Node-to-Node Disjoint Paths in k-ary n-cube with Faulty Edges

Yonghong Xiang, Iain Stewart
School of Engineering and Computing Sciences
Durham University
Durham, United Kingdom, DH1 3LE
Email: \{yonghong.xiang, i.a.stewart\} @dur.ac.uk

Florent Madelaine
Département Informatique
Institut Universitaire de Technologie
63172 AUBIERE Cédex, FRANCE
florent.madelaine@u-clermont1.fr

Abstract

In a k-ary n-cube Q_{n}^{k} with at most $2 n-2$ faulty edges, let u and v be any two given nodes. Suppose the number of healthy links of u is no more than that of \mathbf{v}, and denote by m. In this paper, we find m disjoint paths between u and v.

Keywords-interconnection networks; disjoint paths; k ary n-cube; fault tolerance;

I. Introduction

k-ary n-cubes have been used as interconnection networks for distributed-memory parallel computers [1] and are popular choices for networks-on-chips [2]. k-ary n-cube has the following basic properties: it is vertex- and edgesymmetric [3]; it is Hamiltonian [4]; it has diameter $n\left\lfloor\frac{k}{2}\right\rfloor$; it has a recursive decomposition. Moreover, it has admirable properties in relation to routing, broadcasting and communication in general (see, for example, [3], [5]).

Of particular relevance to us is the one-toone node-disjoint paths problem, which enable parallel communication between source and destination nodes, provide alternative routing paths when faults occurs or for the purpose of avoiding traffic jam. Whilst Menger's Theorem [6] implies that there exist $2 n$ node-disjoint paths between two given nodes in a graph of node-connectivity $2 n$, it is by no means easy to identify and actually construct the paths. Moreover, it will be harder to find as many as possible disjoint paths when there exist faults in the graph.

[^0]As more and more processors are incorporated into parallel machines, faults become more common, be it faults in the processors or on the connections between processors. Given the significant cost of parallel machines, we would prefer to be able to tolerate (small numbers of) faults and still be able to use our parallel machine.

Bose et al [5] find $2 n$ node-disjoint paths between any two given nodes in a healthy k-ary n cube. In this paper, we are going to find nodedisjoint paths between any two given nodes in a faulty k-ary n-cube. In particular, in a k-ary n cube Q_{n}^{k} with at most $2 n-2$ faulty edges, let \mathbf{u} and \mathbf{v} be any two given nodes; denote the number of healthy links of a node \mathbf{u} as $\operatorname{deg}_{H}(\mathbf{u})$; we find $\min \left\{d e g_{H}(\mathbf{u}), d e g_{H}(\mathbf{v})\right\}$ disjoint paths between \mathbf{u} and \mathbf{v}.

The paper is organized as follows: the next section is the basic definition; we describe how to find disjoint paths in faulty k-ary 2-cube in Section III; by induction, we find disjoint paths for k-ary n-cube for $n \geq 3, k \geq 4$, and this is described in Section IV; Section V is the conclusion of the paper.

II. Preliminaries

The k-ary n-cube, denoted by Q_{n}^{k}, for $k \geq 3$ and $n \geq 2$, has k^{n} nodes indexed by $\{0,1, \ldots, k-1\}^{n}$, and there is a link $\left(\left(u_{n}, u_{n-1}, \ldots, u_{1}\right),\left(v_{n}, v_{n-1}, \ldots, v_{1}\right)\right)$ if, and only if, there exists $d \in\{1,2, \ldots, n\}$ such that $\min \left\{\left|u_{d}-v_{d}\right|, k-\left|u_{d}-v_{d}\right|\right\}=1$, and $u_{i}=v_{i}$, for every $i \in\{1,2, \ldots, n\} \backslash\{d\}$. Throughout, we
assume that addition on tuple elements is modulo k.

An index $d \in\{1,2, \ldots, n\}$ is often referred to as a dimension. We can partition Q_{n}^{k} over dimension d by fixing the d th element of any node tuple at some value v, for every $v \in\{0,1, \ldots, k-1\}$. This results in k copies $Q_{0}, Q_{1}, \ldots, Q_{k-1}$ of Q_{n-1}^{k} (with Q_{v} obtained by fixing the d th element at v), with corresponding nodes in $Q_{0}, Q_{1}, \ldots, Q_{k-1}$ joined in a cycle of length k (in dimension d) (we suppress d, n and k in the notation as they are always understood).

Denote F the set of faulty edges in Q_{n}^{k}, F_{i} the set of faulty edges in subgraph $Q_{i}, i \in$ $\{0,1, \ldots, k-1\} . F^{\mathbf{v}}$ (resp. $H^{\mathbf{v}}$) denotes the set of faulty (resp. healthy) edges that incident with vertex $\mathbf{v} . F_{i}^{\mathbf{v}}$ (resp. $H_{i}^{\mathbf{v}}$) denotes the set of faulty (resp. healthy) edges that lie in Q_{i} and incident with \mathbf{v}. The set of edges incident with node \mathbf{v} is denoted by N^{v}. Denote the set of faulty edges that are not incident with \mathbf{u} and \mathbf{v} as F^{F}. Given a node $\mathbf{v}=\left(v_{n}, v_{n-1}, \ldots, v_{2}, v_{1}\right)$, which lies in $Q_{v_{1}}$. Denote the node $\left(v_{n}, v_{n-1}, \ldots, v_{2}, v_{1}+i\right)$ as $\mathbf{v}^{i},-(k-1) \leq i \leq k-1$. In addition, \mathbf{v}^{1} (resp. \mathbf{v}^{-1}) is also denoted as \mathbf{v}^{+}(resp. \mathbf{v}^{-}). The distance between two node \mathbf{u} and \mathbf{v} is denoted by $\operatorname{dist}(\mathbf{u}, \mathbf{v})$. A path can be written as a list of nodes or as a list of nodes and edges mixed or sub-paths with nodes and edges mixed. We put them in a pair of squared brackets to denote that is a path.

III. Node-to-Node Disjoint Paths in FaUlty k-ary 2 -CUBE, $k \geq 4$

We first find disjoint paths in Q_{2}^{4} with at most two faulty nodes. Based on this, we find disjoint paths for $Q_{2}^{k}, k \geq 5$ with at most two faulty nodes by mapping the graph Q_{2}^{k} to Q_{2}^{4}.

As the procedure of finding disjoint paths for Q_{2}^{4} with two faulty edges is long and tedious, we put it in the appendix A.

In Q_{2}^{k}, one node associates with one row and one column, and one edge associates with one row and two columns, or one column and two rows. Denote the two faulty edges as f_{1} and f_{2}. If there are at most four rows and at most four columns associate with $\mathbf{u}, \mathbf{v}, f_{1}$, and f_{2}, it can
be reduced to finding disjoint paths in Q_{2}^{4} by removing some of the non-associated rows and columns, and then extend the disjoint paths by inserting back the rows and columns. So, we will only consider the cases that there are more than four rows or columns associated. We will consider the following cases:
(1) six columns are associated;
(2) five columns are associated.

The cases with more than four rows associated can be mapped to the above two cases by the symmetric property of Q_{n}^{k}.

If there are 6 columns associated, then there are at most 4 rows associated, and the configuration can be described as follows: $\mathbf{u}=(0,0), \mathbf{v}=\left(i_{1}, j_{1}\right), f_{1}=$ $\left(\left(i_{2}, j_{2}\right),\left(i_{2}, j_{3}\right)\right), f_{2}=\left(\left(i_{3}, j_{4}\right),\left(i_{3}, j_{5}\right)\right)$, where $1 \leq i_{1}, i_{2}, i_{3}, j_{1}, j_{2}, j_{3}, j_{4}, j_{5} \leq k, j_{3}=j_{2}+1, j_{5}=$ $j_{4}+1$ and all the $j_{t}, 1 \leq t \leq 5$ are different from each other. To reduce the case to Q_{2}^{4}, we keep all of the associated rows and some other rows if necessary to have 4 rows; to have 4 columns, we set $j_{1}=j_{2}=1, j_{4}=2$, if $j_{1}<j_{2}<j_{4}$, or we set $j_{2}=0, j_{1}=j_{4}=2$, if $j_{2}<j_{1}<j_{4}$. The other cases can be easily mapped to these two cases by the symmetric property of Q_{2}^{k}.

If there are 5 columns associated, the configuration can be described as: $\mathbf{u}=$ $(0,0), \mathbf{v}=\left(i_{1}, j_{1}\right), f_{1}=\left(\left(i_{2}, j_{2}\right),\left(i_{2}, j_{3}\right)\right), f_{2}=$ $\left(\left(i_{3}, j_{4}\right),\left(i_{4}, j_{4}\right)\right)$, where $1 \leq i_{t}, j_{t} \leq k, i_{s} \neq$ $i_{t}, j_{s} \neq j_{t}$ for all $1 \leq s, t \leq 4$. To reduce the case to Q_{2}^{4} (to have 4 columns), we set $j_{1}=1, j_{2}=2, j_{4}=3$, if $j_{1}<j_{2}<j_{4}$, and set $j_{2}=0, j_{1}=2, j_{4}=3$, if $j_{2}<j_{1}<j_{4}$; by the symmetric property of Q_{2}^{k}, the four rows can be kept in the same way as the columns if there are five rows associated, or we just keep all of associated rows and some other rows if necessary to have four rows. The other cases can be easily mapped to these two cases.

Thus, we have the following lemma.
Lemma 1: In a k-ary 2 -cube Q_{2}^{k}, when there are at most two faulty edges, for any two given nodes \mathbf{u} and \mathbf{v}, there exist $\min \left\{d e g_{\mathbf{u}}, d e g_{\mathbf{v}}\right\}$ disjoint paths between.

IV. Node-to-Node Disjoint Paths in

FAULTY k-ARY n-CUBE, $n \geq 4, k \geq 4$
There are at most $2 n-2$ faulty edges in Q_{n}^{k}, and there are n dimensions. Hence, we can partition Q_{n}^{k} on a dimension, such that there is at most one faulty edge lies on that dimension.

Given an edge $e=(\mathbf{s}, \mathbf{t})$ on some path, define U-jump(e) as replacing the edge e by a sub-path of length 3: $\left[\mathbf{s}, \mathbf{s}^{-}, \mathbf{t}^{-}, \mathbf{t}\right]$; similarly, D-jump (e) is defined as replacing e by another sub-path of length 3: $\left[\mathbf{s}, \mathbf{s}^{+}, \mathbf{t}^{+}, \mathbf{t}\right]$.
W.l.o.g., suppose we partition Q_{n}^{k} through dimension one. So that there is either one faulty edge or none of the faulty edges lie in this dimension.

The proof is technical and complicated. There are a number of cases to be considered. For example, w.l.o.g., suppose $\mathbf{u}=(0,0, \ldots, 0)$, we need to consider several different cases depends on where the node $\mathbf{v}=\left(v_{n}, v_{n-1}, \ldots, v_{1}\right)$ lies and whether there is a faulty edge lies on dimension 1 or not. Suppose there is one faulty edge lies on the dimension 1 , then we have to distinguish the value of v_{1} :
(1) $v_{1}=0$, which means \mathbf{u} and \mathbf{v} lie in the same sub-graph Q_{0};
(2) $v_{1} \neq 0$, which means \mathbf{u} and \mathbf{v} lie in different sub-graphs;
The technique in building disjoint paths for these two cases are very different. For example, for case (1), we can use induction on Q_{0} by assuming some of the faulty edges are healthy if necessary so as to have at most $2 n-4$ faulty edges (if a path includes an edge, say e, that is originally fault, we need to do adjustment to avoid the faulty edge e, for example, do a U-jump (e) or $D-j u m p(e)$), and then find some more paths to link the dimension 0 edges between them; while for case (2), as \mathbf{u} and \mathbf{v} lie in different sub-graphs, we can apply induction on each sub-graph by making some assumptions; however, we need to link these disjoint paths in different sub-graphs together, which makes the procedure complicated.

Furthermore, if we go into details for case (2), we have the following sub-cases to consider:
(2.1) $\operatorname{dist}\left(\mathbf{u}, \mathbf{v}^{-v_{1}}\right)=0$, which means the node \mathbf{u}
and the node v lie on the same dimension 1 circle. Node \mathbf{u} or its neighbor can reach node \mathbf{v} or its corresponding neighbor along the dimension 1 circle.
(2.2) $\operatorname{dist}\left(\mathbf{u}, \mathbf{v}^{-v_{1}}\right)=1$, which means node \mathbf{u} and node \mathbf{v} lie on different dimension 1 circles, but they have one overlap incident edge ($\left.\mathbf{u}, \mathbf{v}^{-v_{1}}\right)$.
$\operatorname{dist}\left(\mathbf{u}, \mathbf{v}^{-v_{1}}\right) \geq 2$, which means node \mathbf{u} and node \mathbf{v} lie on different dimension 1 circles, and they have no overlap incident edges.
These cases are similar to each other. However, the complexity of each case varies much. Due to the space limited, we will not include all of the proof in the paper, but the representative ones and the remainder will be left in the appendix.

We claim that case (2.2) is representative as most of the techniques used in the other cases will be used here. For example, use induction on Q_{0} to find disjoint paths is similar to case (1); to extend these disjoint paths to $Q_{v_{1}}$ is similar to case (2.1) when $\exists e_{1} \in F^{\mathbf{u}}, e_{1}^{v_{1}} \notin F^{\mathbf{v}}$ and $\exists e_{2} \notin F^{\mathbf{u}}, e_{2}^{v_{1}} \in F^{\mathbf{v}}$, and case (2.3). Also, similar discussion on the case that the dimension one faulty edge does not block any path can be applied to the case when there are no dimension one faulty edges.

