
Introduction Regular Expressions

Computer Languages
Introduction & Regular Expressions

1 Introduction
Administrivia
Course contents

2 Regular Expressions
Definitions
Examples
Scanner generators

January 19th

Introduction Regular Expressions

Computer Languages

This is an elective course for the master
programmes Embedded Intelligent Systems
and Computer Systems Engineering.

Computer languages are

The tools you use to build pieces of
software!

you need to understand them
properly,
you need to learn new ones.

The solution to some problems

you need to know how to implement
them.

Introduction Regular Expressions

Computer Languages

This is an elective course for the master
programmes Embedded Intelligent Systems
and Computer Systems Engineering.

Computer languages are

The tools you use to build pieces of
software!

you need to understand them
properly,
you need to learn new ones.

The solution to some problems

you need to know how to implement
them.

Introduction Regular Expressions

Computer Languages

This is an elective course for the master
programmes Embedded Intelligent Systems
and Computer Systems Engineering.

Computer languages are

The tools you use to build pieces of
software!

you need to understand them
properly,
you need to learn new ones.

The solution to some problems

you need to know how to implement
them.

Introduction Regular Expressions

Computer Languages

This is an elective course for the master
programmes Embedded Intelligent Systems
and Computer Systems Engineering.

Computer languages are

The tools you use to build pieces of
software!

you need to understand them
properly,
you need to learn new ones.

The solution to some problems

you need to know how to implement
them.

Introduction Regular Expressions

Computer Languages

This is an elective course for the master
programmes Embedded Intelligent Systems
and Computer Systems Engineering.

Computer languages are

The tools you use to build pieces of
software!

you need to understand them
properly,
you need to learn new ones.

The solution to some problems

you need to know how to implement
them.

Introduction Regular Expressions

Computer Languages

This is an elective course for the master
programmes Embedded Intelligent Systems
and Computer Systems Engineering.

Computer languages are

The tools you use to build pieces of
software!

you need to understand them
properly,
you need to learn new ones.

The solution to some problems

you need to know how to implement
them.

Introduction Regular Expressions

Computer Languages

This is an elective course for the master
programmes Embedded Intelligent Systems
and Computer Systems Engineering.

Computer languages are

The tools you use to build pieces of
software!

you need to understand them
properly,
you need to learn new ones.

The solution to some problems

you need to know how to implement
them.

Introduction Regular Expressions

Resources

Teachers

Jerker Bengtsson
www2.hh.se/staff/jebe

Verónica Gaspes
www2.hh.se/staff/vero

On Line

Web page
www2.hh.se/staff/jebe/languages.

Lecture notes, notice board, project
instructions.

Manuals for the tools we use.

A good book, organized
around building a compiler.

A lot of material, helps
even if you want to follow
an advanced course. We
look at the first part, upto
chapter 12.

Introduction Regular Expressions

Resources

Teachers

Jerker Bengtsson
www2.hh.se/staff/jebe

Verónica Gaspes
www2.hh.se/staff/vero

On Line

Web page
www2.hh.se/staff/jebe/languages.

Lecture notes, notice board, project
instructions.

Manuals for the tools we use.

A good book, organized
around building a compiler.

A lot of material, helps
even if you want to follow
an advanced course. We
look at the first part, upto
chapter 12.

Introduction Regular Expressions

Resources

Teachers

Jerker Bengtsson
www2.hh.se/staff/jebe

Verónica Gaspes
www2.hh.se/staff/vero

On Line

Web page
www2.hh.se/staff/jebe/languages.

Lecture notes, notice board, project
instructions.

Manuals for the tools we use.

A good book, organized
around building a compiler.

A lot of material, helps
even if you want to follow
an advanced course. We
look at the first part, upto
chapter 12.

Introduction Regular Expressions

Resources

Teachers

Jerker Bengtsson
www2.hh.se/staff/jebe

Verónica Gaspes
www2.hh.se/staff/vero

On Line

Web page
www2.hh.se/staff/jebe/languages.

Lecture notes, notice board, project
instructions.

Manuals for the tools we use.

A good book, organized
around building a compiler.

A lot of material, helps
even if you want to follow
an advanced course. We
look at the first part, upto
chapter 12.

Introduction Regular Expressions

Resources

Teachers

Jerker Bengtsson
www2.hh.se/staff/jebe

Verónica Gaspes
www2.hh.se/staff/vero

On Line

Web page
www2.hh.se/staff/jebe/languages.

Lecture notes, notice board, project
instructions.

Manuals for the tools we use.

A good book, organized
around building a compiler.

A lot of material, helps
even if you want to follow
an advanced course. We
look at the first part, upto
chapter 12.

Introduction Regular Expressions

Examination

A programming project where
you implement a compiler for a
subset of the Java
programming language.

Small computer based
exercises about formal
languages

The instructions will be on the web, including deadlines.

The project is evaluated during the examination week. If you do
not pass, it can be evaluated during the following examination
week.

Introduction Regular Expressions

Examination

A programming project where
you implement a compiler for a
subset of the Java
programming language.

Small computer based
exercises about formal
languages

The instructions will be on the web, including deadlines.

The project is evaluated during the examination week. If you do
not pass, it can be evaluated during the following examination
week.

Introduction Regular Expressions

Examination

A programming project where
you implement a compiler for a
subset of the Java
programming language.

Small computer based
exercises about formal
languages

The instructions will be on the web, including deadlines.

The project is evaluated during the examination week. If you do
not pass, it can be evaluated during the following examination
week.

Introduction Regular Expressions

Examination

A programming project where
you implement a compiler for a
subset of the Java
programming language.

Small computer based
exercises about formal
languages

The instructions will be on the web, including deadlines.

The project is evaluated during the examination week. If you do
not pass, it can be evaluated during the following examination
week.

Introduction Regular Expressions

Organization

Theory lectures

On formal languages about

regular expressions and
finite automata

context free grammars
and pushdown automata

Assignments

Short labs to confirm that you
understand some theory and
the tools we need.

Compiler techniques lectures

abstract syntax

types and type checking

intermediate
representations

code generation and
optimizations

Programming project

Organized as a series of
laborations with strict
deadlines.

Introduction Regular Expressions

Organization

Theory lectures

On formal languages about

regular expressions and
finite automata

context free grammars
and pushdown automata

Assignments

Short labs to confirm that you
understand some theory and
the tools we need.

Compiler techniques lectures

abstract syntax

types and type checking

intermediate
representations

code generation and
optimizations

Programming project

Organized as a series of
laborations with strict
deadlines.

Introduction Regular Expressions

Organization

Theory lectures

On formal languages about

regular expressions and
finite automata

context free grammars
and pushdown automata

Assignments

Short labs to confirm that you
understand some theory and
the tools we need.

Compiler techniques lectures

abstract syntax

types and type checking

intermediate
representations

code generation and
optimizations

Programming project

Organized as a series of
laborations with strict
deadlines.

Introduction Regular Expressions

Organization

Theory lectures

On formal languages about

regular expressions and
finite automata

context free grammars
and pushdown automata

Assignments

Short labs to confirm that you
understand some theory and
the tools we need.

