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Abstract. In the early nineties, Feder and Vardi attempted to find a large sub-class of NP

which exhibits a dichotomy; that is, where every problem in the sub-class is either solvable in
polynomial-time or NP-complete. Their studies resulted in a candidate class of problems, namely
those definable in the logic MMSNP. Whilst it remains open as to whether MMSNP exhibits
a dichotomy, for various reasons it remains a strong candidate. Feder and Vardi added to the
significance of MMSNP by proving that although MMSNP strictly contains CSP, the class of
constraint satisfaction problems, MMSNP and CSP are computationally equivalent. We introduce
here a new class of combinatorial problems, the class of forbidden patterns problems FPP, and
characterize MMSNP as the finite unions of problems from FPP. We use our characterization to
detail exactly those problems that are in MMSNP but not in CSP. Furthermore, given a problem
in MMSNP, we are able to decide whether the problem is in CSP or not (this whole process is
effective). If the problem is in CSP then we can construct a template for this problem, otherwise
for any given candidate for the role of template, we can build a counter-example (again, this process
is effective).
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1. Introduction. Descriptive complexity theory seeks to classify problems, i.e.,
classes of finite structures, as to whether they can be defined using formulae of some
specific logic, in relation to their computational complexity. One of the seminal results
in descriptive complexity is Fagin’s theorem [10] which states that a problem can be
defined in existential second-order logic if, and only if, it is in the complexity class NP
(throughout we equate a logic with the class of problems definable by the sentences
of that logic). In a relatively recent paper and based upon Fagin’s characterization of
NP, Feder and Vardi [15] attempted to find a large (syntactically-defined) sub-class
of NP which exhibits a dichotomy; that is, where every problem in the sub-class is
either solvable in polynomial-time or NP-complete (recall Ladner’s Theorem [22, 26]
which states that if P 6= NP then there is an infinite number of distinct polynomial-
time equivalence classes in NP). What emerged from Feder and Vardi’s consideration
was a (candidate) class of problems called MMSNP, defined by imposing syntactic
restrictions upon the existential fragment of second-order logic. Their focus on a
fragment of existential second-order logic was so that they might apply tools and
techniques of finite model theory to possibly obtain a dichotomy result.

The logic MMSNP is defined by insisting that formulae of the fragment SNP of
existential second-order logic must in addition be monotone, monadic and not involve
inequalities (full definitions follow later). Feder and Vardi considered the imposition
of combinations of these three restrictions (monadic, monotone and without inequal-
ities) and showed that under any combination excepting the imposition of all three
restrictions, the resulting logic does not have a dichotomy (assuming P 6= NP). They
were unable to make any similar claim about the logic obtained by imposing all three
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restrictions. However, they proved that MMSNP properly contains CSP, the class
of combinatorial problems known as constraint satisfaction problems, and, further,
that the two classes are closely related in a computational sense.

Theorem 1.1. (Feder and Vardi [15])
Every problem in CSP is definable by a sentence of MMSNP, and every problem
definable by a sentence of MMSNP is computationally equivalent to a problem in
CSP.
(By ‘computationally equivalent’ above we mean that the MMSNP problem can be
reduced to the CSP problem by a randomized polynomial-time Turing reduction, and
the CSP problem can be reduced to the MMSNP problem by a polynomial-time
Karp reduction.1)

The class CSP of constraint satisfaction problems is of great importance in com-
puter science and artificial intelligence, and has strong ties with database theory,
graph theory and universal algebra (see, for instance, [7, 30, 18, 20, 21]). For exam-
ple, it is well known that constraint satisfaction problems can be modelled in terms
of the existence of homomorphisms between structures [21], in that every constraint
satisfaction problem can be realized as the class of structures for which there exists
a homomorphism to some fixed template structure. The close relationship between
CSP and MMSNP prompted Feder and Vardi [15] to make explicit their conjecture
that every problem in CSP is either NP-complete or solvable in polynomial-time.
There are numerous results supporting this conjecture. For example, Schaefer [30]
proved that if the template structure corresponding to some constraint satisfaction
problem has size 2 then the conjecture holds, with Bulatov [3] recently extending
Schaefer’s result to templates of size 3. Also, Hell and Nešetřil [18] proved that the
conjecture holds for all constraint satisfaction problems involving undirected graphs.
Various other related dichotomy results have recently been determined; see, for ex-
ample, [4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 27, 28].

It is with the ‘border’ between CSP and MMSNP that we are concerned in this
paper. Feder and Vardi exhibited specific problems in MMSNP that are not in CSP,
with their proofs relying essentially on counting arguments (they did not examine
in any detail the inclusion relationship between CSP and MMSNP as classes of
problems). We gave more examples of such problems in [25] although our proofs were
of a different nature; they involved the explicit construction of particular families of
graphs. We attempt in this paper to generalize the constructions in [25] so that we
might develop a method by which we can ascertain whether any problem definable in
MMSNP is in CSP or not. To this end, we give a new combinatorial characterization
of MMSNP as the class of finite unions of forbidden patterns problems (from the
class FPP). We use our new combinatorial characterization to answer the following
questions in the affirmative: “Can we characterize exactly those problems that are in
MMSNP but not in CSP?”; “Given a problem in MMSNP, is it decidable whether
it is in CSP or not?”; and “If a problem in MMSNP can be shown to be in CSP
then can we construct a template witnessing its inclusion in CSP?”.

As we shall see, forbidden patterns problems are given by representations that
involve a finite set of coloured structures, and we introduce the key notion of a re-
colouring between representations. The notions of a representation and a recolouring
somehow generalize the notion of a structure and a homomorphism. The concept
of a recolouring, together with two notions that were implicitly present in the proof
of Theorem 1.1 (the notion of a template of a representation and of a Feder-Vardi

1Gábor Kun has recently derandomized this computational equivalence.
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transformation), allow us to derive for any forbidden patterns problem a normal rep-
resentation. Given any normal representation, we are then able to decide (according
to simple criteria) whether the corresponding problem is in CSP or not. If it is in
CSP then we show how to construct its template; if it is not then we show how
to construct a counter-example to any potential template. Finally, we extend these
results about problems in FPP to answer the questions (about MMSNP) above.

We end this section with a brief word about MMSNP and our research direction.
The logic MMSNP has recently been shown to be related to constraint satisfaction
problems where the template is infinite. In particular, Bodirsky and Dalmau [2] have
shown that any problem in MMSNP that is non-trivial and closed under disjoint
unions can be realized as a constraint satisfaction problem with an ω-categorial tem-
plate. As regards our interest in the differences between MMSNP and CSP, there
are numerous decidability investigations into the relative expressibilities of different
logics in the literature and we highlight a selection of these investigations here. In [1],
Benedikt and Segoufin extend the well-known result that on strings, it is decidable
whether a monadic second-order problem (that is, a regular language) is definable in
first-order logic, to trees. In [16], Gaifman, Marison, Sagiv and Vardi show that the
problem of deciding whether a given Datalog program is equivalent to one without
recursion (and therefore to a formula of existential positive first-order logic) is unde-
cidable. Finally, one very recent (and pertinent) result is that the problem of deciding
whether a constraint satisfaction problem is first-order definable is decidable; indeed,
it is NP-complete [23]. It turns out that first-order definable constraint satisfaction
problems are forbidden patterns problems with a single colour (logically, they corre-
spond to the first-order fragment of MMSNP). The dual question (that asks, given
such a forbidden patterns problem, whether it is a constraint satisfaction problem or
not) is directly related to a popular notion in structural combinatorics, namely that
of a duality pair. Duality pairs have been characterised by Nešetřil and Tardif [31].

This paper is organised as follows. In the next section, we formally define CSP
and FPP. In Section 3, we recall the definition of Feder and Vardi’s logic MMSNP
and show how it relates to the class of problems FPP. In Section 4, we introduce
normal representations and related notions. In Section 5, we prove our main result,
i.e., an exact characterization of problems in FPP as to whether they are in CSP or
not, provided that they can be given by connected representations. Next, in Section 6,
we extend this result to the disconnected case (this requires us to generalise normal
representations to what we call normal sets) and then extend our results form FPP
to MMSNP. Finally, in Section 7, we conclude with some closing remarks.

2. Preliminaries. In this section, we give precise definitions of many of the
concepts involved in this paper. We define many well-known notions in a slightly
non-standard way as many of these notions are extended very soon to analogous ones
for coloured structures.

Structures. A signature is a finite set of relation symbols (with each relation
symbol having some finite arity). Let σ denote some fixed signature. A σ-structure A
consists of a non-empty set A, the domain, together with an interpretation RA ⊆ Am,
for every m-ary relation symbol R in σ. Throughout this paper, we only ever consider
finite σ-structures. Hence, in the following we simply write ‘a structure’ instead of ‘a
finite σ-structure’. We denote structures by A,B, C, etc., and their respective domains
by A,B,C, etc. or alternatively by |A|, |B|, |C|, etc.

Let A be a structure. We denote tuples of elements by s, t, etc., and we write ‘let
t in A’ as an abbreviation for ‘let t be a tuple of elements of A’. Let R be a relation
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symbol in σ. We feel free to specify only when it is relevant the precise length of a
tuple, and when we write ‘RA(t)’ this automatically implies that the tuple of elements
t has the same length as the arity of the relation symbol R. We write ‘a tuple RA(t)’
as an abbreviation for ‘a tuple of elements t in A such that RA(t) holds’. We always
use R to refer to a relation symbol of σ unless otherwise stated.

Let A and B be two structures. A homomorphism from A to B is a mapping
h : A→ B such that for any relation symbol R in σ and for any tuple RA(t), we have
that RB(h(t)), where h(t) denotes the tuple obtained from t by a componentwise

application of h. To denote that h is a homomorphism from A to B, we write A h B.
If, furthermore, h is onto (respectively, one-to-one) then h is an epimorphism (respec-

tively, a monomorphism) and we write A h B (respectively, A h B). If both A h B

and A h B then we write A h B. If A h B and A h−1

B then h is an isomorphism
and we write A ≈ B. If there exists a homomorphism (respectively, a monomorphism)
of A to B then we write A B (respectively, A B). When something does not
hold, we use the same notation but place a / through the symbol. For example, we
write A / B if it is not the case that A B.

If A h B then A is a substructure of B, and if, furthermore, for any tuple

RB(h(t)), we have that RA(t) holds, then A is an induced substructure of B. If

A h B and every tuple RB(t′) is in the image of h (more formally, there exists a

tuple t in A such that h(t) = t′ and RA(t) holds) then B is an homomorphic image

of A. IfA h B then the homomorphic image of A under h, which we denote by h(A),

is the substructure of B that consists only of those tuples RB(t′) that are in the image
of h.

A retract of a structure B is a structure A for which there are two homomor-

phisms A i B and B s A such that s ◦ i = idA (where idA denotes the identity
homomorphism on A; so, in particular, if A is a retract of B then A is isomorphic to
an induced substructure of B). Moreover, A is a proper retract whenever A 6≈ B. If
B does not have any proper retracts then B is automorphic (we use the terminology
of [17]). An automorphic retract of B is called a core. It is well known that a core is
unique up to isomorphism (see [17] or [19]).

Let A be a structure, let s and t be in A, and let n ≥ 1. A path of length n in A
joining s and t consists of n tuples RA

1 (t1), R
A
2 (t2), . . . , R

A
n (tn) such that each Ri is a

relation symbol in σ of arity at least two (these relation symbols need not be distinct
nor need the tuples), s occurs in t1, t occurs in tn and for every 1 ≤ i < n, the tuples
of elements ti and ti+1 have a common element. If a path joins two distinct elements
s and t then they are connected . A structure A is connected if, and only if, any two
distinct elements are connected.