The condition for case (2.2) is:
(1) There is one dimension one faulty edge $f=$ $\left(\mathbf{r}^{h}, \mathbf{r}^{h+1}\right)$;
(2) $\operatorname{dist}\left(\mathbf{u}, \mathbf{v}^{-v_{1}}\right)=1$

In what follows, we will discuss case (2.2) in details.

Case $2.2 \operatorname{dist}\left(\mathbf{u}, \mathbf{v}^{-v_{1}}\right)=1$, i.e., There exists some $j \in\{2,3, \ldots, n\}, v_{j}=1$, and for all $i \in$ $\{2,3, \ldots, n\} \backslash\{j\}, v_{i}=0$. W.l.o.g., suppose $j=2$.

Let $e \in N^{\mathrm{t}}$. For a given $i \in\{1,2, \ldots, k-1\}$, we define $\operatorname{map}(\mathbf{t}, i)$ as temporarily mark e^{i} as faulty if e^{i} is faulty, or healthy otherwise.

Suppose r,s lie in a same sub-graph $Q_{i}, i \in$ $\{0,1, \ldots, k-1\}$, and $\left|F_{i}\right| \leq 2 n-4$. Denote $D P(\mathbf{r}, \mathbf{s})$ as a procedure of finding disjoint paths between r and s in the sub-graph Q_{i} by induction.

Please note, if the following two paths exist, and are not blocked, we will always keep them
in the set of disjoint paths, and thus we may not mention them in the following discussion unless necessary:

$$
\begin{aligned}
& \sigma_{1}:\left[\mathbf{u}, \mathbf{v}^{-}, \mathbf{v}\right] ; \text { and } \\
& \sigma_{2}:\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{v}\right] .
\end{aligned}
$$

(A22-1) Assume f is healthy.
As there are now at most $2 n-3$ faulty edges in Q_{n}^{k}, we have the following cases to consider. Recall that we suppose $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|$.

Suppose $v_{1}=1$.

$$
(\mathrm{A} 22-1.1)\left|F^{\mathbf{u}}\right|=2 n-3
$$

We only need to find 3 disjoint paths. Let (\mathbf{u}, \mathbf{s}) be the only healthy edge in Q_{0} that incident with \mathbf{u}. The two more paths are:
(a) $\left[\mathbf{u}, \mathbf{u}^{-}, \mathbf{v}^{-2}, \mathbf{v}^{-}, \mathbf{v}\right]$; and
(b) $\left[\mathbf{u}, \mathbf{s}, \mathbf{s}^{-}, \ldots, \mathbf{s}^{2}, \mathbf{u}^{2}, \mathbf{v}^{2}, \mathbf{v}^{+}, \mathbf{v}\right]$;
(A22-1.2) After doing $\operatorname{map}(\mathbf{v}, 0)$, we have $\left|F_{0}\right|=2 n-3$.

If $\left|F^{\mathbf{u}} \cup F^{\mathbf{v}^{-}}\right|=2 n-3$, we must have $\left|F^{\mathbf{u}}\right| \geq$ $\left|F^{\mathbf{v}^{-}}\right|+1$. Assume a faulty edge (\mathbf{u}, \mathbf{s}) is healthy, and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Remove the node \mathbf{v}^{-}from each disjoint path, and extend to \mathbf{v}. For simplicity, this procedure after doing $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$will be called "extend" the paths to \mathbf{v} in throughout the remainder part of this section. Two more paths can be:
(a) $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \mathbf{v}^{+}, \mathbf{v}\right]$; and
(b) $\left[\mathbf{u}, \mathbf{u}^{-}, \mathbf{v}^{-2}, \mathbf{v}^{-}, \mathbf{v}\right]$.

If there is a faulty edge e that is neither incident with \mathbf{u} nor with $\mathbf{v}^{-v_{1}}$, assume e is healthy and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$; extend the paths to \mathbf{v}. Do $U_{-j u m p(e)}$ if e lies on some of the disjoint paths. Two more paths are:
(a) $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \mathbf{v}^{+}, \mathbf{v}\right]$; and
(b) $\left[\mathbf{u}, \mathbf{u}^{-}, \mathbf{v}^{-2}, \mathbf{v}^{-}, \mathbf{v}\right]$;
(A22-1.3) $\left|F_{1}\right| \leq 2 n-4$, and after doing $\operatorname{map}(\mathbf{v}, 0)$, we have $\left|F_{0}\right| \leq 2 n-4$.

Do $\operatorname{map}(\mathbf{v}, 0)$ and $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Extend the paths to \mathbf{v}. Two more paths are:
(a) $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \mathbf{v}^{+}, \mathbf{v}\right]$; and
(b) $\left[\mathbf{u}, \mathbf{u}^{-}, \mathbf{v}^{-2}, \mathbf{v}^{-}, \mathbf{v}\right]$;

From our above construction method, in a similar way to the case $v_{1}=1$ but extending the dimension 1 edges, we will be able to find disjoint paths for the case $v_{1} \geq 2$.

If the dimension 1 edge f lies on some of the above path, we will rebuild disjoint paths as follows.
(A22-2) f is blocking some path.
Suppose $v_{1}=1$.
(A22-2.1) $f=\left(\mathbf{u}, \mathbf{u}^{+}\right)$.
(A22-2.1.1) $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|$
We first do $\operatorname{map}(\mathbf{v}, 0)$. But $\left(\mathbf{u}, \mathbf{v}^{-}\right)$is marked as faulty if either $\left(\mathbf{u}, \mathbf{v}^{-}\right)$is originally faulty or $\left(\mathbf{u}^{+}, \mathbf{v}\right)$ is faulty.

If $\left(\mathbf{u}, \mathbf{v}^{-}\right) \in F$, and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \notin F$, assume two of \mathbf{v}^{-}'s faulty links e_{1}, e_{2} are healthy. Do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Let edge (\mathbf{u}, \mathbf{w}) lies on the path that e_{1} lies on, and (\mathbf{u}, \mathbf{z}) lies on the path that e_{2} lies on. Remove the paths that contains e_{1} or e_{2}. For all of the other paths, extend them to \mathbf{v}. Build the following three paths:
(a) $\left[\mathbf{u}, \mathbf{u}^{-}, \rho_{1}, \mathbf{v}^{-2}, \mathbf{v}^{-}, \mathbf{v}\right]$;
(b) $\left[\mathbf{u}, \mathbf{z}, \mathbf{z}^{+}, \mathbf{z}^{2}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right]$; and
(c) $\left[\mathbf{u}, \mathbf{w}, \mathbf{w}^{+}, \rho_{3}, \mathbf{u}^{+}, \mathbf{v}\right]$,
where $\rho_{1} \in Q_{k-1}, \rho_{2} \in Q_{2}$ and $\rho_{3} \in Q_{1}$, and they can be found by induction if not straightforward. Specifically, ρ_{3} can be build by finding disjoint paths between \mathbf{w}^{+}and \mathbf{v} (note that there are at most $2 n-4$ faulty edges lie in Q_{1}).

If $\left(\mathbf{u}, \mathbf{v}^{-}\right) \notin F$, and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \in F$, do $\operatorname{map}(\mathbf{v}, 0)$. If there are more than $2 n-4$ faulty edges in Q_{0}, we assume $\left(\mathbf{u}, \mathbf{v}^{-}\right)$is healthy. Do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$; remove path $\left[\mathbf{u}, \mathbf{v}^{-}\right]$extend the paths to \mathbf{v}. Build one more path:

$$
\left[\mathbf{u}, \mathbf{u}^{-}, \ldots, \mathbf{u}^{v_{1}+1}, \rho, \mathbf{v}^{+}, \mathbf{v}\right],
$$

where $\rho \in Q_{v_{1}+1}$.
If either $\left(\mathbf{u}, \mathbf{v}^{-}\right) \in F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \in F$, or $\left(\mathbf{u}, \mathbf{v}^{-}\right) \notin F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \notin F$, do $\operatorname{map}(\mathbf{v}, 0)$; assume $e \in F^{\mathbf{v}^{-}}$is healthy. Do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Let (\mathbf{u}, \mathbf{w}) is on the path containing e. Remove this path, and extend all other paths to \mathbf{v}. Build the following two paths:
(a) $\left[\mathbf{u}, \mathbf{w}, \mathbf{w}^{+}, \rho_{1}, \mathbf{u}^{+}, \mathbf{v}\right]$, where ρ can be chosen from the disjoint paths between \mathbf{w}^{+}and \mathbf{v} in Q_{1}; and
(b) $\left[\mathbf{u}, \mathbf{u}^{k-1}, \ldots, \mathbf{u}^{v_{1}+1}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right]$, where $\rho_{2} \in$ $Q_{v_{1}+1}$ and can be found by induction.
If $\left(\mathbf{u}, \mathbf{v}^{-}\right) \in F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \in F$, path (a) is not needed.
(A22-2.1.2) $\left|F^{\mathbf{u}}\right|>\left|F^{\mathbf{v}}\right|$
$(\mathrm{A} 22-2.1 .2 .1)\left(\mathbf{u}, \mathbf{v}^{-}\right) \in F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \notin F$.
If $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|+1$, then after $\operatorname{map}(\mathbf{v}, 0)$, we have $\left|F_{0}^{\mathbf{u}}\right|=\left|F_{0}^{\mathbf{v}^{-}}\right|+1$. Assume faulty edge e that incident with \mathbf{v}^{-}is healthy. Do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Let (\mathbf{u}, \mathbf{w}) lie on the path that passes the edge e. Remove this path and extend all other paths to \mathbf{v}. Build the following two paths:
(a) $\left[\mathbf{u}, \mathbf{w}, \mathbf{w}^{-}, \rho_{1}, \mathbf{v}^{-2}, \mathbf{v}^{-}, \mathbf{v}\right]$, where $\rho_{1} \in Q_{k-1}$ can be found by finding disjoint paths between \mathbf{u}^{-}and \mathbf{v}^{-2} by induction, and
(b) $\left[\mathbf{u}, \mathbf{u}^{-}, \ldots, \mathbf{u}^{v_{1}+1}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right]$, where $\rho_{2} \in$ $Q_{v_{1}+1}$
If $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|+2$, then after $\operatorname{map}(\mathbf{v}, 0)$, assume one of the faulty edges e that incidents with \mathbf{u} is healthy. Do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Remove the path that passes the edge e and extend all other paths to \mathbf{v}. Build the following path:

$$
\left[\mathbf{u}, \mathbf{u}^{-}, \ldots, \mathbf{u}^{v_{1}+1}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right],
$$

where $\rho_{2} \in Q_{v_{1}+1}$.
(A22-2.1.2.2) $\left(\mathbf{u}, \mathbf{v}^{-}\right) \notin F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \in F$; or $\left(\mathbf{u}, \mathbf{v}^{-}\right) \in F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \in F$; or $\left(\mathbf{u}, \mathbf{v}^{-}\right) \notin F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \notin F$.

Do $\operatorname{map}(\mathbf{v}, 0)$. If there are at most $2 n-4$ faulty edges in Q_{0}, do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$, and extend the paths to \mathbf{v}. Build another path:

$$
\left[\mathbf{u}, \mathbf{u}^{-}, \ldots, \mathbf{u}^{v_{1}+1}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right]
$$

where $\rho_{2} \in Q_{v_{1}+1}$.
If there are $2 n-3$ faulty edges in Q_{0} and $\left(\mathbf{u}, \mathbf{v}^{-}\right) \in F$ after $\operatorname{map}(\mathbf{v}, 0)$, we assume $\left(\mathbf{u}, \mathbf{v}^{-}\right)$ is healthy and do $\operatorname{DP}\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Remove the path $\left[\mathbf{u}, \mathbf{v}^{-}\right]$. Extend all other paths to \mathbf{v}, and build one more path as above.