Compiler techniques lectures

abstract syntax

types and type checking

intermediate
representations

code generation and
optimizations

Programming project

Organized as a series of
laborations with strict
deadlines.

Introduction Regular Expressions

Computer Languages

There is plenty of computer languages for
plenty of purposes . . .

xml to describe the structure of
documents and documents themselves.

xquery to transform xml documents.

VHDL to describe circuits.

VRML to describe 3D scenes.

C, Java, Haskell for programming.

Introduction Regular Expressions

Computer Languages

There is plenty of computer languages for
plenty of purposes . . .

xml to describe the structure of
documents and documents themselves.

xquery to transform xml documents.

VHDL to describe circuits.

VRML to describe 3D scenes.

C, Java, Haskell for programming.

Introduction Regular Expressions

Computer Languages

There is plenty of computer languages for
plenty of purposes . . .

xml to describe the structure of
documents and documents themselves.

xquery to transform xml documents.

VHDL to describe circuits.

VRML to describe 3D scenes.

C, Java, Haskell for programming.

Introduction Regular Expressions

Computer Languages

There is plenty of computer languages for
plenty of purposes . . .

xml to describe the structure of
documents and documents themselves.

xquery to transform xml documents.

VHDL to describe circuits.

VRML to describe 3D scenes.

C, Java, Haskell for programming.

Introduction Regular Expressions

Computer Languages

There is plenty of computer languages for
plenty of purposes . . .

xml to describe the structure of
documents and documents themselves.

xquery to transform xml documents.

VHDL to describe circuits.

VRML to describe 3D scenes.

C, Java, Haskell for programming.

Introduction Regular Expressions

Computer Languages

There is plenty of computer languages for
plenty of purposes . . .

xml to describe the structure of
documents and documents themselves.

xquery to transform xml documents.

VHDL to describe circuits.

VRML to describe 3D scenes.

C, Java, Haskell for programming.

Introduction Regular Expressions

Computer Languages

There is plenty of computer languages for
plenty of purposes . . .

xml to describe the structure of
documents and documents themselves.

xquery to transform xml documents.

VHDL to describe circuits.

VRML to describe 3D scenes.

C, Java, Haskell for programming.

Introduction Regular Expressions

Computer Languages

There is plenty of computer languages for
plenty of purposes . . .

xml to describe the structure of
documents and documents themselves.

xquery to transform xml documents.

VHDL to describe circuits.

VRML to describe 3D scenes.

C, Java, Haskell for programming.

Introduction Regular Expressions

Computer Languages

There is plenty of computer languages for
plenty of purposes . . .

xml to describe the structure of
documents and documents themselves.

xquery to transform xml documents.

VHDL to describe circuits.

VRML to describe 3D scenes.

C, Java, Haskell for programming.

Introduction Regular Expressions

Computer Languages

There is plenty of computer languages for
plenty of purposes . . .

xml to describe the structure of
documents and documents themselves.

xquery to transform xml documents.

VHDL to describe circuits.

VRML to describe 3D scenes.

C, Java, Haskell for programming.

Introduction Regular Expressions

Computer Languages

There is plenty of computer languages for
plenty of purposes . . .

xml to describe the structure of
documents and documents themselves.

xquery to transform xml documents.

VHDL to describe circuits.

VRML to describe 3D scenes.

C, Java, Haskell for programming.

Introduction Regular Expressions

Programming Languages

Different kinds of programs require
different kinds of abstractions

Symbolic manipulations functional
languages like Haskell, ML, lisp,
scheme or xquery.

Concurrent languages with
communication and synchronization
mechanisms like Occam or MPD.

Embedded languages with interface to
hardware like C.

. . .

Introduction Regular Expressions

Programming Languages

Different kinds of programs require
different kinds of abstractions

Symbolic manipulations functional
languages like Haskell, ML, lisp,
scheme or xquery.

Concurrent languages with
communication and synchronization
mechanisms like Occam or MPD.

Embedded languages with interface to
hardware like C.

. . .

Introduction Regular Expressions

Programming Languages

Different kinds of programs require
different kinds of abstractions

Symbolic manipulations functional
languages like Haskell, ML, lisp,
scheme or xquery.

Concurrent languages with
communication and synchronization
mechanisms like Occam or MPD.

Embedded languages with interface to
hardware like C.

. . .

Introduction Regular Expressions

Programming Languages

Different kinds of programs require
different kinds of abstractions

Symbolic manipulations functional
languages like Haskell, ML, lisp,
scheme or xquery.

Concurrent languages with
communication and synchronization
mechanisms like Occam or MPD.

Embedded languages with interface to
hardware like C.

. . .

Introduction Regular Expressions

Programming Languages

Different kinds of programs require
different kinds of abstractions

Symbolic manipulations functional
languages like Haskell, ML, lisp,
scheme or xquery.

Concurrent languages with
communication and synchronization
mechanisms like Occam or MPD.

Embedded languages with interface to
hardware like C.

. . .

Introduction Regular Expressions

Programming Languages

Different kinds of programs require
different kinds of abstractions

Symbolic manipulations functional
languages like Haskell, ML, lisp,
scheme or xquery.

Concurrent languages with
communication and synchronization
mechanisms like Occam or MPD.

Embedded languages with interface to
hardware like C.

. . .

Introduction Regular Expressions

Programming Languages

Different kinds of programs require
different kinds of abstractions

Symbolic manipulations functional
languages like Haskell, ML, lisp,
scheme or xquery.

Concurrent languages with
communication and synchronization
mechanisms like Occam or MPD.

Embedded languages with interface to
hardware like C.

. . .

Introduction Regular Expressions

Programming Languages

Different kinds of programs require
different kinds of abstractions

Symbolic manipulations functional
languages like Haskell, ML, lisp,
scheme or xquery.

Concurrent languages with
communication and synchronization
mechanisms like Occam or MPD.

Embedded languages with interface to
hardware like C.

. . .

Introduction Regular Expressions

Common features

All these languages have a lot in common!
They all have to be processed by a program
in order to do what we express in them!

They are formal languages,

in most of them we can make
definitions,

in most of them types are used to
identify meaningful expressions.

Introduction Regular Expressions

Common features

All these languages have a lot in common!
They all have to be processed by a program
in order to do what we express in them!

They are formal languages,

in most of them we can make
definitions,

in most of them types are used to
identify meaningful expressions.

Introduction Regular Expressions

Common features

All these languages have a lot in common!
They all have to be processed by a program
in order to do what we express in them!

They are formal languages,

in most of them we can make
definitions,

in most of them types are used to
identify meaningful expressions.

Introduction Regular Expressions

Common features

All these languages have a lot in common!
They all have to be processed by a program
in order to do what we express in them!

They are formal languages,

in most of them we can make
definitions,

in most of them types are used to
identify meaningful expressions.

Introduction Regular Expressions

Why a compiler?

In the course we study a
compiler for an imperative
programming language.

Language processors

There are two kinds of
language processors

Compilers

Interpreters

that have much in common!

They are complex programs!

