class with the generated
lexer. (package and imports.)
%%
Directives to adapt the lexer class to other programs.
Code that will be included in the generated class
Definitions used in regular expressions
%%
Regular expressions and the actions to be taken on recognizing
tokens.

Finite automata Lexical analysis

Source code for JFlex

JFlex specification

usercode

%%
options and declarations

%%
lexical rules

Code to be placed at the begining of the class with the generated
lexer. (package and imports.)
%%
Directives to adapt the lexer class to other programs.
Code that will be included in the generated class
Definitions used in regular expressions
%%
Regular expressions and the actions to be taken on recognizing
tokens.

Finite automata Lexical analysis

Source code for JFlex

JFlex specification

usercode

%%
options and declarations

%%
lexical rules

Code to be placed at the begining of the class with the generated
lexer. (package and imports.)
%%
Directives to adapt the lexer class to other programs.
Code that will be included in the generated class
Definitions used in regular expressions
%%
Regular expressions and the actions to be taken on recognizing
tokens.

Finite automata Lexical analysis

Source code for JFlex

JFlex specification

usercode

%%
options and declarations

%%
lexical rules

Code to be placed at the begining of the class with the generated
lexer. (package and imports.)
%%
Directives to adapt the lexer class to other programs.
Code that will be included in the generated class
Definitions used in regular expressions
%%
Regular expressions and the actions to be taken on recognizing
tokens.

Finite automata Lexical analysis

%%
%debug
%class minijavaLexer
%implements minijavaTokens
%int
%unicode
%line
%column
%{
Object semanticValue;
int token;
%}
nl = \ n | \ r | \ r \ n
nls = nl | [\ f \ t]
%%
"class" {return token = CLASS;}
"+" {return token = ’+’;}
{nls} {/* ignore new lines and spaces */}

Finite automata Lexical analysis

interface minijavaTokens {
int ENDINPUT = 0;
int CLASS = 1;
int error = 2;
// ’+’ (code=43)

}

	Finite automata
	Recognizing words
	Deterministic automata
	Nondeterministic automata

	Lexical analysis