Let B and C be two substructures of A and let x ∈ A. If:
• B ∩ C = {x};
• B ∪ C = A;
• for every relation symbol R of σ that has arity at least two and for every

tuple RA(t), either RB(t) or RC(t) holds but not both;
• for every monadic symbol M and for every element y in B (respectively C),
M(y) holds in B (respectively, C) if, and only if, M(y) holds in A; and

• each substructure B and C has at least one tuple R(t) (where R has arity at
least two),

then we say that A admits a decomposition with components B and C in the articu-
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lation point x, and we write A = B
x

32 C. If A is connected and does not admit any
decomposition then A is biconnected .

Let A be a structure. A tuple RA(t) is said to be antireflexive if, and only if,
no element in t occurs more than once. A cycle of size 1 in A consists of one tuple
RA(t) that is not antireflexive. An element that occurs more than once in a cycle of
size 1 is called an articulation point of the cycle. A cycle of size 2 in A consists of
two antireflexive tuples RA

1 (t1) and RA
2 (t2) for which we have that if R1 = R2 then

t1 and t2 differ and which have at least two distinct common elements, each of which
is called an articulation point of the cycle. Let n > 2. A cycle of size n in A consists
of n tuples RA

1 (t1), R
A
2 (t2), . . . , R

A
n (tn) such that:

• for every 1 ≤ i ≤ n, the tuple RA
i (ti) is antireflexive;

• for every 1 ≤ i < j ≤ n, if j = i + 1 or (i = 1 and j = n), the tuples ti and
tj have one, and only one, common element, ai,j , otherwise they have none;
and

• the elements ai,j , each of which is called an articulation point of the cycle,
are pairwise distinct.

Coloured structures. Let T be a structure. A T -coloured structure is a pair (A, a)

where A is a structure and A a T . We call: T the target of (A, a); a the colouring ;
and A the underlying structure. Let (A, a) and (B, b) be two T -coloured structures.

A T -coloured homomorphism of (A, a) to (B, b) is a homomorphism A h B such that
a = b◦h. All notions defined above extend to T -coloured structures, so that colourings
are respected by morphisms. For example, a retract of a T -coloured structure (B, b)

is a T -coloured structure (A, a) for which there are two homomorphisms A i B and

B s A such that s ◦ i = idA, b ◦ i = a and a ◦ s = b. We use the same terminology
but add the prefix ‘T -coloured’, e.g., as in ‘T -coloured retract’, and we use the same

notation, e.g., (A, a) h (B, b) for a T -coloured homomorphism from (A, a) to (B, b).
However, for simplicity, we may drop the prefix ‘T -coloured’ when it does not cause
confusion. At times, we deal with different targets and so to avoid confusion, we
sometimes write the target as a superscript, e.g., as in (A, aT ). We often refer to the
elements of |T | = T as colours. We shall use the following lemmas later on but we
include them here so that readers can familiarize themselves with coloured structures.

Lemma 2.1. Let (A, aT ) be a T -coloured structure, let T ′ be a structure such that

T ′ e T and let (A, aT
′

) be a T ′-coloured structure where aT = e ◦ aT
′

. If (A, aT ) is

automorphic then (A, aT
′

) is automorphic.
Proof. Suppose that (A, aT ) is automorphic, and suppose that (B, bT

′

) is a proper

retract of (A, aT
′

). That is, we have that (B, bT
′

)
i

(A, aT
′

) and (A, aT
′

)
s

(B, bT
′

)

where s ◦ i = idB, aT
′

◦ i = bT
′

and bT
′

◦ s = aT
′

(cf. the left commutative diagram
of Figure 2.1) so that (A, aT

′

) 6≈ (B, bT
′

). We can compose the two T ′-colourings
with e to yield T -coloured structures, i.e., let aT := e ◦ aT

′

and bT := e ◦ bT
′

(cf. the right commutative diagram of Figure 2.1). Thus, (B, bT ) is a retract of
(A, aT ), and so is isomorphic to (A, aT ). Thus, i is an isomorphism, with inverse s.
Consequently, (A, aT

′

) ≈ (B, bT
′

). But (B, bT
′

) is a proper retract of (A, aT
′

) which
yields a contradiction. The result follows.

The proofs of the next two lemmas are almost identical to analogous proofs in
[19], for example, but are included here to allow readers to familiarize themselves with
coloured structures.

Lemma 2.2. The T -coloured structure (A, aT ) is automorphic if, and only if,
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B

A T '

B

T '
b

T '
b

T '
a

i

s
idB

B

A T

B

i

s
idB

Tb   = e o b T '

Tb   = e o b T '

Ta   = e o a T '

Fig. 2.1. Proof of Lemma 2.1.

whenever (A, aT )
f

(A, aT ), we have that f(A, aT ) ≈ (A, aT ).

Proof. Assume that (A, aT ) is automorphic, and also that (A, aT )
f

(A, aT ).

From all such homomorphisms, choose g such that g(A, aT ) has a minimal number of
elements, and from those structures also a minimal number of tuples. Define h to be
g restricted to g(A, aT ).

Note that g(A, aT )
h
g(A, aT ) and so h is one-to-one and onto, as otherwise

(A, aT )
h◦g

(A, aT ) contradicts the minimality of g. So, h is an isomorphism. Thus,

(A, aT )
h−1◦g

g(A, aT ) and g(A, aT )
i

(A, aT ), where i is the identity on g(A, aT ). For

any x ∈ |g(A, aT )|, h−1 ◦ g ◦ i(x) = h−1 ◦ g(x) = h−1 ◦ h(x) = x. Hence, g(A, aT ) is a
retract of (A, aT ), and so g(A, aT ) ≈ (A, aT ). Consequently, f(A, aT ) ≈ (A, aT ) by
minimality of g.

Conversely, assume that whenever (A, aT )
f

(A, aT ), we have f(A, aT ) ≈ (A, aT ).

Suppose that (B, bT )
i

(A, aT ) and (A, aT )
s

(B, bT ) with s ◦ i = idB. Define

f := i ◦ s. Thus, f(A, aT ) ≈ (A, aT ), with i an epimorphism and s a monomorphism.
Consequently, (B, bT ) ≈ (A, aT ) and (A, aT ) is automorphic.

Lemma 2.3. Every T -coloured structure has a T -coloured core that is unique up
to T -coloured isomorphism.

Proof. Trivially, every T -coloured structure has a T -coloured core. Suppose that
(A1, a1) and (A2, a2) are cores of (B, b) such that (A1, a1) 6≈ (A2, a2). In particular:

• (A1, a1)
i1 (B, b) and (B, b)

s1 (A1, a1) such that s1 ◦ i1 = idA1
, b ◦ i1 = a1

and s1 ◦ a1 = b; and

• (A2, a2)
i2 (B, b) and (B, b)

s2 (A2, a2) such that s2 ◦ i2 = idA2
, b ◦ i2 = a2

and s2 ◦ a2 = b.

Then f1 := s2 ◦ i1 : (A1, a
T
1 ) → (A2, a

T
2 ) is a homomorphism as is f2 := s1 ◦ i2 :

(A2, a
T
2 ) → (A1, a

T
1 ). Hence, by Lemma 2.2, f2 ◦ f1(A1, a

T
1 ) ≈ (A1, a

T
1 ) and f1 ◦

f2(A2, a
T
2 ) ≈ (A2, a

T
2 ). Consequently, (A1, a

T
1 ) and (A2, a

T
2 ) are isomorphic, and the

result follows.

Patterns and representations. A structure (A, aT ) is a T -pattern whenever for
every y ∈ A, there exists a relation symbol R in σ and a tuple t in A in which y
occurs such that RA(t) holds (that is, every element occurs in some tuple in some
relation of A, i.e., A has no isolated elements). A T -pattern (A, aT ) is conform if,
and only if, A consists solely of an antireflexive tuple RA(t): that is, there exists a
relation symbol R in σ such that RA = {t}, where every element of A occurs in t
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exactly once, and for every other relation symbol R′ in σ, we have R′A = ∅. We
denote conform patterns explicitly as in (R(t), aT ).

A representation is a pair (F , T ), where T is a structure, called the target , and
F is a finite set of T -patterns, called the forbidden patterns. If every forbidden
pattern in F is connected then we say that (F , T ) is connected . Let (F , T ) be a
representation. A T -coloured structure (A, aT ) is valid (respectively, weakly valid)
with respect to (F , T ) if, and only if, there is no forbidden pattern (B, bT ) ∈ F

such that (B, bT ) (A, aT ) (respectively, (B, bT ) (A, aT )). A structure A is valid
(respectively, weakly valid) with respect to (F , T ) if, and only if, there exists a homo-

morphism A aT

T such that (A, aT ) is valid (respectively, weakly valid) with respect
to (F , T ).

Constraint satisfaction problems. It is well known that constraint satisfaction
problems can be modelled in terms of the existence of homomorphisms between struc-
tures [21]. Recall that the non-uniform constraint satisfaction problem with template
T , denoted by CSP(T ), is the problem defined as follows:

• instances: structures A (over the same signature as T );
• yes-instances: those instances A for which A T .

We denote by CSP the class of non-uniform constraint satisfaction problems. Note
that in [21], the adjective ‘non-uniform’ was coined to distinguish such problems from
uniform constraint satisfaction problems where the template T is not fixed, but may
range over a class of structures (all structures in general) and is part of the input.
Since we do not deal with uniform problems in this paper, from now on we drop the
phrase ‘non-uniform’.

Forbidden patterns problems. The forbidden patterns problem given by the repre-
sentation (F , T ), and denoted by FPP(F , T ), is the problem defined as follows:

• instances: structures A (over the same signature as T );
• yes-instances: those instances A that are valid w.r.t. (F , T ).

We denote by FPP the class of forbidden patterns problems. If two representations
define the same forbidden patterns problem then we say that the representations are
equivalent .

Remark 2.4. A problem in CSP is clearly monotone, i.e., closed under sub-
structures. Furthermore, it is closed under inverse homomorphisms. To see this, let
B and T be two structures. If B ∈ CSP(T ) then A ∈ CSP(T ), for any A such that
A B. It is not difficult to check that if B ∈ FPP(F , T ) then A ∈ FPP(F , T ),
for any A such that A B. Moreover, note that the containment problem, i.e., given
two structures T and T ′, decide whether CSP(T ) ⊆ CSP(T ′), is nothing other than
the uniform constraint satisfaction problem (as CSP(T ) ⊆ CSP(T ′) if, and only if,
T T ′).

Theorem 2.5. CSP ( FPP.

Proof. The inclusion is clear, as a problem from CSP with template T can be
given equivalently as the forbidden patterns problem with representation (∅, T ). It
follows from counter-examples given in [15, 25] that this inclusion is strict.

This provokes the following question, which is intrinsic to this paper: When is a
forbidden patterns problem not a constraint satisfaction problem?

3. Feder and Vardi’s logic. The logic SNP is the fragment of existential
second-order logic, ESO, consisting of formulae Φ of the form ∃S∀tϕ, where S is a
tuple of relation symbols (not in σ), t is a tuple of (first-order) variables and ϕ is
quantifier-free. Furthermore: Φ is in monadic SNP whenever S is a tuple of monadic
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relation symbols; Φ is in monotone SNP whenever every occurrence in ϕ of a symbol
R from σ appears in the scope of an odd number of ¬ symbols; and Φ is in SNP
without inequalities whenever the symbol = does not appear in ϕ (either positively
or negatively). If one thinks about the intuitive properties of the existence of a ho-
momorphism from one structure to another, one might find it plausible to consider
imposing some of the above restrictions on ESO. For instance, the existence (cf.
the existential second-order quantifiers) of a homomorphism from an arbitrary source
graph to a fixed target graph is equivalent to finding a partition of the domain of the
source graph into sets (cf. the monadic restriction), one for each element of the target
graph, so that every edge of the source graph (cf. the universal prefix of first-order
quantifiers) maps to an edge of the target graph (cf. the monotone restriction above,
reflecting that we are only interested in positive information, that is, about map-
pings of edges, not about mappings of ‘non-edges’). The ‘without inequalities’ aspect
of MMSNP comes about as homomorphisms do not distinguish between different
elements.