They use advanced algorithms
and data structures.

They show an application of the
theory of formal languages, we
learn how to use tools that
generate programs.

We learn programming
techniques.

We learn to do semantic
distinctions (for instance
different parameter passing
mechanisms!)

Introduction Regular Expressions

Why a compiler?

In the course we study a
compiler for an imperative
programming language.

Language processors

There are two kinds of
language processors

Compilers

Interpreters

that have much in common!

They are complex programs!

They use advanced algorithms
and data structures.

They show an application of the
theory of formal languages, we
learn how to use tools that
generate programs.

We learn programming
techniques.

We learn to do semantic
distinctions (for instance
different parameter passing
mechanisms!)

Introduction Regular Expressions

Why a compiler?

In the course we study a
compiler for an imperative
programming language.

Language processors

There are two kinds of
language processors

Compilers

Interpreters

that have much in common!

They are complex programs!

They use advanced algorithms
and data structures.

They show an application of the
theory of formal languages, we
learn how to use tools that
generate programs.

We learn programming
techniques.

We learn to do semantic
distinctions (for instance
different parameter passing
mechanisms!)

Introduction Regular Expressions

Why a compiler?

In the course we study a
compiler for an imperative
programming language.

Language processors

There are two kinds of
language processors

Compilers

Interpreters

that have much in common!

They are complex programs!

They use advanced algorithms
and data structures.

They show an application of the
theory of formal languages, we
learn how to use tools that
generate programs.

We learn programming
techniques.

We learn to do semantic
distinctions (for instance
different parameter passing
mechanisms!)

Introduction Regular Expressions

Why a compiler?

In the course we study a
compiler for an imperative
programming language.

Language processors

There are two kinds of
language processors

Compilers

Interpreters

that have much in common!

They are complex programs!

They use advanced algorithms
and data structures.

They show an application of the
theory of formal languages, we
learn how to use tools that
generate programs.

We learn programming
techniques.

We learn to do semantic
distinctions (for instance
different parameter passing
mechanisms!)

Introduction Regular Expressions

Why a compiler?

In the course we study a
compiler for an imperative
programming language.

Language processors

There are two kinds of
language processors

Compilers

Interpreters

that have much in common!

They are complex programs!

They use advanced algorithms
and data structures.

They show an application of the
theory of formal languages, we
learn how to use tools that
generate programs.

We learn programming
techniques.

We learn to do semantic
distinctions (for instance
different parameter passing
mechanisms!)

Introduction Regular Expressions

Why a compiler?

In the course we study a
compiler for an imperative
programming language.

Language processors

There are two kinds of
language processors

Compilers

Interpreters

that have much in common!

They are complex programs!

They use advanced algorithms
and data structures.

They show an application of the
theory of formal languages, we
learn how to use tools that
generate programs.

We learn programming
techniques.

We learn to do semantic
distinctions (for instance
different parameter passing
mechanisms!)

Introduction Regular Expressions

Why a compiler?

In the course we study a
compiler for an imperative
programming language.

Language processors

There are two kinds of
language processors

Compilers

Interpreters

that have much in common!

They are complex programs!

They use advanced algorithms
and data structures.

They show an application of the
theory of formal languages, we
learn how to use tools that
generate programs.

We learn programming
techniques.

We learn to do semantic
distinctions (for instance
different parameter passing
mechanisms!)

Introduction Regular Expressions

Why a compiler?

In the course we study a
compiler for an imperative
programming language.

Language processors

There are two kinds of
language processors

Compilers

Interpreters

that have much in common!

They are complex programs!

They use advanced algorithms
and data structures.

They show an application of the
theory of formal languages, we
learn how to use tools that
generate programs.

We learn programming
techniques.

We learn to do semantic
distinctions (for instance
different parameter passing
mechanisms!)

Introduction Regular Expressions

Why a compiler?

In the course we study a
compiler for an imperative
programming language.

Language processors

There are two kinds of
language processors

Compilers

Interpreters

that have much in common!

They are complex programs!

They use advanced algorithms
and data structures.

They show an application of the
theory of formal languages, we
learn how to use tools that
generate programs.

We learn programming
techniques.

We learn to do semantic
distinctions (for instance
different parameter passing
mechanisms!)

Introduction Regular Expressions

Why a compiler? Cooper & Torczon. Engineering a
Compiler. (Elsevier)

A compiler is a large, complex program.

The design and implementation of a compiler is a substantial
exercise in software engineering.

A good compiler contains a microcosmos of computer science.

Working inside a compiler provides practical experience in
software engineering that is hard to obtain with smaller, less
intrincate systems.

Most software is compiled. Compiler construction has given
rise to tools for automatic programming that can be used for
many purposes. In constructing a compiler you will get to use
these tools (and hopefully you will find use for them in other
areas!)

Introduction Regular Expressions

Why a compiler? Cooper & Torczon. Engineering a
Compiler. (Elsevier)

A compiler is a large, complex program.

The design and implementation of a compiler is a substantial
exercise in software engineering.

A good compiler contains a microcosmos of computer science.

Working inside a compiler provides practical experience in
software engineering that is hard to obtain with smaller, less
intrincate systems.

Most software is compiled. Compiler construction has given
rise to tools for automatic programming that can be used for
many purposes. In constructing a compiler you will get to use
these tools (and hopefully you will find use for them in other
areas!)

Introduction Regular Expressions

Why a compiler? Cooper & Torczon. Engineering a
Compiler. (Elsevier)

A compiler is a large, complex program.

The design and implementation of a compiler is a substantial
exercise in software engineering.

A good compiler contains a microcosmos of computer science.

Working inside a compiler provides practical experience in
software engineering that is hard to obtain with smaller, less
intrincate systems.

Most software is compiled. Compiler construction has given
rise to tools for automatic programming that can be used for
many purposes. In constructing a compiler you will get to use
these tools (and hopefully you will find use for them in other
areas!)

Introduction Regular Expressions

Why a compiler? Cooper & Torczon. Engineering a
Compiler. (Elsevier)

A compiler is a large, complex program.

The design and implementation of a compiler is a substantial
exercise in software engineering.

A good compiler contains a microcosmos of computer science.

Working inside a compiler provides practical experience in
software engineering that is hard to obtain with smaller, less
intrincate systems.

Most software is compiled. Compiler construction has given
rise to tools for automatic programming that can be used for
many purposes. In constructing a compiler you will get to use
these tools (and hopefully you will find use for them in other
areas!)

Introduction Regular Expressions

Why a compiler? Cooper & Torczon. Engineering a
Compiler. (Elsevier)

A compiler is a large, complex program.

The design and implementation of a compiler is a substantial
exercise in software engineering.

A good compiler contains a microcosmos of computer science.

Working inside a compiler provides practical experience in
software engineering that is hard to obtain with smaller, less
intrincate systems.

Most software is compiled. Compiler construction has given
rise to tools for automatic programming that can be used for
many purposes. In constructing a compiler you will get to use
these tools (and hopefully you will find use for them in other
areas!)

Introduction Regular Expressions

Why a programming language?