If there are $2 n-3$ faulty edges in Q_{0} and $\left(\mathbf{u}, \mathbf{v}^{-}\right) \notin F$ after $\operatorname{map}(\mathbf{v}, 0)$, we have $\left(\mathbf{u}, \mathbf{v}^{-}\right) \notin$ F and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \notin F$. Hence, we assume one of \mathbf{v}^{-}'s faulty link e is healthy and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Remove the path that passes edge e and extend all other path to \mathbf{v}. Build one more path as above.
(A22-2.2) $f=\left(\mathbf{u}, \mathbf{u}^{-}\right)$.
(A22-2.2.1) $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|$
$(\mathrm{A} 22-2.2 .1 .1)\left(\mathbf{u}, \mathbf{v}^{-}\right) \in F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \notin F$.
Do $\operatorname{map}(\mathbf{v}, 0)$, and assume faulty edges e_{1}, e_{2} incident with \mathbf{v}^{-}are healthy. Do $\operatorname{DP}\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Let (\mathbf{u}, \mathbf{w}) lies on the path that passes e_{1}, and (\mathbf{u}, \mathbf{z})
lies on the path that passes e_{2}. Remove these two paths and extend all other paths to \mathbf{v}. Build the following two paths:
(a) $\left[\mathbf{u}, \mathbf{w}, \mathbf{w}^{-}, \rho_{1}, \mathbf{v}^{-2}, \mathbf{v}^{-}, \mathbf{v}\right]$, where $\rho_{2} \in$ Q_{k-1}, and
(b) $\left[\mathbf{u}, \mathbf{z}, \mathbf{z}^{+}, \mathbf{z}^{2}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right]$, where $\rho_{2} \in Q_{2}$.
ρ_{1} and ρ_{2} can be built by induction in their corresponding sub-graph.
$(\mathrm{A} 22-2.2 .1 .2)\left(\mathbf{u}, \mathbf{v}^{-}\right) \notin F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \in F$
Do $\operatorname{map}(\mathbf{v}, 0)$ but mark $\left(\mathbf{u}, \mathbf{v}^{-}\right)$as healthy, and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Extend the paths to \mathbf{v}. Build one more path:

$$
\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right],
$$

where $\rho_{2} \in Q_{2}$.
$(\mathrm{A} 22-2.2 .1 .3)\left(\mathbf{u}, \mathbf{v}^{-}\right) \in F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \in F$.
Do $\operatorname{map}(\mathbf{v}, 0)$, and $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Extend the disjoint paths to \mathbf{v}. Build the same one more path as in case (A22-2.2.1.2) .
$(\mathrm{A} 22-2.2 .1 .4)\left(\mathbf{u}, \mathbf{v}^{-}\right) \notin F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \notin F$.
Do $\operatorname{map}(\mathbf{v}, 0)$. There exists one faulty edge e incident with \mathbf{v}^{-}. We assume e is healthy, and find do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Remove the path that passes the edge e (if such path exists), and extend all other paths to \mathbf{v}.
(A22-2.2.2) $\left|F^{\mathbf{u}}\right|>\left|F^{\mathbf{v}}\right|$
(A22-2.2.2.1) $\left(\mathbf{u}, \mathbf{v}^{-}\right) \in F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \notin F$.
Do $\operatorname{map}(\mathbf{v}, 0)$. If $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|+1$, assume edge e, a faulty edge incident with \mathbf{v}^{-}, is healthy, and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Let (\mathbf{u}, \mathbf{w}) lies on the path passes e. Remove this path and expand all other paths to reach \mathbf{v}. Build one more path:
$\left[\mathbf{u}, \mathbf{w}, \mathbf{w}^{-}, \rho, \mathbf{v}^{-2}, \mathbf{v}^{-}, \mathbf{v}\right]$.
If $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|+2$, assume edge $\left(\mathbf{u}, \mathbf{v}^{-}\right)$is healthy, and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Remove the path [$\mathbf{u}, \mathbf{v}^{-}$], and extend all other paths to \mathbf{v}.
$(\mathrm{A} 22-2.2 .2 .2)\left(\mathbf{u}, \mathbf{v}^{-}\right) \notin F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \notin F$.
Do $\operatorname{map}(\mathbf{v}, 0)$. If there are no more than $2 n-4$ faulty edges in Q_{0}, do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$, and extend the disjoint paths to \mathbf{v}.

If there are $2 n-3$ faulty edges in Q_{0} and $\left|F_{0}^{\mathbf{u}}\right|=\left|F_{0}^{\mathbf{v}^{-}}\right|$, then there must exist e that is neither incident with \mathbf{u} nor incident with \mathbf{v}^{-}. Assume e is healthy and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. If some path passes edge e, do U-jump (e). Extend these paths to \mathbf{v}.
(A22-2.2.2.3) $\left(\mathbf{u}^{+}, \mathbf{v}\right) \in F$.
No matter whether $\left(\mathbf{u}, \mathbf{v}^{-}\right)$is faulty or not, we do $\operatorname{map}(\mathbf{v}, 0)$, and assume $\left(\mathbf{u}, \mathbf{v}^{-}\right)$is healthy and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Extend the disjoint paths to \mathbf{v}. Build one more path:

$$
\begin{aligned}
& {\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \rho, \mathbf{v}^{+}, \mathbf{v}\right] .} \\
& (\mathrm{A} 22-2.3) f=\left(\mathbf{v}, \mathbf{v}^{-}\right) .
\end{aligned}
$$

If $\left(\mathbf{u}, \mathbf{v}^{-}\right) \notin F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \in F$, we assume two of u's incident faulty edges e_{1}, e_{2} (lie in Q_{0}) are healthy. Do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Suppose \mathbf{w}_{1} (resp. \mathbf{w}_{2}) lies on the path that edge e_{1} (resp. e_{2}) lies on, where \mathbf{w}_{1} and \mathbf{w}_{2} are neighbors of \mathbf{v}^{-}. Remove these two paths, extend all other paths to \mathbf{v}, and build the following three paths:
(a) $\left[\mathbf{u}, \mathbf{v}^{-}, \mathbf{v}^{-2}, \ldots, \mathbf{v}^{+}, \mathbf{v}\right]$;
(b) $\left[\mathbf{u}, \mathbf{u}^{-}, \rho_{1}, \mathbf{w}_{1}^{-}, \mathbf{w}_{1}, \mathbf{w}_{1}^{+}, \mathbf{v}\right], \rho_{1} \in Q_{k-1}$; and
(c) $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \rho_{2}, \mathbf{w}_{2}^{2}, \mathbf{w}_{2}^{+}, \mathbf{v}\right], \rho_{2} \in Q_{2}$.

Based on the above paths, if $\left(\mathbf{u}^{+}, \mathbf{v}\right) \notin F$, no need to build the above path (c) as $\mathbf{u}, \mathbf{u}^{+}, \mathbf{v}$ is already one of the disjoint paths; if $\left(\mathbf{u}, \mathbf{v}^{-}\right) \in F$, no need to build the above path (a).
(A22-2.4) $f=\left(\mathbf{v}, \mathbf{v}^{+}\right)$.
(A22-2.4.1) $\left(\mathbf{u}, \mathbf{v}^{-}\right) \notin F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \in F$.
There exist faulty edges e_{1}, e_{2} incident with node \mathbf{u}. Assume they are healthy, and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Let \mathbf{w}_{i} lies on the path that passes edge e_{i}, for $i=1,2$. Remove path that passes e_{1} and e_{2}. Extend all of the other paths to \mathbf{v}. Build the following two more paths:
(a) $\left[\mathbf{u}, \mathbf{u}^{-}, \rho_{1}, \mathbf{w}_{1}^{-}, \mathbf{w}_{1}, \mathbf{w}_{1}^{+}, \mathbf{v}\right], \rho_{1} \in Q_{k-1}$;
(b) $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \rho_{2}, \mathbf{w}_{2}^{2}, \mathbf{w}_{2}^{+}, \mathbf{v}\right], \rho_{2} \in Q_{2}$.
(A22-2.4.2) $\left(\mathbf{u}, \mathbf{v}^{-}\right) \notin F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \notin F$.
Similar to case (A22-2.4.1), but only assume one faulty edge e_{1} is healthy, and only need to find one more path (a) as in case (A22-2.4.1).
(A22-2.4.3) $\left(\mathbf{u}, \mathbf{v}^{-}\right) \in F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \in F$.
There exists $e_{1} \in F^{\mathbf{u}}$. Assume e_{1} is healthy, and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Let \mathbf{w}_{1} lies on the path that passes the edge e_{1}. Remove this path and extend all other paths to v . Build the following two paths:
(a) $\left[\mathbf{u}, \mathbf{u}^{-}, \rho_{1}, \mathbf{v}^{-2}, \mathbf{v}_{-}, \mathbf{v}\right]$;
(b) $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \rho_{2}, \mathbf{w}_{1}^{2}, \mathbf{w}_{1}^{+}, \mathbf{v}\right]$.
(A22-2.4.4) $\left(\mathbf{u}, \mathbf{v}^{-}\right) \in F$ and $\left(\mathbf{u}^{+}, \mathbf{v}\right) \notin F$.
Similar to case (A22-2.4.3), but no need to make any assumption, except when $\left|F_{0}\right|=2 n-$

3 after $\operatorname{map}(\mathbf{v}, 0)$. If the exceptional case happens, we assume $\left(\mathbf{u}, \mathbf{v}^{-}\right)$is healthy and then do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Extend the paths to \mathbf{v}.
(A22-2.5) $f=\left(\mathbf{u}^{h}, \mathbf{u}^{h+1}\right)$, or $f=$ $\left(\mathbf{v}^{h}, \mathbf{v}^{h+1}\right), h \neq 0,-1$.

In this case, the two paths below are included in the disjoint paths set:
(a) $\left[\mathbf{u}, \mathbf{v}^{-}, \mathbf{v}\right]$; and
(b) $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{v}\right]$.

We need to find a path linking edge ($\mathbf{u}, \mathbf{u}^{-}$) and edge $\left(\mathbf{v}, \mathbf{v}^{+}\right)$but avoid the faulty edge f. It can be either
(a) $\left[\mathbf{u}, \mathbf{u}^{-}, \rho_{1}, \mathbf{v}^{-2}, \mathbf{v}_{-}, \mathbf{v}\right], \rho_{1} \in Q_{k-1}$,
if $f=\left(\mathbf{u}^{h}, \mathbf{u}^{h+1}\right)$ for some $h \neq 0,-1$, or
(b) $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \rho_{2}, \mathbf{w}_{1}^{2}, \mathbf{w}_{1}^{+}, \mathbf{v}\right], \rho_{2} \in Q_{2}$,
if $f=\left(\mathbf{v}^{h}, \mathbf{v}^{h+1}\right)$ for some $h \neq 0,-1$.
The other paths can be build similar to case (A22-1).

As we assume $v_{1}=1$ at the beginning of case (A22-2), we now consider $v_{1}>1$.

Compare to the case (A22-1), where we assume f is healthy and when $v_{1}>1$, here we only need to care about the case when $f=\left(\mathbf{r}^{h}, \mathbf{r}^{h+1}\right)$ with $0 \leq h \leq v_{1}$ but f is neither incident with \mathbf{u} nor incident with \mathbf{v}, and blocks some of the paths as constructed in case (A22-1) (when $v_{1}>1$). We consider the following cases.

- If $\mathbf{r}=\mathbf{u}$, there exists \mathbf{s}, a neighbor of \mathbf{u}, such that $\left(\mathbf{u}^{j}, \mathbf{s}^{j}\right)$ is healthy for every $j=0,1, \ldots, k-1$. This is true, as there are at most $2 n-3$ faulty edges in all $Q_{i}, i=$ $0,1, \ldots, k-1$, and each node in Q_{i} has $2 n-2$ neighbors inside Q_{i}. Thus, we adjust the blocked path by replacing the faulty edge with a sub-path: $\left[\mathbf{r}^{h}, \mathbf{s}^{h}, \mathbf{s}^{h+1}, \mathbf{r}^{h+1}\right]$. Note that if $h=v_{1}-1$ or $h=0$, some slight adjustment is necessary, which will be simple and is not stated here.
However, it might be the case that the only healthy edge in Q_{h} for node \mathbf{r}^{h} is $\mathbf{v}^{h-v_{1}}$, and $\mathbf{v}^{h-v_{1}}$ is already on some path. In this case, we change to partition the graph Q_{n}^{k} through dimension 2 . This will result in one dimension two faulty edge. For convenience,
we also call a sub-graph Q_{i} if the dimension two number is i; we also denote the a node $\left(v_{n}, v_{n-1}, \ldots, v_{2}+i, v_{1}\right)$ as \mathbf{v}^{i} if $\mathbf{v}=\left(v_{n}, v_{n-1}, \ldots, v_{2}, v_{1}\right)$, for $-k+1 \leq$ $i \leq k-1$. Now we have $\operatorname{dist}\left(\mathbf{u}, \mathbf{v}^{-}\right)>1$, and the only dimension 2 faulty edge is: $((0,0, \ldots, 1, i),(0,0, \ldots, 2, i))$. As there are no faulty edges in the sub-graph Q_{0}, we find disjoint paths by induction between \mathbf{u} and $\left(0,0, \ldots, 0, v_{1}\right)$, and extend these paths to \mathbf{v}. Thus we have found $2 n-4$ disjoint paths. Two more paths can be:
(a) $\left[\mathbf{u}, \mathbf{u}^{-}, \rho_{1}, \mathbf{v}^{-2}, \mathbf{v}^{-}, \mathbf{v}\right], \rho_{1} \in Q_{k-1}$ can be found by induction;
(b) $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right], \rho_{2} \in Q_{2}$ can be found by induction.
This is essentially a small case of Case 2.3: $\operatorname{dist}\left(\mathbf{u}, \mathbf{v}^{-v_{1}}\right)>1$ in appendix B . For the case that node \mathbf{r} is a neighbor of \mathbf{v}^{-}, it can be done similar to the case $\mathbf{r}=\mathbf{u}$.
- If $\mathbf{r}=\mathbf{v}^{-v_{1}}$, and the only healthy edge incident with \mathbf{r}^{h} is \mathbf{u}^{h}, we then repartition the graph similar to the case above. Otherwise, there exists $\left(\mathbf{r}^{h}, \mathbf{s}^{h}\right) \notin F$ and $\left(\mathbf{r}^{h+1}, \mathbf{s}^{h+1}\right) \notin$ F, replace the faulty edge f by a sub-path of length three: $\left[\mathbf{r}^{h}, \mathbf{s}^{h}, \mathbf{s}^{h+1}, \mathbf{r}^{h+1}\right]$. If ($\mathbf{s}^{h}, \mathbf{s}^{h+1}$) is already on some path and whose dimension one part is $\mathbf{s}^{x}, \mathbf{s}^{x+1}, \ldots, \mathbf{s}^{y}$, we replace these edges by $\mathbf{s}^{x}, \mathbf{s}^{x-1}, \ldots, \mathbf{s}^{y+1}, \mathbf{s}^{y}$.
Based on Lemma 1 and the above discussion include the sections in the appendix, we obtain the following result.