Feder and Vardi considered the imposition of combinations of these three re-
strictions (monadic, monotone and without inequalities) and showed that under any
combination excepting the imposition of all three restrictions, the resulting logic does
not have a dichotomy (assuming P 6= NP). However, they were unable to make any
similar claim about the logic obtained by imposing all three restrictions and they
observed that this logic subsumes CSP. This motivated the following definition.

Definition 3.1. Monotone Monadic SNP without inequality, MMSNP, is the
fragment of ESO consisting of those formulae Φ of the following form:

∃M∀t
∧

i

¬
(

αi(σ, t) ∧ βi(M, t)
)

,

where M is a tuple of monadic relation symbols (not in σ), t is a tuple of (first-order)
variables and for every negated conjunct ¬(αi ∧ βi):

• αi consists of a conjunction of positive atoms involving relation symbols from
σ and variables from t; and

• βi consists of a conjunction of atoms or negated atoms involving relation
symbols from M and variables from t.

(Notice that the equality symbol does not occur in Φ.)

Feder and Vardi showed that CSP is subsumed by MMSNP and, furthermore,
that MMSNP is computationally equivalent to CSP. (Theorem 3.2 is a more detailed
reformulation of Theorem 1.1 and is included for completeness.)

Theorem 3.2. (Feder and Vardi [15]).
Every problem in CSP is definable by a sentence of MMSNP but there are problems
in MMSNP that are not in CSP. However, for every problem Ω ∈ MMSNP, there
exists a problem Ω′ ∈ CSP such that: Ω reduces to Ω′ via a polynomial-time Karp
reduction; and, Ω′ reduces to Ω via a randomized polynomial-time Turing reduction2.

(A more detailed proof of Theorem 3.2 than that in [15] can be found in [24].)

In the remainder of this section, we show that the logic MMSNP essentially
corresponds to the class FPP of forbidden patterns problems. Let us begin by looking
at some illustrative examples.

Example 3.3. Consider the signature σ2 = 〈E〉, where E is a binary relation

2As mentioned earlier, Gábor Kun has recently derandomized this reduction.
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ET ET

Φ1
'Φ2

''Φ2

Fig. 3.1. Primitive sentence and representations.

symbol. Define Φ1 as

∃C ∀x ∀y ∀z
(

¬
(

E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ C(x) ∧ C(y) ∧ C(z)
)

∧ ¬
(

E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ ¬C(x) ∧ ¬C(y) ∧ ¬C(z)
))

.

We can easily ascertain that Φ1 defines the forbidden patterns problem with repre-
sentation (F , T ) where |T | := {0, 1}, ET := |T |2 and F contains two forbidden
patterns, one for each negated conjunct, both having as underlying structure a di-
rected triangle (domain {x, y, z} and relation E = {(x, y), (y, z), (z, x)}): in the first
forbidden pattern all vertices of this directed triangle are coloured 0, whereas in the
second forbidden pattern the vertices are all coloured 1 (the colourings are given by
C and correspond to x, y, z 7→ 0 and x, y, z 7→ 1, respectively, and the colours are
the names of the elements of the template). For simplicity, from now on we usually
give representations in a pictorial fashion. For example, the representation we have
just defined is depicted on the left of Figure 3.1; the top cell depicts the template, and
the other cells depict the forbidden patterns. Note that the template is not a coloured
structure: however, to depict the homomorphisms from the forbidden patterns to the
template, we have coloured the elements of the template accordingly.

It is not so clear which forbidden patterns problem the following sentence corre-
sponds to:

Φ2 := ∃C ∀x ∀y
(

¬
(

E(x, y) ∧ C(x)
)

∧ ¬
(

E(x, x) ∧ C(x) ∧ C(y)
))

.

However, it can be transformed into equivalent sentences as follows. First, we list all
possibilities for the monadic predicate, to ensure that we have ‘fully coloured’ struc-
tures:

∃C ∀x ∀y
(

¬
(

E(x, y) ∧ C(x) ∧ C(y)
)

∧ ¬
(

E(x, y) ∧ C(x) ∧ ¬C(y)
)

∧ ¬
(

E(x, x) ∧ C(x) ∧ ¬C(y)
))

.

The last negated conjunct is comprised of two ‘independent’ parts, namely (E(x, x) ∧
C(x)) and C(y), and does not correspond to a pattern (y does not appear in any atomic
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σ-relation). We can rewrite the above formula as the disjunction of two formulae Φ′
2

and Φ′′
2 , where:

Φ′
2 = ∃C ∀x ∀y

(

¬
(

E(x, y) ∧ C(x) ∧ C(y)
)

∧ ¬
(

E(x, y) ∧ C(x) ∧ ¬C(y)
)

∧ ¬
(

E(x, x) ∧ C(x)
))

and

Φ′′
2 = ∃C ∀x ∀y

(

¬
(

E(x, y) ∧ C(x) ∧ C(y)
)

∧ ¬
(

E(x, y) ∧ C(x) ∧ ¬C(y)
)

∧ ¬
(

¬C(y)
))

(we leave the fact that Φ2 can be so decomposed as a simple exercise). Now, from each
formula we can extract a suitable representation: this is easy in the case of Φ′

2; and,
in the case of Φ′′

2 , note that the last negated conjunct essentially forces us to use a
single colour, so we can ignore all negated conjuncts which mention ¬C(z), for some
variable z. Finally, this leads to the representations depicted in the middle and on the
right of Figure 3.1, respectively.

The above examples motivate the following definition and proposition.
Definition 3.4. A sentence Φ of MMSNP, where Φ is as in Definition 3.1, is

primitive if, and only if, for every negated conjunct ¬(α ∧ β):
• for every first-order variable x that occurs in ¬(α∧β) and for every monadic

symbol C in M, exactly one of C(x) and ¬C(x) occurs in β; and
• unless x is the only first-order variable that occurs in ¬(α ∧ β), an atom of

the form R(t), where x occurs in t and R is a relation symbol from σ, must
occur in α.

Proposition 3.5. Every sentence of MMSNP is logically equivalent to a finite
disjunction of primitive sentences.

Proof. Let Φ be a sentence of MMSNP that is not primitive. Assume that Φ
does not satisfy the first property of Definition 3.4. Let ¬

(

α(σ, t) ∧ β(M, t)
)

be a
negated conjunct in Φ where there exists a (first-order) variable x that occurs in this
negated conjunct and a monadic symbol C in M such that neither C(x) nor ¬C(x)
occurs in β. Replace ¬(α ∧ β) in Φ by the conjunction of two negated conjuncts:

¬
(

α ∧ β ∧ C(x)
)

∧ ¬
(

α ∧ β ∧ ¬C(x)
)

.

This new formula belongs to MMSNP and is logically equivalent to Φ. We iterate
this process until the sentence satisfies the first property of Definition 3.4. Let Φ′

denote this new sentence.
It may be the case that the second property does not hold for Φ′ because of a

negated conjunct of the form ¬
(

α(σ, t)∧β0(M, t)∧β1(M, x)
)

, where x does not occur
in t, where α(σ, t) may be empty and where β1 is the conjunction of all atoms and
negated atoms of β involving symbols from M and the variable x (β0 is a conjunction
of the remaining atoms and negated atoms of β). Let Φ′′ = Φ′

1 ∨ Φ′
2, where:

• Φ′
1 is obtained from Φ′ by replacing ¬(α∧ (β0 ∧ β1)) in Φ′ by ¬(α∧ β0); and

• Φ′
2 is obtained from Φ′ by replacing ¬(α ∧ (β0 ∧ β1)) in Φ′ by ¬β1.

First, note that Φ′
1 and Φ′

2 are both in MMSNP. Secondly, it is not hard to check that
Φ′′ is logically equivalent to Φ′. We iterate this transformation until each sentence in
the disjunction satisfies the second property of Definition 3.4.

We are now ready to state exactly what the correspondence is between MMSNP
and FPP.
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Theorem 3.6. The class of problems captured by the primitive fragment of the
logic MMSNP is exactly the class FPP of forbidden patterns problems.

Proof. Let Φ = ∃M∀tϕ be a primitive sentence of MMSNP. We shall build a
representation (F , T ) from Φ. A conjunction χ(M, x) of atoms and negated atoms
involving only relation symbols from M and the sole first-order variable x, where for
each relation symbol C in M, exactly one of C(x) or ¬C(x) occurs, is referred to as an
M-colour. So, associated with every negated conjunct ¬(α ∧ β) in Φ (more precisely,
with β in every such negated conjunct) and every variable occurring in this negated
conjunct, is a unique M-colour; in fact, β can be written as the conjunction of these
M-colours. Construct the structure T from Φ as follows:

• its domain T consists of all M-colours χ(M, x) that are not explicitly forbid-
den in Φ by some negated conjunct ¬(α∧ β) of ϕ having the form ¬χ(M, x),
i.e., so that α is empty and β is the M-colour χ; and

• for every relation symbol R of arity m in σ, set RT := Tm.

Start with F := ∅, and for every negated conjunct ¬(α ∧ β) in ϕ, add to F the
structure (Aα, a

T
β ), where:

• Aα is the structure defined as follows:
– the domain consists of all first-order variables that occur in the negated

conjunct ¬(α ∧ β); and
– for every relation symbol R in σ, there is a tuple RAα(t) if, and only if,

the atom R(t) appears in α;
• for every x ∈ |Aα|, set aTβ (x) := χ, where χ is the M-colour of x in β.

(The fact that Φ is primitive makes these definitions well-defined.)

Let B be a structure such that B |= Φ. So, there exists an assignment Π : M → 2B

(where 2B denotes the power set of B) such that B |= ∀tϕ(Π(M), t) (here, ϕ(Π(M), t)
denotes the formula ϕ where every monadic predicate is instantiated as the subset of
B given by the assignment Π). Since Φ = ∃M∀tϕ is primitive, the formula ϕ is of
the form:

¬χ1(M, x) ∧ ¬χ2(M, x) ∧ . . . ∧ ¬χk(M, x) ∧ ψ(σ,M, t),

where k ≥ 0, and for every 1 ≤ i ≤ k, χi is an M-colour (with all such M-colours
distinct) and ψ is a conjunction of negated conjuncts that are not M-colours.

The assignment Π induces a map πT from B to the set T that sends an element
u ∈ B to χ, where χ is the unique M-colour for which χ(Π(M), u) holds (note that
χ 6= χi, for i = 1, 2, . . . , k, as ¬χi(Π(M), u) holds, for all u ∈ B).

Let ¬(α∧β) be a negated conjunct of ϕ, where α is non-empty, and suppose that

(Aα, a
T
β ) h

(B, πT ).

Let R(x1, x2, . . . , xa) be an atom appearing in α. So, RAα(x1, x2, . . . , xa) holds
and consequently RB(h(x1), h(x2), . . . , h(xa)) holds. Thus, if t′ is the tuple of vari-
ables appearing in ¬(α ∧ β) then αB(h(t′)) holds. Also, πT ◦ h = aTβ and so

πT (h(t′)) = aTβ (t′). That is, βB(Π(M), h(t′)) holds. Thus (α∧β)B(Π(M), h(t′)) holds
which contradicts the fact that B |= Φ, witnessed by Π(M). Hence, B ∈ FPP(F , T ).