We chose a programming language as running example of a
computer language because you are familiar with it and because it
illustrates a lot of concepts.

definitions and scope

variables and arguments

types

Introduction Regular Expressions

Some side effects of the course.

Provides you with software tools to describe and implement
computer languages

lexer generators

parser generators

Provides you with new programming techniques and datastructures
useful in processing computer languages

design patterns component, visitor

front end/ back end, abstract machines

abstract syntax

environments

Introduction Regular Expressions

Some side effects of the course.

Provides you with software tools to describe and implement
computer languages

lexer generators

parser generators

Provides you with new programming techniques and datastructures
useful in processing computer languages

design patterns component, visitor

front end/ back end, abstract machines

abstract syntax

environments

Introduction Regular Expressions

Some side effects of the course.

Provides you with software tools to describe and implement
computer languages

lexer generators

parser generators

Provides you with new programming techniques and datastructures
useful in processing computer languages

design patterns component, visitor

front end/ back end, abstract machines

abstract syntax

environments

Introduction Regular Expressions

Some side effects of the course.

Provides you with software tools to describe and implement
computer languages

lexer generators

parser generators

Provides you with new programming techniques and datastructures
useful in processing computer languages

design patterns component, visitor

front end/ back end, abstract machines

abstract syntax

environments

Introduction Regular Expressions

Some side effects of the course.

Provides you with software tools to describe and implement
computer languages

lexer generators

parser generators

Provides you with new programming techniques and datastructures
useful in processing computer languages

design patterns component, visitor

front end/ back end, abstract machines

abstract syntax

environments

Introduction Regular Expressions

Some side effects of the course.

Provides you with software tools to describe and implement
computer languages

lexer generators

parser generators

Provides you with new programming techniques and datastructures
useful in processing computer languages

design patterns component, visitor

front end/ back end, abstract machines

abstract syntax

environments

Introduction Regular Expressions

Programming Project

You will write a compiler for minijava, a small programming
language presented in the course book.

It is graded, it is the main contribution to the grade of the
course!

It is divided in parts. You will get instructions and deadlines
for each part.

You will get help to get started but you will have to work on
your own.

There will be time for extra questions/supervision during
consultation hours, to be announced for each lab.

Introduction Regular Expressions

Programming Project

You will write a compiler for minijava, a small programming
language presented in the course book.

It is graded, it is the main contribution to the grade of the
course!

It is divided in parts. You will get instructions and deadlines
for each part.

You will get help to get started but you will have to work on
your own.

There will be time for extra questions/supervision during
consultation hours, to be announced for each lab.

Introduction Regular Expressions

Programming Project

You will write a compiler for minijava, a small programming
language presented in the course book.

It is graded, it is the main contribution to the grade of the
course!

It is divided in parts. You will get instructions and deadlines
for each part.

You will get help to get started but you will have to work on
your own.

There will be time for extra questions/supervision during
consultation hours, to be announced for each lab.

Introduction Regular Expressions

Programming Project

You will write a compiler for minijava, a small programming
language presented in the course book.

It is graded, it is the main contribution to the grade of the
course!

It is divided in parts. You will get instructions and deadlines
for each part.

You will get help to get started but you will have to work on
your own.

There will be time for extra questions/supervision during
consultation hours, to be announced for each lab.

Introduction Regular Expressions

Programming Project

You will write a compiler for minijava, a small programming
language presented in the course book.

It is graded, it is the main contribution to the grade of the
course!

It is divided in parts. You will get instructions and deadlines
for each part.

You will get help to get started but you will have to work on
your own.

There will be time for extra questions/supervision during
consultation hours, to be announced for each lab.

Introduction Regular Expressions

Overview of a compiler

Compiler
source
code

machine
code

errors

Has to distinguish correct from
incorrect programs (has to
understand!)

Has to generate correct machine
code!

Has to organize memory for
variables and instructions!

Has to agree with OS on the
form of object code!

Introduction Regular Expressions

Overview of a compiler

Compiler
source
code

machine
code

errors

Has to distinguish correct from
incorrect programs (has to
understand!)

Has to generate correct machine
code!

Has to organize memory for
variables and instructions!

Has to agree with OS on the
form of object code!

Introduction Regular Expressions

Overview of a compiler

Compiler
source
code

machine
code

errors

Has to distinguish correct from
incorrect programs (has to
understand!)

Has to generate correct machine
code!

Has to organize memory for
variables and instructions!

Has to agree with OS on the
form of object code!

Introduction Regular Expressions

Overview of a compiler

Compiler
source
code

machine
code

errors

Has to distinguish correct from
incorrect programs (has to
understand!)

Has to generate correct machine
code!

Has to organize memory for
variables and instructions!

Has to agree with OS on the
form of object code!

Introduction Regular Expressions

Overview of a compiler

Compiler
source
code

machine
code

errors

Has to distinguish correct from
incorrect programs (has to
understand!)

Has to generate correct machine
code!

Has to organize memory for
variables and instructions!

Has to agree with OS on the
form of object code!

Introduction Regular Expressions

Overview . . .

Front End Back End
source
code

IR machine
code

errors

Programs are analysed and translated to an intermediate
representation IR, a form of abstract machine.

IR is useful for many things:

detect some errors (indexing out of range)
reorganize the code (to gain efficiency)
to analyze the code (to assign registers)

It also helps to think and understand the different tasks!

Introduction Regular Expressions

Overview . . .

Front End Back End
source
code

IR machine
code

errors

Programs are analysed and translated to an intermediate
representation IR, a form of abstract machine.

IR is useful for many things:

detect some errors (indexing out of range)
reorganize the code (to gain efficiency)
to analyze the code (to assign registers)

It also helps to think and understand the different tasks!

Introduction Regular Expressions

Overview . . .

Front End Back End
source
code

IR machine
code

errors

Programs are analysed and translated to an intermediate
representation IR, a form of abstract machine.

IR is useful for many things:

detect some errors (indexing out of range)
reorganize the code (to gain efficiency)
to analyze the code (to assign registers)

It also helps to think and understand the different tasks!

Introduction Regular Expressions

Overview . . .

Front End Back End
source
code

IR machine
code

errors

Programs are analysed and translated to an intermediate
representation IR, a form of abstract machine.

IR is useful for many things:

detect some errors (indexing out of range)
reorganize the code (to gain efficiency)
to analyze the code (to assign registers)

It also helps to think and understand the different tasks!

Introduction Regular Expressions

Overview . . .

Front End Back End
source
code

IR machine
code

errors

Programs are analysed and translated to an intermediate
representation IR, a form of abstract machine.

IR is useful for many things:

detect some errors (indexing out of range)
reorganize the code (to gain efficiency)
to analyze the code (to assign registers)

It also helps to think and understand the different tasks!

Introduction Regular Expressions

Overview . . .

Front End Back End
source
code

IR machine
code

errors

Programs are analysed and translated to an intermediate
representation IR, a form of abstract machine.

IR is useful for many things:

detect some errors (indexing out of range)
reorganize the code (to gain efficiency)
to analyze the code (to assign registers)

It also helps to think and understand the different tasks!