Theorem 1: In a k-ary n-cube with at most $2 n-2$ faulty edges, there exist $\min \left\{\operatorname{deg}_{H}(\mathbf{u}), \operatorname{deg}_{H}(\mathbf{v})\right\}$ disjoint paths between any two given nodes \mathbf{u} and \mathbf{v}.

V. Conclusion

We have proved that there exist $\min \left\{\operatorname{deg}_{H}(\mathbf{u}), \operatorname{deg}_{H}(\mathbf{v})\right\} \quad$ node-disjoint paths in k-ary n-cube when there exist at most $2 n-2$ faulty edges. This will make the k-ary n-cube interconnection network robust in communicating and routing even though there have up to $2 n-2$ faulty edges. Our future research will focus on
finding shortest node-disjoint paths for k-ary n-cubes with faulty edges and/or faulty nodes.

References

[1] Z. Cvetanovic, "Performance analysis of the alpha 21364-based HP GS 1280 multiprocessor," in Proc. 30th Ann. Intl Symp. on Computer Architecture (30th ISCA 2003), FCRC'03, ACM Computer Architecture News (CAN). San Diego, CA: ACM SIGARCH / IEEE CS, May 2003, pp. 218-228.
[2] H. Wang, L.-S. Peh, and S. Malik, "A technology-aware and energy-oriented topology exploration for on-chip networks," in Proceedings of the conference on Design, Automation and Test in Europe - Volume 2, ser. DATE '05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 1238-1243.
[3] Y. Ashir and I. A. Stewart, "On embedding cycles in k -ary n -cubes," Parallel Processing Letters, vol. 7, no. 1, pp. 49-55, 1997.
[4] Ashir and Stewart, "Fault-tolerant embeddings of hamiltonian circuits in k-ary n-cubes," SIJDM: SIAM Journal on Discrete Mathematics, vol. 15, 2002.
[5] B. Bose, B. Broeg, Y. Kwon, and Y. Ashir, "Lee distance and topological properties of k-ary n-cubes," IEEE Trans. Computers, vol. 44, no. 8, pp. 1021-1030, 1995.
[6] K. Menger, "Zur allgemeinen kurventheorie," Fund. Math, vol. 10, no. 95-115, p. 5, 1927.

Figure 1. Disjoint paths between \mathbf{u} and \mathbf{v} in Q_{2}^{4} for case $\mathbf{v}=$ $(0,1)$

To the referee: the appendix part will be removed if the paper being accepted by the conference, but we will put the related information on our website: http://www.dur.ac.uk/yonghong.xiang/ for public access, and we will direct the reader to our website in the final version of the paper as well.

Appendix A.

DISJoint paths in Q_{2}^{4}

Without lose of generality (W.l.o.g.), suppose $\mathbf{u}=(0,0)$. By the vertex symmetric property of Q_{n}^{k}, for node \mathbf{v}, only the following five cases need to be considered: $(0,1),(0,2),(1,1),(2,1)$, and $(2,2)$.

When there are no faulty edges in Q_{2}^{4}, if a path passes node $(0,1)$ (resp. $(1,0),(3,0)$, and $(0,3)$), then we name the path ρ_{10} (resp. ρ_{20}, ρ_{30}, and ρ_{40}). We call these four of u's neighbors the residual nodes. Denote $\rho_{i j}$ as the j th alternative path to path $\rho_{i 0}$ if it passes the same residual vertex as $\rho_{i 0}$.

1) $\mathbf{v}=(0,1)$: Suppose there are no faulty edges in Q_{2}^{4}, then we can build four disjoint paths between \mathbf{u} and \mathbf{v} as follows (see Fig.1(a)).
$\begin{array}{ll}\rho_{10}:[\mathbf{u}, \mathbf{v}] ; & \rho_{20}:[\mathbf{u},(1,0),(1,1), \mathbf{v}] \\ \rho_{30}:[\mathbf{u},(3,0),(3,1), \mathbf{v}] ; & \rho_{40}:[\mathbf{u},(0,3),(0,2), \mathbf{v}] .\end{array}$

Let $e_{1}=((1,0),(1,1)), e_{2}=((3,0),(3,1))$, $e_{3}=((0,2),(0,3))$. From Fig.1(b), we can see that if any two of e_{1}, e_{2} and e_{3} are faulty, we have the following two sets of alternative paths ρ_{21}, ρ_{31} and ρ_{41} (see Fig. 1(b)) and ρ_{22}, ρ_{32} and ρ_{42}.

$$
\begin{aligned}
& \rho_{21}:[\mathbf{u},(1,0),(2,0),(2,1),(1,1), \mathbf{v}] ; \\
& \rho_{31}:[\mathbf{u},(3,0),(3,3),(3,2),(3,1), \mathbf{v}] ; \\
& \rho_{41}:[\mathbf{u},(0,3),(1,3),(1,2),(0,2), \mathbf{v}] ;
\end{aligned}
$$

and

$$
\begin{aligned}
& \rho_{22}:[\mathbf{u},(1,0),(1,3),(1,2),(1,1), \mathbf{v}] ; \\
& \rho_{32}:[\mathbf{u},(3,0),(2,0),(2,1),(3,1), \mathbf{v}] ; \\
& \rho_{42}:[\mathbf{u},(0,3),(3,3),(3,2),(0,2), \mathbf{v}] .
\end{aligned}
$$

$\rho_{i j}$ is disjoint with $\rho_{i t}, t \neq j$. So, if e_{i} is faulty for some $i \in\{1,2,3\}$ and the other faulty edge lies on one of its alternative path, then we can use the other alternative path.

Suppose $\left\{f_{1}, f_{2}\right\} \cap\left(F^{\mathbf{u}} \cup F^{\mathbf{v}}\right) \neq \emptyset$. (a) If $(\mathbf{u}, \mathbf{v}) \in F$, then, the problem reduces to the case discussed above (just remove the path $[\mathbf{u}, \mathbf{v}]$). If only one of the faulty edges linked with \mathbf{u} or \mathbf{v}, then we only need to build 3 disjoint paths and this again reduces to the case discussed above. (b) If the both faulty edges are linked with \mathbf{u} or both linked with \mathbf{v}, or one links with \mathbf{u} and one links with \mathbf{v} but they both lie on $\rho_{i 0}$ for some $i \in\{1,2,3,4\}$. All we need to do is to remove the path(s) that contain faulty edges. (c) If the both faulty edges are linked with different nodes and are not lying on the same path, then we need to adjust some of the $\rho_{i 0}$ to obtain 3 disjoint paths. When $(\mathbf{u},(1,0))$ and $(\mathbf{v},(0,2))$ are faulty, we keep path ρ_{10} and ρ_{30}, and build the following path (see Fig.1(c)):

$$
\rho_{43}:[\mathbf{u},(0,3),(0,2),(1,2),(1,1), \mathbf{v}] .
$$

When $(\mathbf{u},(1,0))$ and $(\mathbf{v},(3,1))$ are faulty, keep path ρ_{10} and ρ_{40}, and build a new path (see Fig.1(d)):

$$
\rho_{33}:[\mathbf{u},(3,0),(3,1),(2,1),(1,1), \mathbf{v}] .
$$

2) $\mathbf{v} \in\{(0,2),(1,1),(1,2),(2,2)\}$: If there are no faulty edges in Q_{2}^{4}, we can easily build four disjoint paths $\rho_{10}, \rho_{20}, \rho_{30}, \rho_{40}$ between \mathbf{u} and \mathbf{v}.

For $\mathbf{v}=(0,2)$, we have: (See Fig.2(a))

Figure 2. Four disjoint paths between \mathbf{u} and \mathbf{v} in Q_{2}^{4}, (a), (b) for case $\mathbf{v}=(0,2)$, and (c), (d) for case $\mathbf{v}=(1,1)$

$$
\begin{aligned}
& \rho_{10}:[\mathbf{u},(0,1), \mathbf{v}] ; \\
& \rho_{20}:[\mathbf{u},(1,0),(1,1),(1,2), \mathbf{v}] ; \\
& \rho_{30}:[\mathbf{u},(3,0),(3,1),(3,2), \mathbf{v}] ; \\
& \rho_{40}:[\mathbf{u},(0,3), \mathbf{v}] ; \\
& \rho_{21}:[\mathbf{u},(1,0),(1,1),(1,2), \mathbf{v}] ; \\
& \rho_{31}:[\mathbf{u},(3,0),(3,3),(3,2), \mathbf{v}] .
\end{aligned}
$$

For $\mathbf{v}=(1,1)$, we have: (See Fig.2(c))

$$
\begin{aligned}
& \rho_{10}:[\mathbf{u},(0,1), \mathbf{v}] ; \\
& \rho_{20}:[\mathbf{u},(1,0), \mathbf{v}] ; \\
& \rho_{30}:[\mathbf{u},(3,0),(3,1),(2,1), \mathbf{v}] ; \\
& \rho_{40}:[\mathbf{u},(0,3),(1,3),(1,2), \mathbf{v}] ; \\
& \rho_{31}:[\mathbf{u},(3,0),(2,0),(2,1), \mathbf{v}] ; \\
& \rho_{41}:[\mathbf{u},(0,3),(0,2),(1,2), \mathbf{v}] .
\end{aligned}
$$

For $\mathbf{v}=(1,2)$, we have: (See Fig.3(a))

$$
\begin{aligned}
& \rho_{10}:[\mathbf{u},(0,1),(0,2), \mathbf{v}] ; \\
& \rho_{20}:[\mathbf{u},(1,0),(1,1), \mathbf{v}] ; \\
& \rho_{30}:[\mathbf{u},(3,0),(3,1),(3,2),(2,2), \mathbf{v}] ; \\
& \rho_{40}:[\mathbf{u},(0,3),(1,3), \mathbf{v}] ; \\
& \rho_{11}:[\mathbf{u},(0,1),(1,1), \mathbf{v}] ; \\
& \rho_{21}:[\mathbf{u},(1,0),(1,3), \mathbf{v}] ; \\
& \rho_{31}:[\mathbf{u},(3,0),(2,0),(2,1),(2,2), \mathbf{v}] ; \\
& \rho_{41}:[\mathbf{u},(0,3),(0,2), \mathbf{v}] .
\end{aligned}
$$

For $\mathbf{v}=(2,2)$, we have: (See Fig.3(c))

Figure 3. Four disjoint paths between \mathbf{u} and \mathbf{v} in Q_{2}^{4}, (a), (b) for case $\mathbf{v}=(1,2)$, and (c), (d) for case $\mathbf{v}=(2,2)$

$$
\begin{aligned}
& \rho_{10}:[\mathbf{u},(0,1),(0,2),(1,2), \mathbf{v}] ; \\
& \rho_{20}:[\mathbf{u},(1,0),(2,0),(2,1), \mathbf{v}] ; \\
& \rho_{30}:[\mathbf{u},(3,0),(3,1),(3,2), \mathbf{v}] ; \\
& \rho_{40}:[\mathbf{u},(0,3),(1,3),(2,3), \mathbf{v}] ; \\
& \rho_{11}:[\mathbf{u},(0,1),(3,1),(2,1), \mathbf{v}] ; \\
& \rho_{21}:[\mathbf{u},(1,0),(1,3),(1,2), \mathbf{v}] ; \\
& \rho_{31}:[\mathbf{u},(3,0),(2,0),(2,3), \mathbf{v}] ; \\
& \rho_{41}:[\mathbf{u},(0,3),(0,2),(3,2), \mathbf{v}] .
\end{aligned}
$$

If none of the $F^{\mathbf{u}} \cup F^{\mathbf{v}}=\emptyset$, and one faulty edge is on some path, one not, then we can find an alternative path for the blocked path as shown above. Hence, we only need to consider when one faulty edge lies on some path, say $f_{1} \in \rho_{i 0}, i \in$ $\{1,2,3,4\}$, and the other one lies on its alternative path $f_{2} \in \rho_{i 1}$.

1) $\mathbf{v}=(0,2)$ (please refer to Fig.2(a)): if ρ_{20} and ρ_{21} are both blocked, i.e., one of $e_{1}=$ $((1,0),(1,1))$ and $e_{2}=((1,1),(1,2))$, and one of $((1,0),(1,3))$ and $((1,2),(1,3))$ are faulty, then define
$\rho_{22}:[\mathbf{u},(1,0),(2,0),(2,1),(2,2),(1,2), \mathbf{v}]$; if ρ_{30} and ρ_{31} are both blocked, then define $\rho_{32}:[\mathbf{u},(3,0),(2,0),(2,1),(2,2),(3,2), \mathbf{v}]$.
2) $\mathbf{v}=(1,1)$ (please refer to Fig.2(c)): if ρ_{30} and ρ_{31} are both blocked, then define $\rho_{32}:[\mathbf{u},(3,0),(3,3),(2,3),(2,2),(2,1), \mathbf{v}]$; if ρ_{40} and ρ_{41} are both blocked, then define $\rho_{42}:[\mathbf{u},(0,3),(3,3),(3,2),(2,2),(1,2), \mathbf{v}]$;
3) $\mathbf{v}=(2,1)$ (please refer to Fig.3(a)): if ρ_{10} and ρ_{11} are both blocked, then define $\rho_{12}:[\mathbf{u},(0,1),(0,2),(1,2),(1,1), \mathbf{v}]$; if ρ_{20} and ρ_{21} are both blocked, then define $\rho_{22}:[\mathbf{u},(1,0),(1,3),(2,3),(2,0), \mathbf{v}]$ and ρ_{42} be $\left.\mathbf{u},(0,3),(0,2),(1,2),(2,2), \mathbf{v}\right]$;
if ρ_{30} and ρ_{31} are both blocked, then define $\rho_{32}:[\mathbf{u},(3,0),(3,3),(3,2),(3,1), \mathbf{v}]$;
if ρ_{40} and ρ_{41} are both blocked, then define $\rho_{42}:[\mathbf{u},(0,3),(3,3),(3,2),(2,2), \mathbf{v}]$.
4) $\mathbf{v}=(2,2)$ (please refer to Fig.3(c)): if ρ_{10} and ρ_{11} are both blocked, then define
$\rho_{12}:[\mathbf{u},(0,1),(1,1), \mathbf{v}]$;
if ρ_{20} and ρ_{21} are both blocked, then define $\rho_{22}:[\mathbf{u},(1,0),(1,1), \mathbf{v}]$;
if ρ_{30} and ρ_{31} are both blocked, then define $\rho_{32}:[\mathbf{u},(0,3),(3,3),(2,3), \mathbf{v}]$;
if ρ_{40} and ρ_{41} are both blocked, then define $\rho_{42}:[\mathbf{u},(3,0),(3,3),(3,2), \mathbf{v}]$.
If only one faulty edge is linked with \mathbf{u} or \mathbf{v}, then we only need to build 3 disjoint paths between \mathbf{u} and \mathbf{v}, and this reduces to what we have discussed above.