Conversely, suppose that B ∈ FPP(F , T ), witnessed by the homomorphism

B πT

T . Clearly, πT gives rise to an assignment Π : M → 2B where u ∈ Π(C),

for some C ∈ M and u ∈ B, if, and only if, C(y) appears in χ(y), where πT (u) = χ.
Assume that B |= α(h(t′)) ∧ β(Π(M), h(t′)), for some map h : |Aα| → |B|, where
¬(α∧β) is a negated conjunct of ϕ and t′ is the tuple of variables appearing in α∧β.
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If RAα(x1, x2, . . . , xa) holds then RB(h(x1), h(x2), . . . , h(xa)) holds. If β is of

the form
∧d

i=1 χ
i(xi), where t′ = (x1, x2, . . . , xd) and each χi is an M-colour, then

χi(Π(M), h(xi)) holds, for each i = 1, 2, . . . , d. However, by definition aTβ (xi) = χi,

and so πT (h(xi)) = aTβ (xi), for each i = 1, 2, . . . , d. Hence, (Aα, a
T
β ) h

(B, πT ) which

yields a contradiction. Thus, B |= Φ, witnessed by the assignment Π(M), and the
implication follows.

Conversely, given a representation (F , T ), we shall build a corresponding primi-
tive sentence of MMSNP. Let M = {C1, C2, . . . , Ck} be a set of monadic predicates
that are not in σ such that k = ⌈log2 |T |⌉. To each element xi of |T |, we associate
some arbitrary M-colour χxi

. Let χ|T |+1, . . . , χ2k denote the remaining M-colours (if

|T | < 2k). Let Φ = ∃M∀tφ, where ∀tφ is the universal closure of the conjunction of
the following negated conjuncts.

• If |T | < 2k then for every i such that |T | < i ≤ 2k, we add the negated
conjunct ¬χi(y).

• For each tuple R(i1, i2, . . . , ir) that does not hold in T , we add the negated
conjunct ¬(R(y1, y2, . . . , yr) ∧ χi1(y1) ∧ χi2(y2) ∧ . . . ∧ χir

(yr)), where the
variables y1, y2, . . . , yr are pairwise distinct.

• For each forbidden pattern (A, aT ) in F , we add the negated conjunct ¬(α∧
β), where α is the conjunction of the tuples of F and β is the conjunction
∧

x∈|A| χaT (x)(x).

The first type of negated conjuncts ensure that we may only use the M-colours that
correspond to elements of T . The second type of negated conjuncts describe that
there is a homomorphism to T . Finally, the last negated conjuncts enforce that this
homomorphism is not compatible with any of the forbidden patterns. Consequently,
a structure B is a yes-instance of the forbidden patterns problem with representation
(F , T ) if, and only if, B |= Φ. The formal proof of this equivalence is similar to that
of the first implication. This concludes the proof.

By Proposition 3.5, every forbidden patterns problem is described by a primitive
sentence of MMSNP. Since the disjunction of two sentences of MMSNP is logically
equivalent to a sentence of MMSNP, we get the following corollary from the above
theorem.

Corollary 3.7. The class of problems captured by the logic MMSNP corre-
sponds exactly to the class of finite unions of problems in FPP.

4. A normal form for problems in FPP. In this section, we introduce nor-
mal representations and show how any representation can be effectively rewritten into
an equivalent normal representation. The transformation is achieved through a com-
bination of different operations so as to enforce various properties. We shall make
clear later, in Section 5, why we need these properties.

However, before we proceed, let us try and give some idea here of the direction of
travel by stating the properties we wish to enforce and our intended goal. We shall
state the properties again at the appropriate point in the text, as we do with the
definition and result stated below. Let (F , T ) be a representation. The properties
we wish to enforce upon (F , T ) are as follows.

(p1) Any structure is valid if, and only if, it is weakly valid.
(p2) Every pattern of F is automorphic.
(p3) It is not the case that (B1, b

T
1 ) (B2, b

T
2 ), for any distinct patterns (B1, b

T
1 )

and (B2, b
T
2 ) of F .

(p4) No pattern of F is conform.
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T

Tb

h

Tc

Fig. 4.1. A commuting diagram.

(p5) Every forbidden pattern is biconnected.
(p6) The representation (F , T ) is automorphic.

We say that a connected representation for which properties p1 to p6 hold is a normal
representation. In the process of reducing our representation to a normal representa-
tion, we will show that this can be done by an effective procedure.

4.1. Our first batch of reductions. Let (F , T ) be a representation. We now
define a number of operations on representations so that we might enforce certain
properties. However, before we start, we wish our representation to have the following
property.

(p1) Any structure is valid if, and only if, it is weakly valid.
Let HF be the set of homomorphic images of the patterns from F , up to isomor-

phism. Recall that a forbidden pattern is a coloured structure; hence, an homomorphic
image of a forbidden pattern (B, bT ) ∈ F is a coloured structure (C, cT ) such that

there exists an epimorphism B h C with the properties that:

• for each symbol R ∈ σ and for each tuple RC (̃t), there exists a tuple RB(t)
such that h(t) = t̃; and

• the diagram in Figure 4.1 commutes.
Lemma 4.1. The representation (HF , T ) is equivalent to (F , T ).

Proof. Let A be valid w.r.t. (F , T ), witnessed by A aT

T . Assume for contra-

diction that (A, aT ) is not valid w.r.t. (HF , T ), and let (C, cT ) ∈ HF (defined from

(B, bT ) ∈ F , using h as above) be such that (C, cT )
f

(A, aT ). By composition, it

follows that (B, bT )
f◦h

(A, aT ). This yields a contradiction and so (A, aT ) is valid
w.r.t. (HF , T ).

Conversely, if A is valid w.r.t. (HF , T ) then A is valid w.r.t. (F , T ) since
F ⊆ HF .

Lemma 4.2. The representation (HF , T ) satisfies p1.
Proof. Let (A, aT ) be weakly valid w.r.t. (HF , T ). Assume for contradiction that

(A, aT ) is not valid w.r.t. (HF , T ), and let (C, cT ) ∈ HF (defined from (B, bT ) ∈ F ,

using h as above) be such that (C, cT )
f

(A, aT ). By construction, f(C, cT ) belongs

to HF , and f(C, cT ) (A, aT ). This yields a contradiction.

Conversely, if (A, aT ) is valid w.r.t. (HF , T ) then it is trivially weakly valid.
The result follows.

Our next property to enforce is the following.
(p2) Every pattern of F is automorphic.
Definition 4.3. Let (F , T ) be a representation and let (F ′, T ) be the represen-

tation obtained by replacing a pattern of F with its core. We call this a core-reduction
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on (F , T ).
Note that Definition 4.3 is well-defined by Lemma 2.3.
Lemma 4.4. Let the representation (F ′, T ) be obtained from the representation

(F , T ) by a core-reduction.
• (F ′, T ) is equivalent to (F , T ).
• If (F , T ) satisfies property p1 then so does (F ′, T ).

Proof. If (C, cT ) is the core of (B, bT ) then (B, bT ) (A, aT ) if, and only if,

(C, cT ) (A, aT ), for any structure (A, aT ). Hence, (F ′, T ) is equivalent to (F , T ).

Assume that (F , T ) satisfies property p1. Suppose that (A, aT ) is weakly valid
w.r.t. (F ′, T ). If (C, cT ) (A, aT ), for some (C, cT ) ∈ F ′, then we must have

that (B, bT ) (A, aT ), for some (B, bT ) ∈ F . As (F , T ) satisfies property p1,

(D, dT ) (A, aT ), for some (D, dT ) ∈ F . If (D, dT ) ∈ F ′ then we obtain a contra-

diction; otherwise, the core of (D, dT ) is in F ′, and we still obtain that some forbidden
pattern of F ′ embeds into (A, aT ), yielding a contradiction. Hence, (F ′, T ) satisfies
property p1.

Our next property to enforce is the following.
(p3) It is not the case that (B1, b

T
1 ) (B2, b

T
2 ), for any distinct patterns (B1, b

T
1 )

and (B2, b
T
2 ) of F .

Definition 4.5. Let (F , T ) be a representation and let (B1, b
T
1 ) and (B2, b

T
2 ) be

distinct patterns of F such that (B1, b
T
1 ) (B2, b

T
2 ). Let (F ′, T ) be the representation

obtained by removing the pattern (B2, b
T
2 ) from F . We call this an embed-reduction

on (F , T ).
Lemma 4.6. Let the representation (F ′, T ) be obtained from the representation

(F , T ) by an embed-reduction.
• (F ′, T ) is equivalent to (F , T ).
• If (F , T ) satisfies property p1 then so does (F ′, T ).

Proof. Trivially, FPP(F , T ) ⊆ FPP(F ′, T ). If (B2, b
T
2 ) (A, aT ) (with ref-

erence to Definition 4.5) then (B1, b
T
1 ) (A, aT ), for any structure (A, aT ), and so

FPP(F ′, T ) ⊆ FPP(F , T ).
Assume that (F , T ) satisfies property p1. Suppose that (A, aT ) is weakly valid

w.r.t. (F ′, T ). If (B, bT ) (A, aT ), for some pattern (B, bT ) ∈ F ′, and so some

pattern in F , then we have that (A, aT ) is not weakly valid w.r.t. (F , T ). That is,

(C, cT ) (A, aT ), for some pattern (C, cT ) ∈ F . If (C, cT ) ∈ F ′ then we obtain a

contradiction; otherwise, (C, cT ) is the pattern removed by the embed-reduction and

(D, dT ) (C, cT ), for some pattern (D, dT ) ∈ F ′. Thus, we still obtain a contradic-
tion, and (F ′, T ) satisfies p1.

Our next property to enforce is the following.
(p4) No pattern of F is conform.
Definition 4.7. Let (F , T ) be a representation and let (R(t), πT ) be a conform

pattern of F . Let T ′ be the structure obtained from T by the removal of the tuple

R(πT (t)) and let e be the monomorphism T ′ e T defined by inclusion. Let F ′ denote

the set of patterns of F that are also T ′-patterns; that is, the patterns (B, bT ) ∈ F

for which bT (u) 6= πT (t), for any tuple RB(u). The representation (F ′, T ′) has been
obtained from (F , T ) by a conform-reduction.

Lemma 4.8. Let the representation (F ′, T ′) be obtained from the representation
(F , T ) by a conform-reduction.

• (F ′, T ′) is equivalent to (F , T ).
• If (F , T ) satisfies property p1 then so does (F ′, T ′).
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Fig. 4.2. Depiction of tuples.

.

Proof. We denote a pattern (B, bT ) ∈ F that is also a T ′-pattern by (B, bT
′

)

also, where bT
′

is the homomorphism B bT
′

T ′ obtained directly from bT ; that is,

bT = e ◦ bT
′

.

Assume that (A, aT
′

) is valid w.r.t. (F ′, T ′) and define aT := e ◦ aT
′

(so

A aT

T and aT (u) 6= πT (t), for any tuple RA(u)). Suppose that some pattern

(B, bT ) ∈ F is such that (B, bT ) (A, aT ). Thus, (B, bT ) is actually a T ′-pattern,

and (B, bT
′

) (A, aT
′

) which yields a contradiction.

Conversely, suppose that (A, aT ) is valid w.r.t. (F , T ). There are two cases:
either the map aT yields a homomorphism A T ′; or it doesn’t.

Suppose that the map aT yields a homomorphism A aT
′

T ′; thus, aT = e◦aT
′

. If

(B, bT
′

) ∈ F ′ is such that (B, bT
′

) (A, aT
′

) then we have that (B, bT ) (A, aT )

(where bT = e◦ bT
′

, recall) which yields a contradiction. Thus, (A, aT
′

) is valid w.r.t.
(F ′, T ′).

Suppose that the map aT does not yield a homomorphism from A to T ′. There
must exist some tuple RA(t̂) such that aT (t̂) = πT (t). Define h : |R(t)| → |A|
as the map which takes t to t̂ (note that this is well-defined as t is anti-reflexive).

Consequently, (R(t), πT )
h

(A, aT ) which yields a contradiction as (A, aT ) is valid
w.r.t. (F , T ). Hence, (F ′, T ′) is equivalent to (F , T ).