Introduction Regular Expressions

Overview . . .

Front End Back End
source
code

IR machine
code

errors

Programs are analysed and translated to an intermediate
representation IR, a form of abstract machine.

IR is useful for many things:

detect some errors (indexing out of range)
reorganize the code (to gain efficiency)
to analyze the code (to assign registers)

It also helps to think and understand the different tasks!

Introduction Regular Expressions

The Front End

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The Scanner (lexical analyzer) transforms a sequence of
characters (source code) into a sequence of tokens: a
representation of the lexemes of the language.

The Parser (syntactical analyzer) takes the sequence of tokens
and generates a tree representation, the Abstract Syntax.

This tree is analyzed by the type checker and is then used to
generate the intermediate representation.

Introduction Regular Expressions

The Front End

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The Scanner (lexical analyzer) transforms a sequence of
characters (source code) into a sequence of tokens: a
representation of the lexemes of the language.

The Parser (syntactical analyzer) takes the sequence of tokens
and generates a tree representation, the Abstract Syntax.

This tree is analyzed by the type checker and is then used to
generate the intermediate representation.

Introduction Regular Expressions

The Front End

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The Scanner (lexical analyzer) transforms a sequence of
characters (source code) into a sequence of tokens: a
representation of the lexemes of the language.

The Parser (syntactical analyzer) takes the sequence of tokens
and generates a tree representation, the Abstract Syntax.

This tree is analyzed by the type checker and is then used to
generate the intermediate representation.

Introduction Regular Expressions

The Front End

Scanner Parser Types Trans.
source
code

tokens AS AS IR

errors

The Scanner (lexical analyzer) transforms a sequence of
characters (source code) into a sequence of tokens: a
representation of the lexemes of the language.

The Parser (syntactical analyzer) takes the sequence of tokens
and generates a tree representation, the Abstract Syntax.

This tree is analyzed by the type checker and is then used to
generate the intermediate representation.

Introduction Regular Expressions

The Back End

Front End Back End
source
code

IR machine
code

errors

The back end is also structured in phases!

Opt Instr. Sel. Reg. Alloc.
IR IR Abstract

Assembler
Assembler

Introduction Regular Expressions

The Back End

Front End Back End
source
code

IR machine
code

errors

The back end is also structured in phases!

Opt Instr. Sel. Reg. Alloc.
IR IR Abstract

Assembler
Assembler

Introduction Regular Expressions

The Back End

Front End Back End
source
code

IR machine
code

errors

The back end is also structured in phases!

Opt Instr. Sel. Reg. Alloc.
IR IR Abstract

Assembler
Assembler

Introduction Regular Expressions

Describing a language

What are the phrases of the
language? (Syntax)

Example

In English some sentences have the
form

<noun phrase><verb phrase>

where a <noun phrase> can be

the <noun>
a <noun>
<name>

What do phrases mean?
(Semantics)

Example

In Java the meaning of a
statement like

if <exp><stm1><stm2>

is given by explaining what
happens when it is executed:

When the value of <exp> is
true <stm1> is executed,

otherwise <stm2> is executed.

Introduction Regular Expressions

Describing a language

What are the phrases of the
language? (Syntax)

Example

In English some sentences have the
form

<noun phrase><verb phrase>

where a <noun phrase> can be

the <noun>
a <noun>
<name>

What do phrases mean?
(Semantics)

Example

In Java the meaning of a
statement like

if <exp><stm1><stm2>

is given by explaining what
happens when it is executed:

When the value of <exp> is
true <stm1> is executed,

otherwise <stm2> is executed.

Introduction Regular Expressions

Describing a language

What are the phrases of the
language? (Syntax)

Example

In English some sentences have the
form

<noun phrase><verb phrase>

where a <noun phrase> can be

the <noun>
a <noun>
<name>

What do phrases mean?
(Semantics)

Example

In Java the meaning of a
statement like

if <exp><stm1><stm2>

is given by explaining what
happens when it is executed:

When the value of <exp> is
true <stm1> is executed,

otherwise <stm2> is executed.

Introduction Regular Expressions

Describing a language

What are the phrases of the
language? (Syntax)

Example

In English some sentences have the
form

<noun phrase><verb phrase>

where a <noun phrase> can be

the <noun>
a <noun>
<name>

What do phrases mean?
(Semantics)

Example

In Java the meaning of a
statement like

if <exp><stm1><stm2>

is given by explaining what
happens when it is executed:

When the value of <exp> is
true <stm1> is executed,

otherwise <stm2> is executed.

Introduction Regular Expressions

Describing a language

What are the phrases of the
language? (Syntax)

Example

In English some sentences have the
form

<noun phrase><verb phrase>

where a <noun phrase> can be

the <noun>
a <noun>
<name>

What do phrases mean?
(Semantics)

Example

In Java the meaning of a
statement like

if <exp><stm1><stm2>

is given by explaining what
happens when it is executed:

When the value of <exp> is
true <stm1> is executed,

otherwise <stm2> is executed.

Introduction Regular Expressions

Syntax

Alphabets

Phrases are formed using words.

Words are formed using
characters.

Languages

In the context of our course we will
deal with formal languages:

Sets of strings over some alphabet
described by certain rules

Introduction Regular Expressions

Syntax

Alphabets

Phrases are formed using words.

Words are formed using
characters.

Languages

In the context of our course we will
deal with formal languages:

Sets of strings over some alphabet
described by certain rules

Introduction Regular Expressions

Syntax

Alphabets

Phrases are formed using words.

Words are formed using
characters.

Languages

In the context of our course we will
deal with formal languages:

Sets of strings over some alphabet
described by certain rules

Introduction Regular Expressions

Syntax

There are different kinds of rules
to describe languages.

According to what kind of rules
we use the languages have
certain structure and properties.

Typically languages of words
have a simpler structure than
languages of phrases.

Regular expressions are used to
describe words of programming
languages.

Easy to understand, usefull in
many contexts, software tool
support.

Introduction Regular Expressions

Syntax

There are different kinds of rules
to describe languages.

According to what kind of rules
we use the languages have
certain structure and properties.

Typically languages of words
have a simpler structure than
languages of phrases.

Regular expressions are used to
describe words of programming
languages.

Easy to understand, usefull in
many contexts, software tool
support.

Introduction Regular Expressions

Syntax

There are different kinds of rules
to describe languages.

According to what kind of rules
we use the languages have
certain structure and properties.

Typically languages of words
have a simpler structure than
languages of phrases.

Regular expressions are used to
describe words of programming
languages.

Easy to understand, usefull in
many contexts, software tool
support.

Introduction Regular Expressions

Syntax

There are different kinds of rules
to describe languages.

According to what kind of rules
we use the languages have
certain structure and properties.

Typically languages of words
have a simpler structure than
languages of phrases.

Regular expressions are used to
describe words of programming
languages.

Easy to understand, usefull in
many contexts, software tool
support.

Introduction Regular Expressions

Syntax

There are different kinds of rules
to describe languages.

According to what kind of rules
we use the languages have
certain structure and properties.