If both faulty edges are of \mathbf{u} and/or v's neighbors, then we have the following several cases.

1) both belong to either u or v 's neighbors, then we only need to find two disjoint paths and it has been done;
2) one is u's neighbor, and the other is v's neighbor, and they are on the same path as shown in Fig.1~Fig.3, then we have done as well;
3) one is u's neighbor, and the other is v's neighbor, and they are not on the same path as shown in the above Figures, we need to rebuild some paths.

- $\mathbf{v}=(0,1)$ (refer to Fig.1(a)): if ρ_{20} and ρ_{30} are blocked, then define $\rho_{32}:[\mathbf{u},(3,0),(3,1),(2,1),(1,1), \mathbf{v}]$.
if ρ_{20} and ρ_{40} are blocked, then define $\rho_{42}:[\mathbf{u},(0,3),(1,3),(1,2),(1,1), \mathbf{v}]$. if ρ_{30} and ρ_{40} are blocked, then define $\rho_{42}:[\mathbf{u},(0,3),(3,3),(3,2),(3,1),(0,1), \mathbf{v}]$
- $\mathbf{v}=(0,2)$ (refer to Fig.2(a)): if ρ_{10} and ρ_{20} are blocked, then define
$\rho_{22}:[\mathbf{u},(1,0),(1,1),(0,1), \mathbf{v}]$;
if ρ_{10} and ρ_{30} are blocked, then define $\rho_{32}:[\mathbf{u},(3,0),(3,1),(0,1), \mathbf{v}]$;
if ρ_{10} and ρ_{40} are blocked, then define $\rho_{22}:[\mathbf{u},(1,0),(1,1),(0,1), \mathbf{v}]$, and $\rho_{42}:[\mathbf{u},(0,3),(1,3),(1,2), \mathbf{v}]$;
if ρ_{20} and ρ_{30} are blocked, then define $\rho_{32}:[\mathbf{u},(3,0),(3,1),(3,2),(2,2),(2,1), \mathbf{v}]$;
if ρ_{20} and ρ_{40} are blocked, then define $\rho_{42}:[\mathbf{u},(0,3),(1,3),(1,2), \mathbf{v}]$;
if ρ_{30} and ρ_{40} are blocked, then define $\rho_{42}:[\mathbf{u},(0,3),(3,3),(3,2), \mathbf{v}]$.
- $\mathbf{v}=(1,1)$ (refer to Fig.2(c)): if ρ_{10} and ρ_{20} are blocked, then define
$\rho_{32}=[\mathbf{u},(3,0),(3,1),(0,1), \mathbf{v}]$, and
$\rho_{22}=[\mathbf{u},(1,0),(2,0),(2,1), \mathbf{v}]$;
if ρ_{10} and ρ_{30} are blocked, then define
$\rho_{32}=[\mathbf{u},(3,0),(3,1),(0,1), \mathbf{v}]$;
if ρ_{10} and ρ_{40} are blocked, then define $\rho_{42}=[\mathbf{u},(0,3),(0,2),(0,1), \mathbf{v}]$;
if ρ_{20} and ρ_{30} are blocked, then define $\rho_{32}=[\mathbf{u},(3,0),(2,0),(1,0), \mathbf{v}]$;
if ρ_{20} and ρ_{40} are blocked, then define $\rho_{42}=[\mathbf{u},(0,3),(1,3),(1,0), \mathbf{v}]$;
if ρ_{30} and ρ_{40} are blocked, then define
${ }_{[42}[\mathbf{u},(0,3),(1,3),(2,3),(2,2),(2,1), \mathbf{v}]$.
- $\mathbf{v}=(2,1)$ (refer to Fig.3(a)): if ρ_{10} and ρ_{20} are blocked, define
$\rho_{22}=[\mathbf{u},(1,0),(1,1), \mathbf{v}]$;
if ρ_{10} and ρ_{30} are blocked, define
$\rho_{32}=[\mathbf{u},(3,0),(3,1),(0,1),(1,1), \mathbf{v}]$;
if ρ_{10} and ρ_{40} are blocked, define $\rho_{42}=[\mathbf{u},(0,3),(0,2),(0,1),(1,1), \mathbf{v}]$; if ρ_{20} and ρ_{30} are blocked, define $\rho_{32}=[\mathbf{u},(3,0),(2,0), \mathbf{v}]$;
if ρ_{20} and ρ_{40} are blocked, define $\rho_{42}=[\mathbf{u},(0,3),(1,3),(2,3),(2,0), \mathbf{v}]$; if ρ_{30} and ρ_{40} are blocked, define $\rho_{42}=[\mathbf{u},(0,3),(3,3),(3,2),(3,1), \mathbf{v}]$.
- $\mathbf{v}=(2,2)$ (refer to Fig.3(c)), we have the following cases to consider: if ρ_{10} and ρ_{20} are blocked, define
$\rho_{22}=[\mathbf{u},(1,0),(1,1),(1,2), \mathbf{v}]$;
if ρ_{10} and ρ_{30} are blocked, define $\rho_{22}=[\mathbf{u},(1,0),(1,1),(1,2), \mathbf{v}]$, and

$$
\begin{aligned}
& \rho_{32}=[\mathbf{u},(3,0),(2,0),(2,1), \mathbf{v}] ; \\
& \text { if } \rho_{10} \text { and } \rho_{40} \text { are blocked, define } \\
& \rho_{42}=[\mathbf{u},(0,3),(1,3),(1,2), \mathbf{v}] ; \\
& \text { if } \rho_{20} \text { and } \rho_{30} \text { are blocked, define } \\
& \rho_{32}=[\mathbf{u},(3,0),(2,0),(2,1), \mathbf{v}] ; \\
& \text { if } \rho_{20} \text { and } \rho_{40} \text { are blocked, define } \\
& \rho_{42} \\
& {[\mathbf{u},(0,3),(1,3),(2,3),(2,0),(2,1), \mathbf{v}] ;} \\
& \text { if } \rho_{30} \text { and } \rho_{40} \text { are blocked, define } \\
& \rho_{42}=[\mathbf{u},(0,3),(3,3),(3,2), \mathbf{v}] \text {. }
\end{aligned}
$$

APPENDIX B.

There is One Dimension One Faulty Edge

Let the dimension one faulty edge $f=\left(\mathbf{r}, \mathbf{r}^{+}\right)$. We have three cases to consider: $v_{1}=0$; and $v_{1} \neq$ 0.

Case $1 v_{1}=0$. This means that \mathbf{u} and \mathbf{v} lie in Q_{0}.

Case 1.1 $\left|F_{0}\right|=2 n-3$.
(A11-1) $f \in F^{\mathbf{u}} \cup F^{\mathbf{v}}$. W.l.o.g., let $f=\left(\mathbf{u}, \mathbf{u}^{-}\right)$.
(A11-1.1) $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|+1$.
If there exists $e \in F^{F}$, we assume e is healthy, and find disjoint paths in Q_{0} by induction. If e lies on some path, then do a U-jump. Build one more path as follows: $\left[\mathbf{u}, \mathbf{u}^{+}, \rho, \mathbf{v}^{+}, \mathbf{v}\right]$, where the sub-path ρ is a path in Q_{1} that links with \mathbf{u}^{+}and \mathbf{v}^{+}.

Please note that ρ can be easily obtained by induction. For example, to find ρ in Q_{1}, even if $\left|F_{1}\right|>2 n-4$, we can still find such a path by assume some of the faulty edges are healthy until $\left|F_{1}\right| \leq 2 n-4$ is satisfied and then use induction to find disjoint paths. Let ρ be one path that doesn't include originally fault edges. This is true, as there are at most $2 n-3$ faulty edges (f lies outside any Q_{i}, for $i=0,1, \ldots, k-1$) in Q_{1}, and each node has $2 n-2$ neighbors.

If $F^{F}=\emptyset$, and $(\mathbf{u}, \mathbf{v}) \in F$, assume (\mathbf{u}, \mathbf{v}) is healthy. Find disjoint paths in Q_{0} by induction. Remove the path $[\mathbf{u}, \mathbf{v}]$; find a path: $\left[\mathbf{u}, \mathbf{u}^{+}, \rho, \mathbf{v}^{+}, \mathbf{v}\right]$, where ρ is a path in Q_{1}. We have done.

If $F^{F}=\emptyset$, and $(\mathbf{u}, \mathbf{v}) \notin F$, we have $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|+2$. Assume faulty edge (\mathbf{u}, \mathbf{w}) is healthy, find disjoint path by induction in Q_{0}, and remove the path that passes \mathbf{w}; find a path:
$\left[\mathbf{u}, \mathbf{u}^{+}, \rho, \mathbf{v}^{+}, \mathbf{v}\right]$, where ρ is a path in Q_{1}. We have done.
(A11-1.2) $\left|F^{\mathbf{u}}\right| \leq\left|F^{\mathbf{v}}\right|$.
We have $\left|F_{0}^{\mathbf{u}}\right| \leq\left|F_{0}^{\mathbf{v}}\right|-1$. Assume faulty edge (\mathbf{w}, \mathbf{v}) is healthy, and find disjoint paths in Q_{0} by induction. There is a path that passes the node w, do a U-jump. Find one more path: $\left[\mathbf{u}, \mathbf{u}^{+}, \rho, \mathbf{v}^{+}, \mathbf{v}\right]$.
(A11-2) $f \notin F^{\mathbf{u}} \cup F^{\mathbf{v}}$.
(A11-2.1) $\left|F^{F}\right| \geq 1$.
Let $e=(\mathbf{s}, \mathbf{t}) \in F^{F}$, such that $\left(\mathbf{s}, \mathbf{s}^{+}\right) \notin F$ and $\left(\mathbf{t}, \mathbf{t}^{+}\right) \notin F$, find disjoint paths in Q_{0} by induction. If e lies on some path, do a $D-j u m p$. Find a path in Q_{1} that links with \mathbf{u}^{+}and \mathbf{v}^{+}and avoid e^{+}. Find a path in Q_{k-1} that links with \mathbf{u}^{-}and \mathbf{v}^{-}.
(A11-2.2) $\left|F^{F}\right|=0$.
If $\left|F^{\mathbf{u}}\right|>\left|F^{\mathbf{v}}\right|$, assume faulty edge (\mathbf{u}, \mathbf{w}) is healthy, and find disjoint paths by induction in Q_{0}. Remove the path that passes the node \mathbf{w}. Find two paths: $\left[\mathbf{u}, \mathbf{u}^{-}, \rho_{1}, \mathbf{v}^{-}, \mathbf{v}\right]$, and $\left[\mathbf{u}, \mathbf{u}^{+}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right], \rho_{1} \in Q_{k-1}$ and $\rho_{2} \in Q_{1}$.

If $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|$, as $\left|F^{F}\right|=0$, we must have $(\mathbf{u}, \mathbf{v}) \in F$; assume it is healthy, and find disjoint paths in Q_{0} by induction. Remove the path $[\mathbf{u}, \mathbf{v}]$. Find two paths: $\left[\mathbf{u}, \mathbf{u}^{-}, \rho_{1}, \mathbf{v}^{-}, \mathbf{v}\right]$, and $\left[\mathbf{u}, \mathbf{u}^{+}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right], \rho_{1} \in Q_{k-1}$ and $\rho_{2} \in Q_{1}$.