Assume that (F , T ) satisfies property p1. Suppose that (A, aT
′

) is weakly valid
w.r.t. (F ′, T ′), and that there exists a pattern (B, bT

′

) ∈ F ′ such that

(B, bT
′

) (A, aT
′

). Define bT := e ◦ bT
′

and aT := e ◦ aT
′

. Thus, (B, bT ) ∈ F

and (B, bT ) (A, aT ). Hence, (A, aT ) is not weakly valid w.r.t. (F , T ). That is,

(C, cT ) (A, aT ), for some pattern (C, cT ) ∈ F . But as aT = e ◦ aT
′

, so (C, cT ) is
also a T ′-pattern and so is in F ′. This yields a contradiction and the result follows.

Remark 4.9. Applying embed-reductions clearly preserves property p2. Note
also that applying conform-reductions preserves property p2. This follows directly
from Lemma 2.1.

Example 4.10. Consider a representation (F , T ) over the signature consisting
of a binary relation symbol E and a ternary relation symbol R. The domain of T
consists of two elements (or colours) ◦ and •, with ET = {◦, •}2 and RT = {◦, •}3.

Consider the conform forbidden pattern consisting of the single tuple R(x, y, z),
where both x and y take the colour ◦ and z takes the colour •. We depict this pattern
by the left diagram of Figure 4.2. In the case where x = y, we depict the pattern by
the right diagram of Figure 4.2.

The first (left-most) column of Figure 4.3 depicts the four forbidden patterns
in F (the top three are such that R = ∅ and the bottom is such that E = ∅). The
second column depicts the representation (HF , T ), formed by adding all homomorphic
images of the forbidden patterns in F (up to isomorphism). In the third column,
we have performed core- and embed-reductions to obtain an equivalent representation
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satisfying properties p1, p2 and p3. In the fourth column, we have performed conform-
reductions to obtain an equivalent representation satisfying properties p1, p2, p3 and
p4.

Note that, in general, starting from a representation satisfying property p1, if we
apply core-, embed- and conform-reductions arbitrarily then after a finite sequence of
reductions, by the lemmas of this subsection, we will obtain an equivalent represen-
tation satisfying properties p1, p2, p3 and p4 (a simple induction suffices).

4.2. Feder-Vardi reductions. The reductions introduced so far do not suffice
for us to obtain the normal form we are aiming for. We need to interleave applications
of these reductions with another reduction that we define now.

From now on, we make an important assumption regarding the representations
we deal with: until otherwise specified, we assume them to be connected (we shall
deal with the disconnected case in Section 6.1.1).

We say that a pattern is biconnected if its underlying structure is biconnected.
Our aim is to enforce the following property (using techniques inspired from the proof
of Theorem 3.2 in [15]).

(p5) Every forbidden pattern is biconnected.
Before proceeding, we need some definitions relating to the grouping together of

forbidden patterns. A compact T -structure {A, α} is a structure A together with a
map α : A → 2T so that every map aT : A → T with the property that aT (y) ∈
α(y), for all y ∈ A, yields a T -coloured structure (A, aT ). This notion is only a
useful shorthand to denote a set of coloured structures, as a compact structure can
be expanded to obtain a set of coloured structures, each with the same underlying
structure; but we shall need this notion later on when we prove the termination of
a particular sequence of transformations we employ towards the end of this section
(this notion was not necessary in Feder and Vardi’s original proof as the negated
conjuncts correspond in general to partially coloured structures; by choosing to work
with fully coloured structures in our combinatorial setting, this is the price we have to
pay). Bearing this in mind, we can extend the definition of a representation to allow
compact forbidden patterns and call it a compact representation, with the problem
defined by a compact representation being the problem defined by the representation
obtained by expanding all the compact forbidden patterns.

Clearly, we may assume that every representation is compact, by replacing every
forbidden pattern (A, aT ) by the compact forbidden pattern {A, α}, where for every
x in A, α(x) := {aT (x)}. We say that (A, aT ) is a forbidden pattern of the compact
representation (F , T ), and write (A, aT ) ∈ F , if it is one of the forbidden patterns
obtained by expanding one of the compact forbidden patterns. Notice that the notion
of a decomposition involves only the underlying structure, thus it generalises to com-
pact structures (of course, the definition of a decomposition in Section 2 generalises
to coloured structures).

Definition 4.11. (Feder-Vardi reduction) Let (F , T ) be a compact repre-

sentation with F = G ∪ {{B, β}
x

32 {C, γ}}, and let K = β(x) = γ(x). The new sets
K0 and K1 are defined as {ki : k ∈ K} (that is, k0 and k1 are two new elements that
stand as copies of k), for i = 0, 1, and we assume that K, K0 and K1 are mutually
disjoint. Let T ′ be the structure obtained from T as follows.

• Replace K by K0 and K1 in |T |.
• Set RT ′

(t) whenever RT (̃t), with t obtained from t̃ by replacing every occur-
rence of an element k ∈ K by either k0 or k1 (where two different occurrences
of an element k might be replaced by k0 and k1; so, one tuple RT (̃t) with i
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Fig. 4.3. Towards a normal representation: step one.

occurrences of elements of K gives rise to 2i tuples RT ′

(t)).

Let F ′ be the set of compact forbidden patterns induced from F as follows.

• The compact forbidden pattern {B, β}
x

32{C, γ} is replaced by the two compact
forbidden patterns induced from the decomposition so that :

– in the compact forbidden pattern {B, β0}, β0(x) = K0; and,
– in the compact forbidden pattern {C, γ1}, γ1(x) = K1.

• Every remaining occurrence of a colour k ∈ K in a compact forbidden pattern
(including the two described above) is replaced by both k0 and k1; that is, every
forbidden pattern obtained by expanding a compact forbidden pattern of F is
replaced by a set of forbidden patterns, one for each possible assignment of k0
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Fig. 4.4. Feder-Vardi reduction.

and k1 to occurrences of k.

We call (F ′, T ′) the Feder-Vardi reduction of (F , T ) with respect to {B, β}
x

32{C, γ}.
Part of a Feder-Vardi reduction can be visualized as in Figure 4.4. Note that if

(F , T ) is a connected representation then a Feder-Vardi reduction of (F , T ) is also
connected.

We reiterate that working with compact forbidden patterns is just, to some extent,
a notational convenience and that a Feder-Vardi reduction has the effect of ‘splitting’
a set of forbidden patterns in one go.

We also need to define the essential notion of a recolouring. Intuitively, a re-
colouring is to a (compact) representation what a homomorphism is to a structure.

Definition 4.12. (Recolouring) Let (F , T ) and (F ′, T ′) be two compact rep-

resentations. A recolouring r of (F ′, T ′) to (F , T ) is a homomorphism T ′ r T

such that any inverse image (A, aT
′

) of a forbidden pattern (A, aT ) of F is not valid
w.r.t. (F ′, T ′), where by ‘inverse image’ we mean that r ◦ aT

′

= aT . We denote

the fact that r is a recolouring by (F ′, T ′) r (F , T ) (we use the same notation as
for homomorphisms without causing any confusion). If, furthermore, r is onto (re-
spectively, one-to-one) then r is an epirecolouring (respectively, monorecolouring). If

(F ′, T ′) r (F , T ) and (F , T ) r−1

(F ′, T ′) then r is an isorecolouring and we write
(F , T ) ≈ (F ′, T ′).

The fact that for CSP, CSP(A) ⊆ CSP(B) whenever A B, generalises to
FPP.

Proposition 4.13. Let (F , T ) and (F ′, T ′) be two compact representations. If
(F ′, T ′) (F , T ) then FPP(F ′, T ′) ⊆ FPP(F , T ).

Proof. Let (F ′, T ′) r (F , T ) and let C be a structure that is not valid w.r.t.

(F , T ). If C / T ′ then C is not valid w.r.t. (F ′, T ′) and we are done. Thus, let

C cT
′

T ′ and define cT := r ◦ cT
′

. By assumption, there exists a forbidden pattern

(A, aT ) ∈ F such that (A, aT )
f

(C, cT ); so define aT
′

:= cT
′

◦ f , with the result

that aT = r ◦ aT
′

(see Figure 4.5). Since r is a recolouring, there exists a forbidden

pattern (B, bT
′

) ∈ F ′ such that (B, bT
′

)
g

(A, aT
′

). This can be summarised by the
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Fig. 4.5. Proof of Proposition 4.13.

commuting diagram of Figure 4.5.

Hence, we can see that (B, bT
′

)
f◦g

(C, cT
′

) which proves that (C, cT
′

) is not valid

w.r.t. (F ′, T ′), and we are done.

Proposition 4.14. Let (F ′, T ′) be obtained from (F , T ) via a Feder-Vardi
reduction, as in Definition 4.11. Then (F ′, T ′) and (F , T ) are equivalent.

Proof. Let T ′ r T be the homomorphism that identifies ki ∈ Ki, for i = 0, 1,
with k ∈ K, and leaves all other elements fixed. We begin by proving that r is a
recolouring.

By construction, the inverse images of any forbidden pattern of G belong to F ′.
So, it remains to check the inverse images of the patterns expanded from the compact

forbidden pattern {B, β}
x

32 {C, γ}. Assume w.l.o.g. that we are checking an inverse
image where x takes a colour from K0. Consider the substructure of the inverse image
induced by B. By construction, this substructure is one of the patterns expanded from
the compact forbidden pattern {B, β0} (constructed as in Definition 4.11), which is a
compact forbidden pattern of F ′. The case when x takes a colour from K1 is similar.
Hence, r is a recolouring. By Proposition 4.13, FPP(F ′, T ′) ⊆ FPP(F , T ).

Conversely, suppose that (A, aT ) is valid w.r.t. (F , T ). We construct a colouring
aT

′

from aT as follows.

• For any y ∈ A such that aT (y) 6∈ K, set aT
′

(y) = aT (y).
• Suppose that aT (y) = k ∈ K. As (A, aT ) is valid w.r.t. (F , T ), there does

not exist a homomorphism from any forbidden pattern expanded from the

compact forbidden pattern {B, β}
x

32{C, γ} to (A, aT ). That is, there does not

exist (B, bT ) ∈ {B, β0} and (C, cT ) ∈ {C, γ1} such that both (B, bT )
hB

(A, aT )

and (C, cT )
hC

(A, aT ) with hB(x) = hC(x) = y. Thus:

– if there exists (B, bT ) ∈ {B, β0} such that (B, bT )
hB

(A, aT )with hB(x) =

y then set aT
′

(y) = k1;
– otherwise, set aT

′

(y) = k0.

Suppose that (D, dT
′

)
h

(A, aT
′

), where (D, dT
′

) is derived from some forbidden

pattern (D, dT ) of (some compact forbidden pattern of) G (according to the Feder-
Vardi reduction). Thus, we have the commutative diagram of Figure 4.6. This yields
a contradiction as (A, aT ) is valid w.r.t. (F , T ).

Suppose that (B, bT
′

)
h

(A, aT
′

), where (B, bT
′

) is derived from the compact

forbidden pattern {B, β}
x

32 {C, γ} (according to the Feder-Vardi reduction). Thus,
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Fig. 4.7. The second case.

we have the commutative diagram of Figure 4.7. In particular, (B, bT )
h

(A, aT ),

where (B, bT ) ∈ {B, β0}. Set h(x) = y. By definition of aT
′

, aT
′

◦ h(x) ∈ K1.
However, by definition of {B, β0}, b

T ′

(x) ∈ K0. The fact that bT
′

= aT
′

◦ h yields a
contradiction.

Suppose that it is not the case that (B, bT
′

)
h

(A, aT
′

), for any (B, bT
′

) derived

from the compact forbidden pattern {B, β}
x

32 {C, γ} (according to the Feder-Vardi

reduction), but that (C, cT
′

)
h

(A, aT
′

), for some (C, cT
′

) derived from the compact

forbidden pattern {B, β}
x

32 {C, γ}. A contradiction follows by reasoning analogously
to the preceding case. Hence, we have that FPP(F , T ) ⊆ FPP(F ′, T ′).