Typically languages of words
have a simpler structure than
languages of phrases.

Regular expressions are used to
describe words of programming
languages.

Easy to understand, usefull in
many contexts, software tool
support.

Introduction Regular Expressions

Notation

A regular expression r over an
alphabet Σ describes a set of strings
L(r).

1 ε is a RE denoting the set with the empty string as only
element.

2 if a ∈ Σ then a is a RE denoting the set {a}
3 if r and s are RE denoting L(r) and L(s) respectively, then

(r) is a RE denoting L(r)
r |s is a RE denoting L(r) ∪ L(s)
rs is a RE denoting {xy |x ∈ L(r) and y ∈ L(s)}
r∗ is a RE denoting L(r)∗

Introduction Regular Expressions

Notation

A regular expression r over an
alphabet Σ describes a set of strings
L(r).

1 ε is a RE denoting the set with the empty string as only
element.

2 if a ∈ Σ then a is a RE denoting the set {a}
3 if r and s are RE denoting L(r) and L(s) respectively, then

(r) is a RE denoting L(r)
r |s is a RE denoting L(r) ∪ L(s)
rs is a RE denoting {xy |x ∈ L(r) and y ∈ L(s)}
r∗ is a RE denoting L(r)∗

Introduction Regular Expressions

Notation

A regular expression r over an
alphabet Σ describes a set of strings
L(r).

1 ε is a RE denoting the set with the empty string as only
element.

2 if a ∈ Σ then a is a RE denoting the set {a}
3 if r and s are RE denoting L(r) and L(s) respectively, then

(r) is a RE denoting L(r)
r |s is a RE denoting L(r) ∪ L(s)
rs is a RE denoting {xy |x ∈ L(r) and y ∈ L(s)}
r∗ is a RE denoting L(r)∗

Introduction Regular Expressions

Notation

A regular expression r over an
alphabet Σ describes a set of strings
L(r).

1 ε is a RE denoting the set with the empty string as only
element.

2 if a ∈ Σ then a is a RE denoting the set {a}
3 if r and s are RE denoting L(r) and L(s) respectively, then

(r) is a RE denoting L(r)
r |s is a RE denoting L(r) ∪ L(s)
rs is a RE denoting {xy |x ∈ L(r) and y ∈ L(s)}
r∗ is a RE denoting L(r)∗

Introduction Regular Expressions

Notation

A regular expression r over an
alphabet Σ describes a set of strings
L(r).

1 ε is a RE denoting the set with the empty string as only
element.

2 if a ∈ Σ then a is a RE denoting the set {a}
3 if r and s are RE denoting L(r) and L(s) respectively, then

(r) is a RE denoting L(r)
r |s is a RE denoting L(r) ∪ L(s)
rs is a RE denoting {xy |x ∈ L(r) and y ∈ L(s)}
r∗ is a RE denoting L(r)∗

Introduction Regular Expressions

Notation

A regular expression r over an
alphabet Σ describes a set of strings
L(r).

1 ε is a RE denoting the set with the empty string as only
element.

2 if a ∈ Σ then a is a RE denoting the set {a}
3 if r and s are RE denoting L(r) and L(s) respectively, then

(r) is a RE denoting L(r)
r |s is a RE denoting L(r) ∪ L(s)
rs is a RE denoting {xy |x ∈ L(r) and y ∈ L(s)}
r∗ is a RE denoting L(r)∗

Introduction Regular Expressions

Notation

A regular expression r over an
alphabet Σ describes a set of strings
L(r).

1 ε is a RE denoting the set with the empty string as only
element.

2 if a ∈ Σ then a is a RE denoting the set {a}
3 if r and s are RE denoting L(r) and L(s) respectively, then

(r) is a RE denoting L(r)
r |s is a RE denoting L(r) ∪ L(s)
rs is a RE denoting {xy |x ∈ L(r) and y ∈ L(s)}
r∗ is a RE denoting L(r)∗

Introduction Regular Expressions

Notation

A regular expression r over an
alphabet Σ describes a set of strings
L(r).

1 ε is a RE denoting the set with the empty string as only
element.

2 if a ∈ Σ then a is a RE denoting the set {a}
3 if r and s are RE denoting L(r) and L(s) respectively, then

(r) is a RE denoting L(r)
r |s is a RE denoting L(r) ∪ L(s)
rs is a RE denoting {xy |x ∈ L(r) and y ∈ L(s)}
r∗ is a RE denoting L(r)∗

Introduction Regular Expressions

Recall set operations

We used two operations on sets when introducing regular
expressions.

Union

A ∪ B = {x |x ∈ A or x ∈ B}

Example

{0, 2, 4, 6, 8, 10} ∪
{1, 3, 5, 7, 9, 10} =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Kleene closure

A∗ = ε ∪ A ∪ {xy |x , y ∈ A}∪
{xyz |x , y , z ∈ A} ∪ . . .

Example

{a}∗ =
{””, a, aa, aaa, aaaa, aaaaa, . . .}

Introduction Regular Expressions

Recall set operations

We used two operations on sets when introducing regular
expressions.

Union

A ∪ B = {x |x ∈ A or x ∈ B}

Example

{0, 2, 4, 6, 8, 10} ∪
{1, 3, 5, 7, 9, 10} =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Kleene closure

A∗ = ε ∪ A ∪ {xy |x , y ∈ A}∪
{xyz |x , y , z ∈ A} ∪ . . .

Example

{a}∗ =
{””, a, aa, aaa, aaaa, aaaaa, . . .}

Introduction Regular Expressions

Recall set operations

We used two operations on sets when introducing regular
expressions.

Union

A ∪ B = {x |x ∈ A or x ∈ B}

Example

{0, 2, 4, 6, 8, 10} ∪
{1, 3, 5, 7, 9, 10} =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Kleene closure

A∗ = ε ∪ A ∪ {xy |x , y ∈ A}∪
{xyz |x , y , z ∈ A} ∪ . . .

Example

{a}∗ =
{””, a, aa, aaa, aaaa, aaaaa, . . .}

Introduction Regular Expressions

Recall set operations

We used two operations on sets when introducing regular
expressions.

Union

A ∪ B = {x |x ∈ A or x ∈ B}

Example

{0, 2, 4, 6, 8, 10} ∪
{1, 3, 5, 7, 9, 10} =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Kleene closure

A∗ = ε ∪ A ∪ {xy |x , y ∈ A}∪
{xyz |x , y , z ∈ A} ∪ . . .

Example

{a}∗ =
{””, a, aa, aaa, aaaa, aaaaa, . . .}

Introduction Regular Expressions

Recall set operations

We used two operations on sets when introducing regular
expressions.

Union

A ∪ B = {x |x ∈ A or x ∈ B}

Example

{0, 2, 4, 6, 8, 10} ∪
{1, 3, 5, 7, 9, 10} =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Kleene closure

A∗ = ε ∪ A ∪ {xy |x , y ∈ A}∪
{xyz |x , y , z ∈ A} ∪ . . .