Case $1.2\left|F_{0}\right| \leq 2 n-4$.
(A12-1) $f \in F^{\mathbf{u}} \cup F^{\mathbf{v}}$. W.l.o.g., let $f=\left(\mathbf{u}, \mathbf{u}^{-}\right)$.
(A12-1.1) $\left|F_{\mathbf{u}}\right| \geq\left|F_{\mathbf{v}}\right|+1$.
By induction, find disjoint paths in Q_{0}, and find a path $\left[\mathbf{u}, \mathbf{u}^{+}, \rho, \mathbf{v}^{+}, \mathbf{v}\right], \rho \in Q_{1}$.
(A12-1.2) $\left|F_{\mathbf{u}}\right| \leq\left|F_{\mathbf{v}}\right|$.
Assume faulty edge (\mathbf{w}, \mathbf{v}) is healthy, and by induction, find disjoint paths in Q_{0}. Suppose (\mathbf{u}, \mathbf{s}) lies on the path that passes node \mathbf{w}. Remove this path. Find two more paths: $\left[\mathbf{u}, \mathbf{s}, \mathbf{s}^{-}, \rho_{1}, \mathbf{v}^{-}, \mathbf{v}\right]$, $\rho_{1} \in Q_{k-1}$, and $\left[\mathbf{u}, \mathbf{u}^{+}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right], \rho_{2} \in Q_{1}$.
(A12-2) $f \notin F^{\mathbf{u}} \cup F^{\mathbf{v}}$.
By induction, find disjoint paths in Q_{0}. Now, we need to find another two disjoint paths.
(A12-2.1) It is possible that there exist $i=1$ or $i=k-1$, such that $\left|F_{i}\right|>2 n-4$. W.l.o.g., suppose $F_{k-1}>2 n-4$. Hence, $F_{1}<2$. So, in Q_{1}, by induction, we find disjoint paths between \mathbf{u}^{+}and \mathbf{v}^{+}, and choose the shortest one as the one
we need. To find a path between \mathbf{u}^{-}and \mathbf{v}^{-}, we have the following two cases.
(A12-2.1.1) $\left|F_{k-1}\right|=2 n-2$.
A special case is that $\left|F_{k-1}^{\mathrm{u}^{-}}\right|=2 n-2$ or $\left|F_{k-1}^{\mathbf{v}^{-}}\right|=2 n-2$. It can be solved by finding a shortest path between \mathbf{u}^{-}and \mathbf{v}^{-}, and do a U jump to avoid the faulty edge on the path.

If $\left|F^{F}\right| \geq 2$, we assume two of F^{F} edges to be healthy, and by induction find disjoint paths between \mathbf{u}^{-}and \mathbf{v}^{-}in Q_{k-1}. Choose one of the shortest path that has no original faulty edges on as the one we need.

If $\left|F^{F}\right| \leq 1$, w.l.o.g., suppose $\left|F_{k-1}^{\mathrm{u}^{-}}\right| \geq\left|F_{k-1}^{\mathrm{v}^{-}}\right|$. Choose two of \mathbf{u}^{-}'s faulty links to be healthy, and find disjoint paths by induction in Q_{k-1}. Choose one of the paths that has no original faulty edges on as the one we need.
(A1.2-2.1.2) $\left|F_{k-1}\right|=2 n-3$.
If $\left|F_{k-1}^{F}\right| \geq 1$, we assume one F_{k-1}^{F} edge to be healthy, and by induction find disjoint paths between \mathbf{u}^{-}and \mathbf{v}^{-}in Q_{k-1}. Choose one of the paths that has no original faulty edges on as the one we need.

If $F_{k-1}^{F}=\emptyset$, W.l.o.g., suppose $\left|F_{k-1}^{\mathbf{u}^{-}}\right| \geq\left|F_{k-1}^{\mathbf{v}^{-}}\right|$. Choose one of \mathbf{u}^{-}'s faulty links to be healthy, and find disjoint paths by induction in Q_{k-1}. Choose one of the paths that has no original faulty edges on as the one we need.
(A1.2-2.2) $\left|F_{k-1}\right| \leq 2 n-4$ and $\left|F_{1}\right| \leq 2 n-4$.
By induction, find disjoint paths in Q_{k-1} and Q_{1}, and each choose a shortest path as the one we need.

Case $2 v_{1} \neq 0$.
W.l.o.g., suppose $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|$, and $v_{1} \leq\left\lfloor\frac{k}{2}\right\rfloor$.

Case $2.1 \operatorname{dist}\left(\mathbf{u}, \mathbf{v}^{-v_{1}}\right)=0$.
(A21-1) $\forall e \in N_{\mathbf{u}}$, if $e \notin F$, then $e^{v_{1}} \notin F$.
The paths can be built as follows: start from \mathbf{u}, followed by a healthy link and then straight down to a neighbor of \mathbf{v} then reach \mathbf{v}. Find another two paths: $\sigma_{1}:\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \ldots, \mathbf{v}^{-}, \mathbf{v}\right]$ and $\sigma_{2}:\left[\mathbf{u}, \mathbf{u}^{k-1}, \mathbf{u}^{k-2} \ldots, \mathbf{v}^{+}, \mathbf{v}\right]$.

The faulty edge $f=\left(\mathbf{r}, \mathbf{r}^{+}\right)$may block one of the disjoint paths. If $v_{1}=1$ and $f=(\mathbf{u}, \mathbf{v})$, this is a trivial case as we can just remove the path $[\mathbf{u}, \mathbf{v}]$. In what follows, we assume $f \neq(\mathbf{u}, \mathbf{v})$, or if f is any of $\left(\mathbf{u}, \mathbf{u}^{+}\right)$and $\left(\mathbf{v}, \mathbf{v}^{-}\right)$, we have $v_{1} \geq 2$.
$(\mathrm{A} 21-1.1) \mathbf{r}=\mathbf{u}^{h}, h \in\left\{1,2, \ldots, v_{1}-2\right\}\left(v_{1}-\right.$ $2 \geq 1$).

There must exists $\mathbf{t} \in N_{\mathbf{u}}^{0},(\mathbf{u}, \mathbf{t}) \notin F$, such that all the edges incident to \mathbf{t}^{i} are healthy, for $i=0,1, \ldots, k-1$. This is true as there are at most $\left|F_{0}\right|+\left|F_{v_{1}}\right| \leq 2 n-3$, and there are $2 n-2$ neighbors for each of the node in Q_{i}, for $i=$ $0,1,2, \ldots, k-1$.

We remove the path that passes \mathbf{t}, and build the following path: $\left[\mathbf{u}, \mathbf{t}, \mathbf{s}, \mathbf{s}^{+}, \mathbf{s}^{2}, \ldots, \mathbf{s}^{v_{1}}, \mathbf{t}^{v_{1}}, \mathbf{v}\right]$, where s is t's neighbor. The length of this path is at most $\left\lfloor\frac{k}{2}\right\rfloor+4$. Another path can be built as: $\left[\mathbf{u}, \mathbf{u}^{+}, \ldots, \mathbf{u}^{h}, \mathbf{t}^{h}, \mathbf{t}^{h+1}, \mathbf{u}^{h+1}, \mathbf{u}^{h+2}, \ldots, \mathbf{v}^{-}, \mathbf{v}\right]$. The length of this path is at most $\left\lfloor\frac{k}{2}\right\rfloor+2$.
$(\mathrm{A} 21-1.2) \mathbf{r}=\mathbf{u}^{h}, h \in\left\{v_{1}+1, v_{1}+2, \ldots, k-2\right\}$.
For this case, we need to modify the path σ_{2} to be: $\quad\left[\mathbf{u}^{v_{1}}(=\right.$ $\left.\mathbf{v}), \mathbf{u}^{v_{1}+1}, \ldots, \mathbf{u}^{h}, \mathbf{t}^{h}, \mathbf{t}^{h+1}, \mathbf{v}^{h+1}, \mathbf{v}^{h+2}, \ldots, \mathbf{v}^{k-1}, \mathbf{u}\right]$, where \mathbf{t} is a neighbor of \mathbf{u}, such that $\left(\mathbf{u}^{h}, \mathbf{t}^{h}\right) \notin F$ and $\left(\mathbf{u}^{h+1}, \mathbf{t}^{h+1}\right) \notin F$. This is also true as there are at most $2 n-3$ faulty edges, and each node has $2 n-2$ links in each subgraph $Q_{i}, i=0,1,2, \ldots, k-1$.
(A21-1.3) $\mathbf{r}=\mathbf{u}$. In this case, we must have $\left|F^{\mathbf{u}}\right|>\left|F^{\mathbf{v}}\right|$. There is no need to do any change but remove the path $\left[\mathbf{u}, \mathbf{u}^{+}, \ldots, \mathbf{v}\right]$.
(A21-1.4) $\mathbf{r}=\mathbf{u}^{-}$. In this case, we must have $\left|F^{\mathbf{u}}\right|>\left|F^{\mathbf{v}}\right|$. There is no need to do any change but remove the path $\left[\mathbf{u}, \mathbf{u}^{+}, \ldots, \mathbf{v}\right]$.
(A21-1.5) $\mathbf{r}=\mathbf{v}^{+}$. If there exists $(\mathbf{u}, \mathbf{t}) \in F$, such that $\left(\mathbf{v}, \mathbf{t}^{v_{1}}\right) \notin F$, adjust the path σ_{2} as follows: $\left[\mathbf{u}, \mathbf{u}^{-}, \ldots, \mathbf{v}^{+}, \rho, \mathbf{t}^{v_{1}+1}, \mathbf{t}^{b_{1}}, \mathbf{v}\right]$, where ρ is a path between $\mathbf{t}^{v_{1}+1}$ and \mathbf{v}^{+}. This path can be easily build by induction, and the length is at most L_{n-1}. Hence the total length of path σ_{2} is $L_{n-1}+k+1$.
(A21-1.6) $\mathbf{r}=\mathbf{v}^{-}$. Similar to (A21-1.2) above, suppose \mathbf{t} is such a node that links with \mathbf{u}, and all its neighbor links and their parallel edges are healthy. If $v_{1} \geq 2$, and there exists $(\mathbf{u}, \mathbf{s}) \in F$, such that $\left(\mathbf{v}, \mathbf{s}^{v_{1}}\right) \notin F$, remove the path that passes s and the path that passes t. Build the following two paths: $\left[\mathbf{u}, \mathbf{t}, \mathbf{t}^{-}, \rho, \mathbf{s}^{-}, \mathbf{s}, \mathbf{s}^{+}, \ldots, \mathbf{s}^{v_{1}}, \mathbf{v}\right]$, and $\left[\mathbf{u}, \mathbf{t}^{+}, \mathbf{r}^{+}, \mathbf{s}^{2}, \ldots, \mathbf{r}^{v_{1}}, \mathbf{v}\right]$, where $\rho \in Q_{k-1}$ can be build by finding disjoint paths between \mathbf{u}^{-}and \mathbf{r}^{-}by induction.
(A21-1.7) $\mathbf{r}=\mathbf{s}^{h}$, where \mathbf{s} is \mathbf{u} 's neighbor for some $h \in\left\{0,1, \ldots, v_{1}-1\right\}$ and f is blocking some path ρ. There exists some node \mathbf{t} that is a neighbor of \mathbf{s} and different from \mathbf{u}, such that $\left(\mathbf{s}^{j}, \mathbf{t}^{j}\right) \notin F$, for all $j \in\{0,1, \ldots, k-$ $1\}$. The path ρ can be adjusted as follows: $\left[\mathbf{u}, \mathbf{s}, \mathbf{s}^{1}, \ldots, \mathbf{r}, \mathbf{t}^{h}, \mathbf{t}^{h+1}, \ldots, \mathbf{t}^{v_{1}}, \mathbf{s}^{v_{1}}, \mathbf{v}\right]$.
(A21-2) $\exists e_{1}=(\mathbf{u}, \mathbf{t}) \notin F^{\mathbf{u}}$ and $e^{v_{1}} \in F$, and $\exists e_{2}=(\mathbf{u}, \mathbf{s}) \in F^{\mathbf{u}}$ and $e^{v_{1}} \notin F$. In this case, there are at most $2 n-4$ faulty edges in each subgraph $Q_{i}, i=0,1, \ldots, k-1$.

Find a node \mathbf{w} in Q_{0}, such that $\mathbf{r} \neq \mathbf{w}^{i}$, for every $i=0,1, \ldots, k-1 ; f \notin N^{\mathbf{w}^{2}}$, for $i=0,1, \ldots, k-1$. Such wexists. There are k^{n-1} nodes in Q_{0}, and there are at most $2 n-2$ faulty edges in Q_{n}^{k}. Node \mathbf{u}, \mathbf{r} will block $2 n-1$ nodes each. As \mathbf{u} and \mathbf{v} each incidents with at least one faulty link and f has already been considered, we have at most $2 n-2-3$ faulty edges left . with each block two nodes. Hence the number of available nodes is at least $k^{n-1}-2(2 n-1)-2(2 n-5) \geq 4$. So, there are at least 4 choices for w .

The steps of building disjoint paths in this case are as follows.

Step 1: Find disjoint paths between \mathbf{u} and \mathbf{w} in Q_{0} by induction.

Step 2: Remove w from each path, and extend the path by straight going down until reach a neighbor of $\mathbf{w}^{v_{1}}$.

Step 3: Assume the edges are faulty if they are (1) incident with $\mathbf{w}^{v_{1}}$, (2) not incident with any path built in step 2, and (3) lie inside $Q_{v_{1}}$.

If there are at most $2 n-4$ faulty edges in $Q_{v_{1}}$, we find disjoint paths between \mathbf{v} and $\mathbf{w}^{v_{1}}$ by induction, and link these paths with the paths built in step 2.

If there are $2 n-3$ faulty edges in $Q_{v_{1}}$, there must exist $e \in Q_{v_{1}}$, such that it is not incident with \mathbf{v} and $\mathbf{w}^{v_{1}}$. Obviously, there are no faulty edges in Q_{i} for $i \neq 0, v_{1}$. Assume e is healthy, and find disjoint paths between \mathbf{v} and $\mathbf{w}^{v_{1}}$ by induction. If e lies on some path, do D-jump (e).