Proposition 4.15. Let (F ′, T ′) be obtained from (F , T ) via a Feder-Vardi
reduction, as in Definition 4.11. If property p1 holds for (F , T ) then it holds for
(F ′, T ′).

Proof. Define T ′ r T to be the homomorphism that identifies ki ∈ Ki, for
i = 0, 1, with k ∈ K, and leaves all other elements fixed. Let A be non-valid w.r.t.
(F ′, T ′). Since (F , T ) is equivalent to (F ′, T ′), by Proposition 4.14, it follows that

A is non-valid w.r.t. (F , T ). We may assume that A T ′. Let A aT
′

T ′ and

define aT := r ◦ aT
′

. As p1 holds for (F , T ), there exists (D, dT ) ∈ F such that

(D, dT )
f

(A, aT ). In particular, r ◦ aT
′

◦ f = dT ; so, r ◦ dT
′

= dT when we

define dT
′

:= aT
′

◦ f . If (D, dT ) is a pattern of G then (D, dT
′

) ∈ F ′. If (D, dT )

is a pattern of {B, β}
x

32 {C, γ} then either a pattern of {B, β0} or {C, γ1} (where
these are the compact forbidden T ′-patterns as constructed in Definition 4.11) is a
(coloured) substructure of (D, dT

′

). Hence, regardless, there exists (E , eT
′

) ∈ F ′ such

that (E , eT
′

)
g

(D, dT
′

). As dT
′

= aT
′

◦ f , we have that (D, dT
′

)
f

(A, aT
′

), and
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so (E , eT
′

)
f◦g

(A, aT
′

). Consequently, if A is weakly valid w.r.t. (F ′, T ′) then it is

valid w.r.t. (F ′, T ′).
We define the rank of a (connected) compact structure to be the number of

applications of the operator 32 in order that all resulting compact structures are
biconnected. We associate with a compact representation a rank polynomial P (X) =
ΣiaiX

i, where ai is the number of compact forbidden patterns of rank i. Let (F ′, T ′)
be obtained from (F , T ) via a Feder-Vardi reduction, with P the rank polynomial of
(F , T ) and P ′ that of (F ′, T ′). It is easy to check that P ′ < P , where < denotes
the standard well-ordering of polynomials. Consequently, any sequence of Feder-
Vardi reductions is necessarily finite. It is in order to prove this finiteness that we
consider compact representations; given that we now that any sequence of Feder-
Vardi reductions is necessarily finite, we can now revert to dealing with standard,
as opposed to compact, representations. Of course, all the results in this section
mentioning compact representations also hold for standard representations.

4.3. Enforcing p1 to p5. We now use the reductions developed so far to obtain
from any connected representation, an equivalent representation satisfying properties
p1, p2, p3, p4 and p5. We remind the reader that we are still assuming all represen-
tations to be connected and we note that all reductions so far defined preserve the
property of a representation being connected.

Definition 4.16. Let (F , T ) be a representation where every forbidden pattern
of F is automorphic and non-conform. Define

ρ(F , T ) = max{||(B, bT )|| : (B, bT ) is a forbidden pattern of F

that is not biconnected},

where ||(B, bT )|| is the number of tuples in B; that is, the sum of the numbers of
{||RB|| : R is a relation symbol of the underlying signature}, where ||RB|| is the num-
ber of tuples in the relation RB.

Consider the following process, starting with a (connected) representation (F , T ).
Replace (F , T ) with the representation (HF , T ), and so, by Lemmas 4.1 and 4.2,
(HF , T ) is equivalent to (F , T ) and satisfies p1. Perform a maximal sequence of
core-, embed- and conform-reductions and denote the resulting representation by
(F1, T1). In particular, every forbidden pattern of F1 is a core and non-conform,
and so ρ(F1, T1) is well-defined. If ρ(F1, T1) = 0 then halt.

Otherwise, perform a maximal sequence of Feder-Vardi reductions, followed by
a maximal sequence of core-, embed- and conform-reductions. Denote the resulting
representation by (F2, T2). In particular, every forbidden pattern of F2 is a core
and non-conform, and so ρ(F2, T2) is well-defined. Also, the sequence of reductions
performed in order to obtain (F2, T2) from (F1, T1) is such that:

• every forbidden pattern of F1 that is a biconnected (T1-coloured) core gives
rise to forbidden patterns of F2 that are also biconnected (T2-coloured) cores
(see remark 4.9); and,

• any non-biconnected core of F1 is split into forbidden patterns each of which
has strictly less tuples than the original non-biconnected core of F1.

That is, ρ(F2, T2) < ρ(F1, T1).
By iterating this process, we eventually obtain a connected representation (F ′, T ′)

that is equivalent to (F , T ) and satisfies properties p1, p2, p3, p4 and p5.
Example 4.17. Consider a representation (F , T ) over the signature consisting

of two binary relation symbols, E and F , where T and the forbidden patterns of F
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Fig. 4.8. Applying our reductions.

are as in the first column of Figure 4.8 (we represent ‘E-edges’ by solid arrowed lines
and ‘F -edges’ by dashed arrowed lines).

As can be seen, (F , T ) satisfies properties p1, p2, p3 and p4. However, one
forbidden pattern is not biconnected and so we perform a Feder-Vardi reduction so
that the resulting compact forbidden pattern is as depicted in the second column. This
messes up the afore-mentioned properties and so we perform some embed-reductions
to obtain the compact representation in the third column (we have left the depiction of
this representation in its compact form so that the figure does not become cluttered).
Finally, we perform some conform-reductions to obtain the representation in the fourth
column which is equivalent to the original one and satisfies properties p1, p2, p3, p4

and p5.

4.4. Enforcing p1 to p6. Given our notion of a recolouring of a representation,
we can define a retract of a representation as follows.

Definition 4.18. A representation (F ′, T ′) is a retract of the representation

(F , T ) if there exists a monorecolouring (F ′, T ′) r (F , T ) and an epirecolouring

(F , T ) s (F ′, T ′) such that s ◦ r = idT ′ . We call a representation (F , T ) automor-
phic if whenever (F ′, T ′) is a retract of (F , T ) then (F ′, T ′) ≈ (F , T ).

It is not difficult to see that given any representation (F , T ), there is an au-
tomorphic representation (F ′, T ′) that is a retract of (F , T ) (and thus defines the
same forbidden patterns problem by Proposition 4.13). We remark that the notion
of a ‘core’ for representations does not possess the properties that it does in the case
of (coloured) structures, e.g., it is not unique up to isorecolouring, but we resist the
temptation to go into further details here as this has no consequence on what follows.

The next property we wish to enforce is as follows.

(p6) The representation (F , T ) is automorphic.
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Suppose that (F , T ) is not automorphic and that (F ′, T ′) r (F , T ),

(F , T ) s (F ′, T ′) and s ◦ r = idT ′ , with (F ′, T ′) automorphic. Define

F
′′ = {(A, aT

′

) : (A, aT ) ∈ F and aT = r ◦ aT
′

}.

Let (A, aT ) ∈ F and let aT = r ◦ aT
′

. By construction, (A, aT
′

) ∈ F ′′ and as such is

not valid w.r.t. (F ′′, T ′). Thus, (F ′′, T ′) r (F , T ). However, we also want to show

that (F , T ) s (F ′′, T ′).

Let (A, aT
′

) ∈ F ′′, and let (A, aT1 ) be such that s ◦ aT1 = aT
′

, i.e., (A, aT ) is an
inverse image of (A, aT

′

) via s. Also, because (A, aT
′

) ∈ F ′′, by definition there exists

(A, aT2 ) ∈ F such that aT2 = r◦aT
′

. As (F ′, T ′) r (F , T ), there exists (B, bT
′

) ∈ F ′

such that (B, bT
′

)
f

(A, aT
′

). Hence, (B, aT1 ◦ f) is an inverse image of (B, bT
′

) via

s, and so there exists (C, cT ) ∈ F such that (C, cT )
g
(B, aT1 ◦ f) (see Figure 4.9).

Thus, (C, cT )
f◦g

(A, aT1 ) and (F , T ) s (F ′′, T ′). In particular, (F ′′, T ′) is a retract
of (F , T ).

We need that the notion of a recolouring is transitive.

Lemma 4.19. If (F1, T1)
f

(F2, T2) and (F2, T2)
g

(F3, T3) are recolourings

then (F1, T1)
g◦f

(F3, T3) is a recolouring.

Proof. Let (A, aT3) ∈ F3 and let (A, aT1)
g◦f

(A, aT3). As g is a recolouring

of (F2, T2) to (F3, T3), there exists a forbidden pattern (B, bT2) ∈ F2 for which

(B, bT2)
h1

(A, f ◦ aT1). As f is a recolouring of (F1, T1) to (F2, T2), there ex-

ists a forbidden pattern (C, cT1) ∈ F1 for which (C, cT1)
h2

(B, aT1 ◦ h1). The sit-

uation can be depicted as in Figure 4.10. Consequently, (C, cT1)
h1◦h2

(A, aT1), and

(F1, T1)
g◦f

(F3, T3).

We have that (F ′′, T ′) r (F , T ) and (F , T ) s (F ′, T ′), and consequently by
Lemma 4.19, the identity map on T ′ is an isorecolouring from (F ′′, T ′) to (F ′, T ′).
Thus, (F ′′, T ′) is automorphic.

We now need to affirm the properties p1, p2, p3, p4 and p5 for (F ′′, T ′); we deal
with p1 first (note that if (F , T ) is connected then so is (F ′′, T ′)). Assume that
A is not valid w.r.t. (F ′′, T ′). Consequently, by Proposition 4.13, A is not valid

w.r.t. (F , T ). Suppose that A aT
′

T ′. Thus, Ar◦aT
′

T . Hence, there exists (B, bT ) ∈
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F such that (B, bT )
f
(A, r ◦ aT

′

); see Figure 4.11. So, (B, aT
′

◦ f) ∈ F ′′ and

(B, aT
′

◦ f) (A, aT
′

). Thus, A is not weakly valid w.r.t. (F ′′, T ′), and property

p1 holds for (F ′′, T ′).

Consider property p2. As every pattern of (F , T ) is automorphic, by Lemma 2.1,
so is every pattern of (F ′′, T ′).

Consider property p3. Suppose that (A, aT
′

), (B, bT
′

) ∈ F ′′ are distinct and such

that (B, bT
′

)
f

(A, aT
′

). Thus, we have that (A, r◦aT
′

), (B, r◦bT
′

) ∈ F and also that

(B, r ◦ bT
′

)
f

(A, r ◦ aT
′

). This yields a contradiction as (F , T ) satisfies property

p3, and so (F ′′, T ′) satisfies property p3.

Trivially, (F ′′, T ′) satisfies properties p4 and p5.

Definition 4.20. We say that a connected representation for which properties
p1 to p6 hold is a normal representation.

Consequently, we have proven the following result.

Theorem 4.21. Let (F , T ) be a connected representation. Then there is an effec-
tive procedure by which we can obtain a normal representation equivalent to (F , T ).

We end this section with a theorem crucial to what follows.

Theorem 4.22. Let (F , T ) be a normal representation. If F 6= ∅ then the target
T is not valid w.r.t. (F , T ).

Proof. Assume for contradiction that (T , t) is valid w.r.t. (F , T ). If t is one-to-
one then t is an isomorphism, and thus, as F 6= ∅, there exists (A, aT ) ∈ F such that
t−1 ◦ aT is a homomorphism from (A, aT ) to (T , t). This yields a contradiction, and
so we may assume that t is not one-to-one.

Consider repeatedly applying the homomorphism t to obtain the homomorphism
tk : T → T , for each k ≥ 1. For some k ≥ 1, it must be the case that t restricted to the
image of tk is one-to-one and thus an isomorphism. For such a k, denote: the image
of tk by T ′; and the isomorphism from T ′ to T ′ induced by t by s. In particular, s−1
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exists.