Example

{a}∗ =
{””, a, aa, aaa, aaaa, aaaaa, . . .}

Introduction Regular Expressions

Examples & Abbreviations

The set of strings that begin
and end with an a and contain
at least one b:

a(a|b)∗b(a|b)∗a

Example

aba
aaba, abaa, abba
aabaa, abbaa, aabba, ababa . . .
. . .

We omit many parenthesis by
following precedence
conventions:

∗ has highest precedence

then comes concatenation

and then union

Introduction Regular Expressions

Examples & Abbreviations

The set of strings that begin
and end with an a and contain
at least one b:

a(a|b)∗b(a|b)∗a

Example

aba
aaba, abaa, abba
aabaa, abbaa, aabba, ababa . . .
. . .

We omit many parenthesis by
following precedence
conventions:

∗ has highest precedence

then comes concatenation

and then union

Introduction Regular Expressions

Examples & Abbreviations

The set of strings that begin
and end with an a and contain
at least one b:

a(a|b)∗b(a|b)∗a

Example

aba
aaba, abaa, abba
aabaa, abbaa, aabba, ababa . . .
. . .

We omit many parenthesis by
following precedence
conventions:

∗ has highest precedence

then comes concatenation

and then union

Introduction Regular Expressions

Examples & Abbreviations

The set of integer literals

0|(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗

Example

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
10, 11, 12, . . . , 20, 21, . . . , 99
100, 101, 102 . . .
. . .

We use [] for either:
[123456789]

We use − for a range in
an ordered part of the
alphabet: [1− 9]

0|[1− 9][0− 9]∗

Introduction Regular Expressions

Examples & Abbreviations

The set of integer literals

0|(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗

Example

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
10, 11, 12, . . . , 20, 21, . . . , 99
100, 101, 102 . . .
. . .

We use [] for either:
[123456789]

We use − for a range in
an ordered part of the
alphabet: [1− 9]

0|[1− 9][0− 9]∗

Introduction Regular Expressions

Examples & Abbreviations

The set of integer literals

0|(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗

Example

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
10, 11, 12, . . . , 20, 21, . . . , 99
100, 101, 102 . . .
. . .

We use [] for either:
[123456789]

We use − for a range in
an ordered part of the
alphabet: [1− 9]

0|[1− 9][0− 9]∗

Introduction Regular Expressions

Examples & Abbreviations

Identifiers in a little programming language are words of any length
formed using the characters of the latin alphabet.

[a− zA− Z][a− zA− Z]∗

Example

a, b, c , . . . ,A,B,C , . . .
aa, ab, ac , aZ , . . .
the,myX , Int, . . .
. . .

We use r+ instead of rr∗

[a− zA− Z]+

Introduction Regular Expressions

Examples & Abbreviations

Identifiers in a little programming language are words of any length
formed using the characters of the latin alphabet.

[a− zA− Z][a− zA− Z]∗

Example

a, b, c , . . . ,A,B,C , . . .
aa, ab, ac , aZ , . . .
the,myX , Int, . . .
. . .

We use r+ instead of rr∗

[a− zA− Z]+

Introduction Regular Expressions

Examples & Abbreviations

Identifiers in a little programming language are words of any length
formed using the characters of the latin alphabet.

[a− zA− Z][a− zA− Z]∗

Example

a, b, c , . . . ,A,B,C , . . .
aa, ab, ac , aZ , . . .
the,myX , Int, . . .
. . .

We use r+ instead of rr∗

[a− zA− Z]+

Introduction Regular Expressions

Non regular languages

Not all sets of strings are regular!

Example

Given the alphabet Σ = {a, b},
the language {anbn|n ≥ 0} is
not regular.
It can be proved
mathematicaly, but we will not
do it

However, for any m ≥ 0, the
language {anbn|0 ≤ n ≤ m} is
regular.

Example

Given the alphabet
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+, ∗, (,)},
the set of wellformed arithmetical
expressions is not regular.

We need recursion in order to allow
for subexpressions and balanced
partenthesis.

Introduction Regular Expressions

Non regular languages

Not all sets of strings are regular!

Example

Given the alphabet Σ = {a, b},
the language {anbn|n ≥ 0} is
not regular.
It can be proved
mathematicaly, but we will not
do it

However, for any m ≥ 0, the
language {anbn|0 ≤ n ≤ m} is
regular.

Example

Given the alphabet
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+, ∗, (,)},
the set of wellformed arithmetical
expressions is not regular.

We need recursion in order to allow
for subexpressions and balanced
partenthesis.

Introduction Regular Expressions

Non regular languages

Not all sets of strings are regular!

Example

Given the alphabet Σ = {a, b},
the language {anbn|n ≥ 0} is
not regular.
It can be proved
mathematicaly, but we will not
do it

However, for any m ≥ 0, the
language {anbn|0 ≤ n ≤ m} is
regular.

Example

Given the alphabet
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+, ∗, (,)},
the set of wellformed arithmetical
expressions is not regular.

We need recursion in order to allow
for subexpressions and balanced
partenthesis.

Introduction Regular Expressions

Non regular languages

Not all sets of strings are regular!

Example

Given the alphabet Σ = {a, b},
the language {anbn|n ≥ 0} is
not regular.
It can be proved
mathematicaly, but we will not
do it

However, for any m ≥ 0, the
language {anbn|0 ≤ n ≤ m} is
regular.

Example

Given the alphabet
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+, ∗, (,)},
the set of wellformed arithmetical
expressions is not regular.

We need recursion in order to allow
for subexpressions and balanced
partenthesis.

Introduction Regular Expressions

Non regular languages

Not all sets of strings are regular!

Example

Given the alphabet Σ = {a, b},
the language {anbn|n ≥ 0} is
not regular.
It can be proved
mathematicaly, but we will not
do it

However, for any m ≥ 0, the
language {anbn|0 ≤ n ≤ m} is
regular.

Example

Given the alphabet
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+, ∗, (,)},
the set of wellformed arithmetical
expressions is not regular.

We need recursion in order to allow
for subexpressions and balanced
partenthesis.

Introduction Regular Expressions

Regular expressions on the web

There is a lot of material on the web, both in the form of lecture
notes, slides and books. I will not link from the web page, but I
will put some links on the slides that you can check.

A book on compilers

N. Wirth. Compiler Construction.
http://www.oberon.ethz.ch/WirthPubl/CBEAll.pdf

Lecture notes for a compiler course

L. Fegaras. Design and Construction of Compilers at Texas at
Arlington.
http://lambda.uta.edu/cse5317/notes/

A similar course at Lule̊a

Where you can find slides.
http://www.sm.luth.se/csee/courses/smd/163/

Introduction Regular Expressions

Scanners

A scanner is a program that inspects a sequence of characters
trying to identify words of a language. They can be used for many
different purposes.

Example

In a compiler a scanner (or lexical analyzer) is used to begin with
the analysis (understanding) of the source code:

Read the sequence of characters and produce a sequence of
tokens

Facilitates the analysis of the phrases of the program!

Interrupt the compilation process in case of some
lexicographic error, including reporting an error message.