Step 4: Build one or two more paths.
(A21-2.1) $f=\left(\mathbf{u}, \mathbf{u}^{-}\right)$. If $\left|F^{\mathbf{u}}\right|>\left|F^{\mathbf{v}}\right|$, then we only need to build one more path: (P1): $\left[\mathbf{u}, \mathbf{u}^{+}, \ldots, \mathbf{v}\right]$. If $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|$, then we need to
build two more paths: one is path (P 1) as above. There have an healthy edge (\mathbf{u}, \mathbf{s}), that is not on any path. We build the following path: (P2): $\left[\mathbf{u}, \mathbf{s}, \mathbf{s}^{-}, \rho_{1}, \mathbf{u}^{-}, \mathbf{u}^{-2}, \ldots, \mathbf{u}^{v_{1}+1}, \mathbf{v}\right]$, where ρ_{1} is a path lies in Q_{k-1} that can be found by induction.
(A21-2.2) $f=\left(\mathbf{u}, \mathbf{u}^{+}\right)$. Path (P 2) as built above is kept for this case.

If $v_{1}=1$, or $v_{1}>1$ and $\left|F^{\mathbf{u}}\right|>\left|F^{\mathbf{v}}\right|$, then no need to find more path.

If $v_{1}>1$ and $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|$, then we go back to Step 3. Before finding disjoint paths in $Q_{v_{1}}$ by induction, we assume one of v 's faulty edge is healthy. After finding disjoint paths, name the path passes this faulty edge as ρ. Suppose $\rho \cap Q_{v_{1}-1}=$ $\mathbf{s}^{v_{1}-1}$. In $Q_{v_{1}-1}$, find a path to link \mathbf{v}^{-}and $\mathbf{s}^{v_{1}-1}$ and disjoint with all other paths. This can be done by carefully setting some of $\mathbf{w}^{v_{1}-1}$'s links as faulty and using induction to find disjoint paths between \mathbf{v}^{-}and $\mathbf{w}^{v_{1}-1}$. Path ρ is now changed to be: ρ : $\left[\mathbf{u}, \ldots, \mathbf{s}, \mathbf{s}^{v_{1}-1}, \ldots, \mathbf{v}^{-}, \mathbf{v}\right]$.
(A21-2.3) $f=\left(\mathbf{v}, \mathbf{v}^{-}\right)$. If $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|$, similar to above (A21-2.2) to build a new path. Otherwise, we don't need any more path.
(A21-2.4) $f=\left(\mathbf{v}, \mathbf{v}^{+}\right)$. If $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|$, similar to above (A21-2.1) to build a new path. Otherwise, we don't need any more path.

Case $2.2 \operatorname{dist}\left(\mathbf{u}, \mathbf{v}^{-v_{1}}\right)=1$ has been discussed in the main body of the paper.

Case $2.3 \operatorname{dist}\left(\mathbf{u}, \mathbf{v}^{-v_{1}}\right)>1$.
We expand the definition for F^{F} : if we are considering finding disjoint paths between node \mathbf{w} and node \mathbf{z} in a sub-graph Q_{i}, F^{F} is defined as the set of faulty edges that are neither incident with \mathbf{w} nor incident with z . This expansion also applies to appendix C.

General steps in building disjoint paths:
G1. Do $\operatorname{map}(\mathbf{v}, 0)$.
G2. Do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$.
G3. Extend the paths to \mathbf{v}.
G4. Find two more paths: (Ga): $\left[\mathbf{u}, \mathbf{u}^{-}, \rho_{1}\right.$, $\left.\mathbf{v}^{-v_{1}-1}, \mathbf{v}^{-v_{1}}, \ldots, \mathbf{v}\right] ;(\mathrm{Gb}):\left[\mathbf{u}, \mathbf{u}^{+}, \ldots, \mathbf{u}^{v_{1}}, \mathbf{u}^{v_{1}+1}\right.$, $\left.\rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right]$.

If all of these paths are not blocked, then we have done. However, there will have some case that we need to avoid faults. Below is the detailed discussion.
(A23-1) $v_{1}=1$.
(A23-1.1) $f=\left(\mathbf{u}, \mathbf{u}^{+}\right)$
(A23-1.1.1) $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|$
Do $\operatorname{map}(\mathbf{v}, 0)$. There exists a faulty edge e, incident with \mathbf{v}^{-}. Assume e is healthy, and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Suppose \mathbf{w} lies on the path that e lies on. Remove this path and extend all other paths to \mathbf{v}. Build the following two more paths: (a): $\left[\mathbf{u}, \mathbf{w}, \mathbf{w}^{-}, \rho_{1}, \mathbf{v}^{-2}, \mathbf{v}^{-}, \mathbf{v}\right]$, where ρ_{1} can be found by induction in Q_{k-1} on \mathbf{w}^{-}and \mathbf{v}^{-2} to avoid \mathbf{u}^{-}; (b): $\left[\mathbf{u}, \mathbf{u}^{-}, \ldots, \mathbf{u}^{v_{1}+1}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right]$.
(A23-1.1.2) $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|+1$
Do $\operatorname{map}(\mathbf{v}, 0)$.
If there are at most $2 n-4$ faulty edges in Q_{0}, do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$, and extend the disjoint paths to \mathbf{v}. Build one more path: (a): $\left[\mathbf{u}, \mathbf{u}^{-}, \rho_{1}, \mathbf{v}^{-2}, \mathbf{v}^{-}, \mathbf{v}\right]$, $\rho_{1} \in Q_{k-1}$.

If there are $2 n-3$ faulty edges in Q_{0}, we have two cases to consider: (i) $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|+1$. This means that $F^{F} \geq 1$. Let $e \in F^{F}$, and assume e is healthy, do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. If e lies on some path, do a U-jump. Build path (a) as above but need to avoid existing paths (the jumped up edge) and node \mathbf{u}^{-}. (ii) $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|+2$. Assume e, an faulty incident with \mathbf{u}, is healthy. Do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Remove this path and extend all of the other paths to \mathbf{v}.
(A23-1.2) $f=\left(\mathbf{u}, \mathbf{u}^{-}\right)$
(A23-1.2.1) $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|$
Do $\operatorname{map}(\mathbf{v}, 0)$. There exists e, an faulty edge incident with \mathbf{v}^{-}. We assume it is healthy, and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Suppose \mathbf{w} lies on the path that passes e. Remove this path and extend all other paths to \mathbf{v}. Build the following two paths: (a): $\left[\mathbf{u}, \mathbf{w}, \mathbf{w}^{-}, \rho_{1}, \mathbf{v}^{-2}, \mathbf{v}^{-}, \mathbf{v}\right]$; (b): $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right]$.
(A23-1.2.2) $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|+1$
Do $\operatorname{map}(\mathbf{v}, 0)$. If there are at most $2 n-4$ faulty edges in Q_{0}, do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$, and extend all paths to \mathbf{v}. Find one more path as follows: (a): $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right]$.

If there are $2 n-3$ faulty edges in Q_{0}, and $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|+1$, there exists $e \in F^{F}$. Assume e is healthy, and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. If e lies on some path, do a U-jump(e). One more paths is built as above (a).

If there are $2 n-3$ faulty edges in Q_{0}, and $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|+2$, assume e, a faulty edge incident with \mathbf{u}, is healthy, and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Remove the path that e lies on, and extend all other paths to \mathbf{v}. One more paths is built as above (a).
(A23-1.3) $f=\left(\mathbf{v}, \mathbf{v}^{-}\right)$
$\operatorname{Do} \operatorname{map}(\mathbf{v}, 0)$. Assume $e \in F$, incident with \mathbf{u}, is healthy. Do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Suppose \mathbf{w}, a neighbor of \mathbf{v}^{-}lies on the path that passes edge e. Remove this path, and extend all other paths to \mathbf{v}. Build two more paths: (a): $\mathbf{u}, \mathbf{u}^{-}, \rho_{1}, \mathbf{w}^{-}, \mathbf{w}, \mathbf{w}^{+}, \mathbf{v}$; (b): $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right]$.
(A23-1.4) $f=\left(\mathbf{v}, \mathbf{v}^{+}\right)$
Compare to case (A23-1.3), we only need to adjust paths (a) and (b) as follows: (a): $\mathbf{u}, \mathbf{u}^{-}, \rho_{1}, \mathbf{v}^{-2}, \mathbf{v}^{-1}, \mathbf{v}$; (b): $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \rho_{2}, \mathbf{w}^{2}, \mathbf{w}^{+}, \mathbf{v}\right]$.
(A23-1.5) $f=\left(\mathbf{v}^{-}, \mathbf{v}^{-2}\right)$
After the four general steps G1, G2, G3, and G 4 , the path (Ga) is blocked by f. To avoid the faulty edge f, we choose one of the disjoint paths, such that it includes the following sub-path: $\mathbf{u}, \mathbf{w}, \rho_{1}, \mathbf{t}$, where \mathbf{t} is a neighbor of \mathbf{v}^{-}, and $\rho_{1}^{+}, \rho_{1}^{-}$are faulty free. Remove this path and build another three paths: (a): $\mathbf{u}, \mathbf{u}^{-}, \rho_{1}^{-}, \mathbf{t}^{-}, \mathbf{t}, \mathbf{v}^{-}, \mathbf{v} ;(\mathbf{b}):\left[\mathbf{u}, \mathbf{w}, \mathbf{w}^{+}, \rho_{1}^{+}, \mathbf{t}^{+}, \mathbf{v}\right] ;$ (c): $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right]$.
(A23-1.6) $f=\left(\mathbf{u}^{+}, \mathbf{u}^{2}\right)$
After the 4 general steps, path (Gb) is blocked by f. There must exist $\left(\mathbf{u}^{+}, \mathbf{w}^{+}\right) \in Q_{1}$ is healthy. An alternative path is built as follows: $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{w}^{+}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right]$, where $\rho_{2} \in Q_{1}$.
(A23-2) $v_{1} \geq 2$.
This case can be analyzed similarly to case (A23-1), and will not discussed here.

Appendix C.

There is No Dimension One Faulty Edge
W.l.o.g., suppose $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|$

Case $1 v_{1}=0$.
Case 1.1 $\left|F_{0}\right|=2 n-2$.
(B11-1) $\left|F^{F}\right| \geq 2$.
Let $e_{1}, e_{2} \in F^{F}$, and assume them are healthy. Find disjoint paths by induction in Q_{0}. If e_{1} (or e_{2}) is on some path, do U-jump $\left(e_{1}\right)$ (or U jump $\left(e_{2}\right)$). Build two more paths as follows: (a):
$\mathbf{u}, \mathbf{u}^{-}, \rho_{1}, \mathbf{v}^{-}, \mathbf{v} ;(\mathbf{b}): \mathbf{u}, \mathbf{u}^{+}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}$; Both ρ_{1} and ρ_{2} are disjoint with all existing paths, and they are easy to find.
(B11-2) $\left|F^{F}\right|=1$.
Assume $e_{1} \in F^{F}$ is healthy.
If $(\mathbf{u}, \mathbf{v}) \in F$, then assume it is healthy, and find disjoint paths by induction in Q_{0}. Remove the path $[\mathbf{u}, \mathbf{v}]$. If e_{1} is on some path, do U-jump $\left(e_{1}\right)$. Find another two more paths: $\sigma_{1}:\left[\mathbf{u}, \mathbf{u}^{-}, \rho_{1}, \mathbf{v}^{-}, \mathbf{v}\right]$; $\sigma_{2}:\left[\mathbf{u}, \mathbf{u}^{+}, \rho_{2}, \mathbf{v}^{+}, \mathbf{v}\right]$, where ρ_{1}, ρ_{2} are all disjoint with existing paths.

If $(\mathbf{u}, \mathbf{v}) \notin F$, then $\exists e_{2} \in F^{\mathbf{u}}$. Assume e_{2} is healthy and find disjoint paths in Q_{0} by induction. If e_{1} lies on some path, do U-jump $\left(e_{1}\right)$. If e_{2} lies on some path, remove this path. Build two more paths: σ_{1}, and σ_{2} as in (B11-2) above.
(B11-3) $\left|F^{F}\right|=0$.
If $(\mathbf{u}, \mathbf{v}) \in F$, then $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|+1$. Assume $e \in F^{\mathbf{u}}$ and (\mathbf{u}, \mathbf{v}) are healthy. Find disjoint paths by induction in Q_{0}, remove the paths that pass the assumed faulty edges. Build two more paths: σ_{1}, and σ_{2} as in (B11-2) above.

If $(\mathbf{u}, \mathbf{v}) \notin F$, then either $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|+2$ or $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|$. In the case that $\left|F^{\mathbf{u}}\right| \geq\left|F^{\mathbf{v}}\right|+2$, we can assume two of $F^{\mathbf{u}}$'s faulty edges are healthy and find disjoint paths by induction in Q_{0}. Remove the two paths that pass the assumed faulty edges. Build two more paths: σ_{1}, and σ_{2} as in (B11-2) above.

In the case that $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}}\right|$, we assume the following faulty edge are healthy: $e_{1} \in F^{\mathbf{u}}$ and $e_{2} \in F^{\mathbf{v}}$. Find disjoint paths by induction. Build path σ_{1}, and σ_{2} as in (B11-2) above if e_{1} and e_{2} are not lie on any path or lie on a same path. If e_{1} and e_{2} lie on different paths, do $D-j u m p\left(e_{i}\right)$ for $i=1,2$, and remove the path σ_{2}.

Case $1.2\left|F_{0}\right|=2 n-3$.
This means there is one faulty edge f lies in $Q_{i}, i \neq 0$.
(B12-1) $\left|F^{F}\right| \geq 1$.
Assume $e \in F^{F}$ is healthy. Find disjoint paths by induction in Q_{0}. If e lies on some path, to avoid it, either do $U_{\text {-jump }}(e)$ or D-jump (e) so as to avoid f as well. Build two more paths σ_{1}, and σ_{2} similar to (B11-2) above; but need to avoid existing paths and faulty edge f.
(B12-2) $\left|F^{F}\right|=0$.
If $(\mathbf{u}, \mathbf{v}) \in F$, assume it is healthy, and build disjoint paths by induction. Remove the path $[\mathbf{u}, \mathbf{v}]$ and build two more paths σ_{1}, and σ_{2} similar to (B11-2) above; but need to avoid faulty edge f.