Suppose that there exists (A, aT ) ∈ F such that the image of aT is contained in
T ′. Clearly, the homomorphism s−1 ◦aT : A → T is well-defined, and is a T -coloured
homomorphism of (A, aT ) to (T , t). This contradicts our assumption that (T , t) is
valid w.r.t. (F , T ). Consequently, for every (A, aT ) ∈ F , the image of aT is not
contained in T ′.

Consider the representation (∅, T ′). Trivially, (∅, T ′) is a retract of (F , T ), and
T ′ is not isomorphic to T (as t is not one-to-one). Thus, (∅, T ′) is a proper retract of
(F , T ) which contradicts the fact that (F , T ) is automorphic. The result follows.

5. A generic construction of counter-examples. We prove in this section
that any problem given by a normal representation (F , T ) for which F 6= ∅ is not
in CSP. The proof involves a generic construction of a family of structures that
provides, in a sense, a counter-example for any candidate for the role of a template;
such a family of structures is called a witness family. The essence of the proof strategy
employed originated in the proofs in [25] that certain graph problems are not in CSP.

Definition 5.1. (Witness family) Let (F , T ) be a representation. A fam-
ily of structures W is said to be a witness family for (F , T ) if, and only if, W ⊆
FPP(F , T ) and for any structure B (over the underlying signature), there exists

W ∈ W such that either W / B or for some W h B, the homomorphic image h(W)
does not belong to FPP(F , T ) (the structure W is said to be a witness for B).

Lemma 5.2. If a representation (connected or otherwise) has a witness family
then the problem given by the representation does not belong to CSP.

Proof. Let W be a witness family for some representation (F , T ). Assume for
contradiction that FPP(F , T ) = CSP(B), for some structure B. By definition, there

exists W ∈ W such that either W / B or for some W h B, h(W) 6∈ FPP(F , T ).
Both cases immediately lead to a contradiction.

We now state the main result of this section and a corollary.

Theorem 5.3. Let (F , T ) be a normal representation. If F 6= ∅ then there is a
witness family for (F , T ).

Corollary 5.4. If (F , T ) is a normal representation for which F 6= ∅ then
FPP(F , T ) 6∈ CSP.

The remainder of this section is devoted to a proof of the above theorem and
corollary. Throughout the remainder of this section, (F , T ) is a normal representation
for which F 6= ∅ and where the underlying signature is σ.

Opening up a structure. By Theorem 4.22, the structure T is not valid w.r.t.

(F , T ). Let tT be some homomorphism T tT T (there is at least one such homomor-
phism, the identity). As (F , T ) is normal, we may assume that some biconnected
and non-conform forbidden pattern (A, aT ) embeds into (T , tT ), via some embedding
f . Let (D, dT ) be identical to (T , tT ).

It is straightforward to show that any biconnected and non-conform pattern must
contain a cycle; choose one of minimal size and let C be the image of this cycle under
f (and so C is a cycle). Let x be an articulation point of C and let t be a tuple of C
that is incident with x (thus RD(t) holds, for some relation symbol R). Introduce a
new element x′ into the domain of D.

• Suppose that C has size 1, i.e., t is not antireflexive. Replace the first occur-
rence of x in RD(t) with the new element x′ (leaving all other occurrences of
all elements as is).
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• Suppose that C has size 2, i.e., C consists of the antireflexive tuples RD(t)
and RD

1 (t1) where t and t1 have at least two distinct elements in common
(one of which is x) and where if R = R1 then t and t1 differ. Replace the
solitary occurrence of x in RD(t) by x′.

• Suppose that C has size greater than 2. Replace the solitary occurrence of x
in RD(t) by x′.

The elements x and x′ of our amended structure are called plug-points of sort
1. We define that dT (x′) = dT (x) and denote the amended T -coloured structure by
(D, dT ) also.

If there exists a forbidden pattern of F that embeds into (D, dT ) then we proceed
as above by choosing an appropriate cycle and an articulation point y of this cycle,
and then ‘breaking’ the cycle by introducing a new element y′ and amending a specific
tuple of D (note that if we have a cycle of size 1 or 2 then we may need more than
one amendment to ‘break’ the cycle). Again, we define dT (y′) = dT (y) and denote
the amended T -coloured structure by (D, dT ) also. As above, we refer to y and y′ as
plug-points. If y was either x or x′ then y and y′ are plug-points of sort 1, otherwise
they are plug-points of sort 2.

We proceed iteratively in this fashion until no forbidden pattern of F embeds into
(D, dT ), at each stage of the iteration fixing the sort of the plug-points to be inherited
from the corresponding articulation point or to be of a new sort (the smallest positive
integer as yet unused to describe sorts) if the corresponding articulation point had
not been assigned a sort. Note that this process terminates as ultimately we would
obtain a cycle-free structure (into which no forbidden pattern can embed).

Denote the resulting T -coloured σ-structure by (G, gT ) and call it the gadget .
Note that (G, gT ) is valid w.r.t. (F , T ) as no forbidden pattern embeds into (G, gT )

(recall that (F , T ) is normal). Note also that (G, gT )
r

(T , tT ), where r is the
homomorphism which identifies plug-points of the same sort and otherwise leaves
elements fixed.

Preparing for plugging. Suppose that the gadget (G, gT ) has pi plug-points of sort
i, for i = 1, 2, . . . , k (and possibly other elements that have not been assigned a sort).
For each i = 1, 2, . . . , k, define the signature σi as consisting of the relation symbol
Pi of arity pi. For each i = 1, 2, . . . , k and each mi ≥ pi, define the σi-structure Qmi

i

to have domain {0, 1, . . . ,mi − 1} and relation P
Q

mi

i

i defined as

{(u1, u2, . . . , upi
) : u1 < u2 < . . . < upi

}.

Lemma 5.5. Fix b ≥ 2, fix i ∈ {1, 2, . . . , k} and suppose that mi ≥ b(pi − 1) + 1.
For every mapping h : |Qmi

i | → {0, 1, . . . , b − 1}, there must exist at least one tuple

P
Q

mi

i

i (u1, u2, . . . , upi
) such that h(u1) = h(u2) = . . . = h(upi

).
Proof. Suppose otherwise for the mapping h. So, there exist at most pi − 1

distinct elements x of |Qmi

i | for which h(x) = j, for any j ∈ {0, 1, . . . , b − 1}. Thus,
|Qmi

i | = mi ≤ b(pi − 1) which yields a contradiction.
Now define the signature σ to consist of the relation symbol P of arity p =

Σk
i=1pi. For any m1,m2, . . . ,mk for which mi ≥ pi, for each i = 1, 2, . . . , k, define

the σ-structure Q to have domain consisting of the disjoint union of the domains

|Qm1

1 |, |Qm2

2 |, . . . , |Qmk

k |, and relation PQ defined as

{(u1,u2, . . . ,uk) : ui ∈ |Qmi

i |pi and ui
1 < ui

2 < . . . < ui
pi
,

for each i = 1, 2, . . . , k}
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(the notation is such that ui
j is the jth component of the tuple ui). So, in a sense, Q

is a sort of ‘amalgamation’ of Qm1

i ,Qm2

2 , . . . ,Qmk

k (note that we have suppressed the
parameters ‘m1,m2, . . . ,mk’ in the denotation of Q for ease of readability).

Lemma 5.6. Fix b ≥ 2 and suppose that mi ≥ b(pi−1)+1, for each i = 1, 2, . . . , k.
For every mapping h : |Q| → {0, 1, . . . , b − 1}, there must exist at least one tuple

PQ(u1,u2, . . . ,uk) such that h(ui
1) = h(ui

2) = . . . = h(ui
pi

), for all i = 1, 2, . . . , k.
Proof. Immediate from Lemma 5.5.
The girth of a structure is the length of its shortest cycle (and so if there are no

cycles then the structure has infinite girth). The following theorem is due to Feder
and Vardi [15] (and generalizes a result due to Erdös; see [15]).

Theorem 5.7. Fix two positive integers r and s. For every structure B of size
n, there exists a structure B′ (over the same signature) of size na (where a depends
solely on r and s) such that:

• the girth of B′ is greater than r;
• B′ → B; and
• for every structure C of size at most s (over the same signature), B → C if,

and only if, B′ → C.
Furthermore, B′ can be constructed from B in randomized polynomial time.

Remark 5.8. We have already mentioned that Gábor Kun has derandomised The-
orem 1.1. To be more precise, he achieved this by giving a deterministic polynomial-
time algorithm for the B′ in the above theorem.

For each forbidden pattern (A, aT ) of F , define γA to be the length of the longest
cycle of A. Define γ to be the maximum of {γA : (A, aT ) ∈ F}.

Fix b ≥ 2. By applying Theorem 5.7, there is a σ-structure Q
′

of girth greater

than γ for which Q
′
→ Q and for which for every structure C of size at most b,

Q → C if, and only if, Q
′
→ C (of course, we assume that m1,m2, . . . ,mk satisfy the

hypothesis of Lemma 5.6).

Lemma 5.9. For every mapping h : |Q
′
| → {0, 1, . . . , b − 1}, there must exist at

least one tuple PQ
′

(u1,u2, . . . ,uk) such that h(ui
1) = h(ui

2) = . . . = h(ui
pi

), for all
i = 1, 2, . . . , k.

Proof. The condition in the statement of the lemma (and also the statement of
Lemma 5.6, with the same value b) is equivalent to there not being a homomorphism

from Q
′
to the σ-structure with domain {0, 1, . . . , b− 1} and relation

P = {0, 1, . . . , b− 1}p \ {(bp1

1 , b
p2

2 , . . . , b
pk

k ) : bi ∈ {0, 1, . . . , b− 1},

for every i = 1, 2, . . . , k}

(where bpi

i is the pi-tuple with each component equal to bi). The result follows by

Lemma 5.6 and the properties of Q
′
detailed above.

Building the witness family. Fix some σ-structure B of size b. We are now in a
position to build a σ-structure WB which will act as a witness for B (see Definition 5.1).

• Initialize the domain of WB to be that of Q
′
.

• For every tuple PQ
′

(u1,u2, . . . ,uk), where each ui ∈ |Q
′
|pi , plug a copy of

the gadget G by identifying the pi sort-i plug-points of G with the pi ‘socket-

points’ ui of |Q
′
|, for each i = 1, 2, . . . , k.

All such copies of the gadget should be disjoint, except that two copies of the gadget
may have plug-points in common within WB and except where the gadget (possibly)
contains a tuple RG(t) with every element of t a plug-point. Let us label every tuple
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of every relation RWB with the name of the tuple of PQ
′

to which the copy of the
gadget from which it comes corresponds. As just mentioned, there may be difficulties
where the gadget contains a tuple RG(t) with every element of t a plug-point, as this
tuple might require more than one label. In such a case, simply arbitrarily choose one
label from the set of potential candidates. Finally, note that WB = WB′ whenever
|B| = |B′|, i.e., the definition of WB depends solely upon b and not on the tuples of
B.

Proposition 5.10. The structure WB is a witness for B.

Proof. We begin by proving that there exists a homomorphism WB
wT

T .

From above, Q
′
→ Q via some homomorphism q. Recall that the domain of Q

is the disjoint union of |Qm1

1 |, |Qm2

2 |, . . . , |Qmk

k |. Hence, we can partition |Q
′
| into

disjoint subsets S1, S2, . . . , Sk, where for each i = 1, 2, . . . , k, Si = {u ∈ |Q
′
| : q(u) ∈

|Qmi

i |}. By definition of PQ, if PQ(u1,u2, . . . ,uk) holds, where ui is a pi-tuple
of elements, then ui ∈ Spi

i , for i = 1, 2, . . . , k. In particular, in any copy of the
gadget G, plug-points of sort i are always identified with ‘socket elements’ from Si,

for i = 1, 2, . . . , k. Consequently, the homomorphism G
gT

T , under which plug-points
of the same sort are always mapped to the same element of |T |, can be extended to

a homomorphism WB
wT

T .