Introduction Regular Expressions

Scanners

A scanner is a program that inspects a sequence of characters
trying to identify words of a language. They can be used for many
different purposes.

Example

In a compiler a scanner (or lexical analyzer) is used to begin with
the analysis (understanding) of the source code:

Read the sequence of characters and produce a sequence of
tokens

Facilitates the analysis of the phrases of the program!

Interrupt the compilation process in case of some
lexicographic error, including reporting an error message.

Introduction Regular Expressions

Scanners

A scanner is a program that inspects a sequence of characters
trying to identify words of a language. They can be used for many
different purposes.

Example

In a compiler a scanner (or lexical analyzer) is used to begin with
the analysis (understanding) of the source code:

Read the sequence of characters and produce a sequence of
tokens

Facilitates the analysis of the phrases of the program!

Interrupt the compilation process in case of some
lexicographic error, including reporting an error message.

Introduction Regular Expressions

Scanners

A scanner is a program that inspects a sequence of characters
trying to identify words of a language. They can be used for many
different purposes.

Example

In a compiler a scanner (or lexical analyzer) is used to begin with
the analysis (understanding) of the source code:

Read the sequence of characters and produce a sequence of
tokens

Facilitates the analysis of the phrases of the program!

Interrupt the compilation process in case of some
lexicographic error, including reporting an error message.

Introduction Regular Expressions

Scanners

A scanner is a program that inspects a sequence of characters
trying to identify words of a language. They can be used for many
different purposes.

Example

In a compiler a scanner (or lexical analyzer) is used to begin with
the analysis (understanding) of the source code:

Read the sequence of characters and produce a sequence of
tokens

Facilitates the analysis of the phrases of the program!

Interrupt the compilation process in case of some
lexicographic error, including reporting an error message.

Introduction Regular Expressions

Generators

Scanners are tedious programs
to write, with many cases to
take care of, very error prone!

Some math that we will
discuss in the second lecture
has resulted in programs that
generate scanners from a
regular expression.

We will use , written in Java
and generating a Java
program.

Introduction Regular Expressions

Generators

Scanners are tedious programs
to write, with many cases to
take care of, very error prone!

Some math that we will
discuss in the second lecture
has resulted in programs that
generate scanners from a
regular expression.

We will use , written in Java
and generating a Java
program.

Introduction Regular Expressions

Generators

Scanners are tedious programs
to write, with many cases to
take care of, very error prone!

Some math that we will
discuss in the second lecture
has resulted in programs that
generate scanners from a
regular expression.

We will use , written in
Java and generating a Java
program.

Introduction Regular Expressions

Generators

Scanners are tedious programs
to write, with many cases to
take care of, very error prone!

Some math that we will
discuss in the second lecture
has resulted in programs that
generate scanners from a
regular expression.

We will use , written in
Java and generating a Java
program.

Introduction Regular Expressions

JFlex source

Regular
expressions,
directives, java
code.

JFlex the source!

Scanner in Java,
compile it!

Run the scanner
on a file of text!

// code outside MyName
%%

%unicode
%int
%class MyName
%function next
%{
// code inside MyName
%}
%%

"veronica gaspes"
{System.out.println(yytext());}

.|\n{}

Introduction Regular Expressions

JFlex source

Regular
expressions,
directives, java
code.

JFlex the source!

Scanner in Java,
compile it!

Run the scanner
on a file of text!

// code outside MyName
%%

%unicode
%int
%class MyName
%function next
%{
// code inside MyName
%}
%%

"veronica gaspes"
{System.out.println(yytext());}

.|\n{}

Introduction Regular Expressions

JFlex source

Regular
expressions,
directives, java
code.

JFlex the source!

Scanner in Java,
compile it!

Run the scanner
on a file of text!

// code outside MyName
%%

%unicode
%int
%class MyName
%function next
%{
// code inside MyName
%}
%%

"veronica gaspes"
{System.out.println(yytext());}

.|\n{}

Introduction Regular Expressions

Directives and conventions

%line allows you to use the
variable yyline that is
automaticaly incremented on
every line change.

%column allows you to use
the variable yycolumn that
is automaticaly incremented
and reinitialized.

%implements
InterfaceName lets the
generated java class
implement the interface.

When scanning the input
sequence of characters, there
might be clashes between some of
the regular expressions.

Allways go for the longest
sequence that matches an
expression.

The order of the rules
indicates precedence, if a
word is described by more
than one RE the first one will
be chosen.

Introduction Regular Expressions

Directives and conventions

%line allows you to use the
variable yyline that is
automaticaly incremented on
every line change.

%column allows you to use
the variable yycolumn that
is automaticaly incremented
and reinitialized.

%implements
InterfaceName lets the
generated java class
implement the interface.

When scanning the input
sequence of characters, there
might be clashes between some of
the regular expressions.

Allways go for the longest
sequence that matches an
expression.

The order of the rules
indicates precedence, if a
word is described by more
than one RE the first one will
be chosen.

Introduction Regular Expressions

Directives and conventions

%line allows you to use the
variable yyline that is
automaticaly incremented on
every line change.

%column allows you to use
the variable yycolumn that
is automaticaly incremented
and reinitialized.

%implements
InterfaceName lets the
generated java class
implement the interface.

When scanning the input
sequence of characters, there
might be clashes between some of
the regular expressions.

Allways go for the longest
sequence that matches an
expression.

The order of the rules
indicates precedence, if a
word is described by more
than one RE the first one will
be chosen.

Introduction Regular Expressions

Directives and conventions

%line allows you to use the
variable yyline that is
automaticaly incremented on
every line change.

%column allows you to use
the variable yycolumn that
is automaticaly incremented
and reinitialized.

%implements
InterfaceName lets the
generated java class
implement the interface.

When scanning the input
sequence of characters, there
might be clashes between some of
the regular expressions.

Allways go for the longest
sequence that matches an
expression.

The order of the rules
indicates precedence, if a
word is described by more
than one RE the first one will
be chosen.

Introduction Regular Expressions

Directives and conventions

%line allows you to use the
variable yyline that is
automaticaly incremented on
every line change.

%column allows you to use
the variable yycolumn that
is automaticaly incremented
and reinitialized.

%implements
InterfaceName lets the
generated java class
implement the interface.

When scanning the input
sequence of characters, there
might be clashes between some of
the regular expressions.

Allways go for the longest
sequence that matches an
expression.

The order of the rules
indicates precedence, if a
word is described by more
than one RE the first one will
be chosen.

Introduction Regular Expressions

Directives and conventions

%line allows you to use the
variable yyline that is
automaticaly incremented on
every line change.

%column allows you to use
the variable yycolumn that
is automaticaly incremented
and reinitialized.

%implements
InterfaceName lets the
generated java class
implement the interface.

When scanning the input
sequence of characters, there
might be clashes between some of
the regular expressions.

Allways go for the longest
sequence that matches an
expression.

The order of the rules
indicates precedence, if a
word is described by more
than one RE the first one will
be chosen.

	Introduction
	Administrivia
	Course contents

	Regular Expressions
	Definitions
	Examples
	Scanner generators