If $(\mathbf{u}, \mathbf{v}) \notin F$, then assume $e \in F^{\mathbf{u}}$ is healthy. Find disjoint paths by induction in Q_{0}. Remove the path if it include e. Find two more paths σ_{1}, and σ_{2} similar to (B11-2) above; but need to avoid faulty edge f.

Case $1.3\left|F_{0}\right| \leq 2 n-4$.
Find disjoint paths by induction in Q_{0}. Find two more paths σ_{1} and σ_{2} similar to (B11-2) above; but need to avoid faulty edges. σ_{1} and σ_{2} can be obtained by induction even though there may have more than $2 n-4$ faulty edges lie in Q_{k-1} or Q_{1}. An exceptional case is, for example, when all of the $2 n-2$ edges in $N^{\mathbf{u}^{-}}$are faulty. We can not find σ_{1} in Q_{k-1}. This can be solved by doing a U-jump (e) on σ_{1}, where $e \in N^{\mathbf{u}^{-}}$.

Case $2 v_{1} \neq 0$
Case $2.1 \operatorname{dist}\left(\mathbf{u}, \mathbf{v}^{-v_{1}}\right)=0$.
We will always include the following two paths in the disjoint paths set unless otherwise stated: $\sigma_{1}:\left[\mathbf{u}, \mathbf{u}^{-}, \ldots, \mathbf{u}^{v_{1}+1}, \mathbf{v}\right]$, and σ_{2} : $\left[\mathbf{u}, \mathbf{u}^{+}, \ldots, \mathbf{u}^{v_{1}-1}, \mathbf{v}\right]$.
(B21-1) $\forall e \in N_{\mathbf{u}}$, if $e \notin F$, then $e^{v_{1}} \notin F$.
To find disjoint paths for this case is straightforward.
(B21-2) $\exists e_{1} \in N_{\mathbf{u}}, e_{2} \in N_{\mathbf{v}}$, such that $e_{1} \in$ $F, e_{1}^{v_{1}} \notin F$, and $e_{2} \notin F, e_{2}^{v_{1}} \in F$.

If $\left|F^{\mathbf{u}}\right|=2 n-3$, we can easily find 3 disjoint paths between \mathbf{u} and \mathbf{v} as follows: $\left[\mathbf{u}, \mathbf{u}^{+}, \ldots, \mathbf{v}\right]$; $\left[\mathbf{u}, \mathbf{u}^{-}, \mathbf{r}^{-}, \mathbf{r}^{-2}, \ldots, \mathbf{r}^{v_{1}}, \mathbf{v}\right]$ (suppose $e_{1}=(\mathbf{u}, \mathbf{r})$); and $\left[\mathbf{u}, \mathbf{s}, \mathbf{s}^{-}, \mathbf{u}^{-}, \mathbf{r}^{-2}, \ldots, \mathbf{u}^{v_{1}+1}, \mathbf{v}\right]$ (suppose $e_{2}=$ ($\left.\mathbf{v}, \mathbf{s}^{-v_{1}}\right)$). Similarly, we can find 3 paths for the case when $\left|F^{\mathbf{v}}\right|=2 n-3$.

Now, we suppose $\left|F^{\mathbf{u}}\right| \leq 2 n-4$ and $\left|F^{\mathbf{v}}\right| \leq$ $2 n-4$.

Find a node $\mathbf{w} \in Q_{0}$, such that $N^{\mathbf{w}} \cap F=\emptyset$. By a simple calculation $\left(k^{n-1}-[(2 n-2)+1+\right.$ $2(2 n-2)-1] \geq 4$), we claim that such \mathbf{w} exists.

Step 1.
If $\left|F_{0}\right|=2 n-3$ (we have $F^{F} \neq \emptyset$), assume $e \in F^{F}$ is healthy; otherwise, no need to make any assumption. Find disjoint paths by induction
in Q_{0} between \mathbf{u} and \mathbf{w}. If e lies on some path, do a U-jump (e).

Step 2. Remove w and extend these paths each to a neighbor of $\mathbf{w}^{v_{1}}$

Step 3. Assume those edges in $N^{\mathrm{w}^{v_{1}}}$ that are not incident with any of the paths built in Step 2 are faulty.
(B21-2.1) If this results in at most $2 n-4$ faulty edges in $Q_{v_{1}}$, find disjoint paths between \mathbf{v} and $\mathbf{w}^{v_{1}}$ in $Q_{v_{1}}$ by induction. Remove the node $\mathbf{w}^{v_{1}}$ from each of the path and thus links with the path built in Step 2.
(B21-2.2) If this results in $2 n-3$ faulty edges in $Q_{v_{1}}$, and all faulty edges are incident with one of \mathbf{v} and $\mathbf{w}^{v_{1}}$, then assume $e_{3} \in F^{\mathbf{w}^{v_{1}}}$ is healthy. Otherwise, there exists $e_{4} \in F$ not incident with any of \mathbf{v} and $\mathbf{w}^{v_{1}}$, and assume e_{4} is healthy. Find disjoint paths in $Q_{v_{1}}$ by induction. Remove the path if it passes edge e_{3}, or do $\operatorname{D-jump}\left(e_{4}\right)$ if it passes edge e_{4}. All remained paths are incident with the paths built in step 2.
(B21-2.3) If this results in $2 n-2$ faulty edges in $Q_{v_{1}}$, we will have several cases. (1) All faulty edges are incident with either \mathbf{v} or $\mathbf{w}^{v_{1}}$. If $\left|F^{\mathbf{v}}\right|=$ $\left|F^{\mathbf{w}^{v_{1}}}\right|$, for each of \mathbf{v} and $\mathbf{w}^{v_{1}}$, we assume $e_{3} \in F^{\mathbf{v}}$ and $e_{4} \in F^{\mathbf{w}^{v_{1}}}$ are healthy and find disjoint paths by induction. Do D-jump $\left(e_{3}\right)$ or D - jump $\left(e_{4}\right)$ to avoid the faulty edge e_{3} or e_{4} if it lies on some path. If they lie on a same path, then remove that path. All remained paths are incident with the paths built in step 2.
(2) One of the faulty edge e_{3} is neither incident with \mathbf{v} nor $\mathbf{w}^{v_{1}}$. We must have $\left|F^{\mathbf{v}}\right|+1 \leq\left|F^{\mathbf{w}^{v_{1}}}\right|$. Thus we assume e_{3} and $e_{4} \in F^{\mathbf{w}^{v_{1}}}$ are healthy, and find disjoint paths between $\mathbf{w}^{v_{1}}$ and \mathbf{v} by induction. If e_{3} lies on some path, then do D $\operatorname{jump}\left(e_{3}\right)$; if e_{4} lies on some path, then remove this path. All remained paths are incident with the paths built in step 2.
(3) At least two faulty edges e_{3} and e_{4} are neither incident with \mathbf{v} nor $\mathbf{w}^{v_{1}}$. Assume e_{3} and e_{4} are healthy, and find disjoint paths between $\mathbf{w}^{v_{1}}$ and \mathbf{v} by induction. If e_{i} lies on some path, then do a D-jump $\left(e_{i}\right)$, for $i=3,4$.

Case $2.2 v_{1} \neq 0, \operatorname{dist}\left(\mathbf{u}, \mathbf{v}^{-v_{1}}\right)=1$.
Need to consider that if $\left(\mathbf{u}, \mathbf{v}^{-}\right)$and/or $\left(\mathbf{u}^{+}, \mathbf{v}\right)$
are faulty.
If $\left(\mathbf{u}, \mathbf{v}^{-}\right)$is healthy but $\left(\mathbf{u}^{+}, \mathbf{v}\right)$ is faulty, we have the following cases.

If $\left(\mathbf{u}, \mathbf{v}^{-}\right)$is faulty but $\left(\mathbf{u}^{+}, \mathbf{v}\right)$ is healthy, we have the following cases.

If they are both faulty, we will discuss it in the following cases.
(B22-1) $v_{1}=1$.
Define two paths as: $\sigma_{1}:\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{v}\right] ; \sigma_{2}$: $\left[\mathbf{u}, \mathbf{v}^{-}, \mathbf{v}\right] . \sigma_{3}:\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{v}^{k-2}, \mathbf{v}^{k-3}, \ldots, \mathbf{v}^{+}, \mathbf{v}\right] ; \sigma_{4}:$ $\left[\mathbf{u}, \mathbf{u}^{+}, \mathbf{u}^{2}, \mathbf{v}^{+}, \mathbf{v}\right] ; \sigma_{5}:\left[\mathbf{u}, \mathbf{u}^{-}, \mathbf{v}^{-2}, \mathbf{v}^{-}, \mathbf{v}\right]$.
(B22-1.1) After $\operatorname{map}(\mathbf{v}, 0)$, we have $\left|F_{0}\right|=$ $2 n-2$.

We have either at most one of $\left(\mathbf{u}, \mathbf{v}^{-}\right)$and $\left(\mathbf{u}^{+}, \mathbf{v}\right)$ is faulty.

We choose two faulty edges e_{1}, e_{2} by the following rules:
(1) if $\left|F^{F}\right| \geq 2$, let $e_{1}, e_{2} \in F^{F}$; (2) If $\left|F^{F}\right|=1$, let $e_{1} \in F^{F}$, and $e_{2} \in F^{\mathbf{u}} \backslash F^{\mathbf{v}^{-}}$; (3) If $\left|F^{F}\right|=0$ and $\left|F^{\mathbf{u}}\right|>\left|F^{\mathbf{u}}\right|$, we choose $e_{1}, e_{2} \in F^{\mathbf{u}} \backslash F^{\mathbf{v}^{-}}$; (4) If $\left|F^{F}\right|=0$ and $\left|F^{\mathbf{u}}\right|=\left|F^{\mathbf{v}^{-}}\right|$, we choose $e_{1} \in F^{\mathbf{u}} \backslash F^{\mathbf{v}^{-}}, e_{2} \in F^{\mathbf{v}^{-}} \backslash F^{\mathbf{u}}$.

Assume e_{1}, e_{2} are healthy. Do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$, and extend the disjoint paths to \mathbf{v}.

If e_{1}, e_{2} are chosen from above case (4), and they both lie on a same path, just remove this path and include σ_{1}, σ_{2}, if $\sigma_{i}, i=1,2$ is faulty free, and σ_{3} in disjoint paths; if they lie on different paths, do U-jump $\left(e_{i}\right)$, for $i=1,2$ and include σ_{1} and σ_{2}, if $\sigma_{i}, i=1,2$ is faulty free, in disjoint paths.

Otherwise, e_{1}, e_{2} are chosen from above case (1-3) if e_{i} lies on a path and $e_{i} \in F^{F}$, do U $\operatorname{jump}\left(e_{i}\right), i \in\{1,2\}$; if e_{i} lies on a path and $e_{i} \in$ $F^{\mathbf{u}}, i \in\{1,2\}$, remove the path. Include σ_{1}, σ_{2} and σ_{3}, if $\sigma_{i}, i \in\{1,2,3\}$ exists, in disjoint paths.
(B22-1.2) After doing $\operatorname{map}(\mathbf{v}, 0),\left|F_{0}\right|=2 n-3$.
If $\exists e \notin F^{\mathbf{u}} \cup F^{\mathbf{v}^{-}}$, assume e is healthy, and do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Extend the disjoint paths to \mathbf{v}. Do U jump(e) or D-jump (e) to avoid faults if necessary. Two more paths can be σ_{1} and σ_{2}. However, if there is one faulty edge e lies on σ_{1} or σ_{2}, just do U-jump (e) or D-jump (e).

If $\left|F^{\mathbf{u}} \cup F^{\mathbf{v}^{-}}\right|=2 n-3$, let choose a faulty edge e from $F^{\mathbf{u}}$, and assume it is healthy. Do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Extend the disjoint paths to \mathbf{v}. If e lies on some path, just remove the path. Include
σ_{1} and σ_{2} as disjoint paths. Similarly, if there is one faulty edge e lies on σ_{1} (or σ_{2}), just do U jump(e) (or D-jump (e)).
(B22-1.3) After doing $\operatorname{map}(\mathbf{v}, 0),\left|F_{0}\right| \leq 2 n-2$.
Do $D P\left(\mathbf{u}, \mathbf{v}^{-}\right)$. Extend the disjoint paths to \mathbf{v}. Include σ_{1} and σ_{2}, if exist, as disjoint paths. However, if σ_{1} is blocked from outside Q_{0} and Q_{1}, we can easily find an alternative path that is disjoint from all of existing one by replacing the sub-path in Q_{k-1} with a path that can be found by induction. The case that σ_{2} is blocked from outside Q_{0} and Q_{1} can be dealt with similarly.
(B22-2) $v_{1} \geq 2$.
This case can be analyzed similar to case (B22$1)$, and we will not go into details.

Case $2.3 v_{1} \neq 0, \operatorname{dist}\left(\mathbf{u}, \mathbf{v}^{-v_{1}}\right) \geq 2$.
This can be dealt with similar to Case 2.2.

[^0]: Corresponding author: Yonghong Xiang. This work is supported by the UK EPSRC grant (No. EP/G010587/1).