Suppose that (WB, w
T ) is not valid w.r.t. (F , T ). So, some biconnected, non-

conform forbidden pattern (A, aT ) embeds into (WB, w
T ). As no forbidden pattern

embeds into the gadget and each forbidden pattern is biconnected and non-conform,
there must exist a cycle C in WB of length less than γ and involving tuples from at
least two copies of the gadget within WB (we reiterate that each forbidden pattern is
biconnected and so if there were no such cycles then we would have an articulation

point); equivalently, involving tuples labelled with at least two distinct tuples of PQ
′

(according to our labelling process as detailed prior to the statement of this proposi-

tion). However, the cycle C of WB yields a closed path of tuples in Q
′
(by following

the labels). Continuing, this closed path of tuples in Q
′
yields a cycle in Q

′
of length

at least 2 and less than γ; this contradicts the fact that Q
′
has girth greater than γ.

Thus, (WB, w
T ) is valid w.r.t. (F , T ).

If WB 6→ B then we are done. So, suppose that WB
h B. The homomorphism

h induces a map ĥ : |Q
′
| → {0, 1, . . . , b − 1}, and so by Lemma 5.9, there exists a

tuple PQ
′

(u1,u2, . . . ,uk), where ui ∈ |Q
′
|pi and ĥ(ui

1) = ĥ(ui
2) = . . . = ĥ(ui

pi
), for

i = 1, 2, . . . , k. Thus, by construction of WB, h(WB) contains a homomorphic image of
the gadget G where all plug-points of the same sort are mapped to the same element.

(⋆) Consequently, h(WB) contains a homomorphic image of the structure T , via
some homomorphism h̃.

Suppose that h(WB)
f

T . So, T
f◦h̃

T and, by Theorem 4.22, there exists a forbid-

den pattern (A, aT ) ∈ (F , T ) such that (A, aT )
f̃

(T , f ◦ h̃). Hence, we have that

(A, aT )
h̃◦f̃

(h(WB), f), and h(WB) 6∈ FPP(F , T ), as required.

Thus, we have proven Theorem 5.3. Lemma 5.2 immediately yields Corollary 5.4.

6. MMSNP versus CSP. We now deal with the disconnected case before turn-
ing to the more general situation involving MMSNP and CSP.
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6.1. Normal sets of representations.

6.1.1. The disconnected case. We first turn to the situation when a represen-
tation is not necessarily connected. Let (F , T ) be a representation such that there
exists a disconnected forbidden pattern (A, aT ) ∈ F ; that is, (A, aT ) is the disjoint
union of two coloured structures (B, bT ) and (C, cT ). Define F ′ = (F \ {(A, aT )}) ∪
{(B, bT )} and F ′′ = (F \ {(A, aT )}) ∪ {(C, cT )}. Trivially, we have that

FPP(F , T ) = FPP(F ′, T ) ∪ FPP(F ′′, T ).

By iterating this construction, we can transform (F , T ) into a set of connected repre-
sentations so that a structure is in FPP(F , T ) if, and only if, it is in at least one of the
forbidden patterns problems corresponding to the derived connected representations.

Next, we compute the normal representation of each connected representation,
just as we did in Section 4. Finally, we enforce the following property on our set of
normal representations.

(p7) For any two normal representations (F ′, T ′) and (F ′′, T ′′), we have that
(F ′, T ′) / (F ′′, T ′′).

This property is enforced by simply removing the normal representation (F ′, T ′)
from the collection should there exist another (different) normal representation
(F ′′, T ′′) for which (F ′, T ′) (F ′′, T ′′).

Consequently, we may assume that any representation (F , T ) corresponds to a
collection N of normal representations (possibly containing only one such representa-
tion) for which property p7 holds; we call N the normal set corresponding to (F , T ).
By Proposition 4.13, the problem FPP(F , T ) is the union of the forbidden patterns
problems of the representations in the normal set N; that is,

FPP(F , T ) =
⋃

{FPP(F ′, T ′) : (F ′, T ′) ∈ N}.

6.1.2. Finite unions of forbidden patterns problems. The notion of a nor-
mal set extends naturally to finite unions of forbidden patterns problems: given a
finite set of representations, we split every disconnected representation into a set of
connected representations as above, take the union of all these sets and simplify these
sets so as to enforce p7. We write FPP(N) for

⋃

(F,T )∈N FPP(F, T ).

Proposition 6.1. Let N be a normal set that contains a representation (F ′, T ′)
such that F ′ 6= ∅. Then T ′ is a no-instance of FPP(N).

Proof. By Theorem 4.22, if T ′ is valid w.r.t. (F ′, T ′) then F ′ = ∅. Thus, T ′ is
not valid w.r.t. (F ′, T ′).

Suppose that T ′ is valid w.r.t. (F ′′, T ′′), where (F ′′, T ′′) is a representation in N

distinct from (F ′, T ′). That is, there exists a homomorphism r : T ′ → T ′′ such that
for every forbidden pattern (A′′, aT

′′

) ∈ F ′′, (A′′, aT
′′

) / (T ′, r). In particular, if

(A′′, aT
′′

) ∈ F ′′ then there does not exist a homomorphism aT
′

: A′′ → T ′ for which
r ◦ aT

′

= aT
′′

. Consequently, r is (trivially) a recolouring of (F ′, T ′) to (F ′′, T ′′).
This yields a contradiction and so T ′ is not valid w.r.t. (F ′′, T ′′). The result follows.

6.2. Finite unions. Definition 6.2. (Strong witness family) Let N be a set
of representations. A family of structures W is said to be a strong witness family for
N if, and only if, W ⊆ FPP(N) and for any finite set of structures {B1,B2, . . . ,Bn}
(over the underlying signature), there exists W ∈ W such that for every 1 ≤ i ≤ n,
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either W / Bi or for some W h Bi, the homomorphic image h(W) does not belong
to FPP(N) (the structure W is said to be a strong witness for B).

Lemma 6.3. If a set of representations N has a strong witness family then the
problem FPP(N) is not a finite union of constraint satisfaction problems.

Proof. Let W be a strong witness family for some representation (F , T ). Assume
for contradiction that

FPP(N) =
⋃

(F,T )∈N

FPP(F, T ) =
⋃

1≤i≤n

CSP(Bi)

for some finite set of structures {B1,B2, . . . ,Bn}. By definition, there exists a strong
witness W ∈ W . Since W is a yes-instance of FPP(N), we have that W ∈ CSP(Bi)
for some 1 ≤ i ≤ n. Hence, by definition of a strong witness, there is a homomorphism

W h Bi such that h(W) 6∈ FPP(N). However, h(W) ∈ CSP(Bi) = FPP(N), which
is absurd.

We can extend the main result of the previous section to finite unions of forbid-
den patterns problems and, in particular, to disconnected representations. We first
deal with the case when the normal set corresponds to a finite union of constraint
satisfaction problems.

Theorem 6.4. Let N be a normal set of the form {(∅, T1), (∅, T2), . . . , (∅, Tn)}.
Then FPP(N) =

⋃

1≤i≤n CSP(Ti). Moreover, if

⋃

1≤i≤n

CSP(Ti) =
⋃

1≤i≤m

CSP(T ′
i )

then the following hold.
(i) For every 1 ≤ i ≤ m, there exists 1 ≤ j ≤ n such that T ′

i Tj.
(ii) For every 1 ≤ i ≤ n, there exists 1 ≤ j ≤ m such that Ti is the core of T ′

j .
(iii) m ≥ n.
Proof. Property (i) follows directly from the fact that T ′

i ∈ CSP(T ′
i ). We now

prove (ii). Using a similar argument as above, there exists T ′
j such that Ti T ′

j . By

(i), there exists some Tk such that T ′
j Tk. By composition, Ti Tk. Recall that

by definition of the normal set, there is no homomorphism between any Ti and Tk, for
any i such that 1 ≤ i < k ≤ n. Moreover, every Ti is automorphic. Thus, i = k and it
follows that Ti is homomorphically equivalent to T ′

j . This proves that Ti is the core of
T ′

j . Property (iii) follows from (ii) since Ti and Tk, for any i, k such that i 6= k, can
not be the core of the same T ′

j , otherwise they would be isomorphic (by uniqueness
of the core). This concludes the proof.

We can now precisely characterise when a normal set does not give rise to a finite
union of constraint satisfaction problems.

Theorem 6.5. The following are equivalent.
(i) The normal set N contains a representation (F ′, T ′), with F ′ 6= ∅.

(ii) The problem FPP(N) is not a finite union of constraint satisfaction problems.
(iii) There exists a strong witness family for N.
Proof. The implication (ii) =⇒ (i) is the contrapositive of the (trivial statement

in the) previous theorem. The implication (iii) =⇒ (ii) holds by Lemma 6.3. We
now prove that (i) =⇒ (iii).

The case when N is a singleton is a direct corollary of the proof of Theorem 5.3,
as the construction of a witness family can be easily adapted to obtain a strong
witness family. Indeed, as is pointed out just before the statement of Proposition 5.10,
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the construction of WB only depends on the size of B. So, for a set of structures
B = {B1,B2, . . . ,Bn}, we build WBi

, where Bi is a structure with largest domain

within this set. Now, for any structure C such that |C| ≤ |Bi|, if WBi

h C then
h(WBi

) contains a homomorphic image of the structure chosen as a basis for our
gadget, namely T ′ (see (⋆) in the proof of Proposition 5.10), which is not a yes-
instance of FPP(N) (otherwise T ′ would also be a yes-instance of FPP(N) which
would contradict Theorem 4.22). This means that WBi

is a strong witness for B.

Suppose now that N is not a singleton. By Proposition 6.1, T ′ is not valid w.r.t.
(F ′′, T ′′), for any (F ′′, T ′′) ∈ N. Thus, we may choose T ′ as the basis of our gadget
and proceed as in the case of a singleton in order to get a strong witness family for
N.

6.3. The main result. We need a last definition before we can state the main
result of this paper. Let Φ be a sentence of MMSNP. We call a normal set of Φ the
normal set of the set of representations obtained from Φ as follows: first, Φ is logically
equivalent to a finite set of primitive sentences which we can build effectively as in
the proof of Proposition 3.5; secondly, each such primitive sentence captures precisely
a forbidden patterns problem (again this is effective; see Theorem 3.6); finally, we
compute the normal set of this set of representations. The main result of this paper
is an exact characterisation of the strict inclusion of MMSNP in CSP.

Theorem 6.6. Let Φ be a sentence of MMSNP. The problem defined by Φ is in
CSP if, and only if, its normal set consists of a singleton (∅, T ).

Proof. The result follows from the definition of the normal set of Φ and from
Theorems 6.4 and 6.5.

7. Concluding remarks. Building upon a previous attempt by Feder and Vardi
to provide a logical characterization of constraint satisfaction problems, we have in-
troduced a new class of combinatorial problems, the forbidden patterns problems, and
shown that they provide a combinatorial characterization of the logic MMSNP. Fur-
thermore, we have provided a complete classification as to when forbidden patterns
problems are in CSP, and there exists an effective procedure to decide whether a
given forbidden patterns problem (or problem described by a sentence of MMSNP)
is in CSP or not.

We end by describing two directions for further research. Nešetřil and Tardif [31]
have characterized duality pairs, which correspond essentially to forbidden patterns
problems with a single colour (the target as only one element) that are also constraint
satisfaction problems. Their elegant proof relies on a correspondence between these
duality pairs and the notion of density (with respect to the partial order given by the
existence of a homomorphism). This correspondence exists essentially because one
can define the notion of the exponential of a structure (in graph theory, this notion
plays an important role in relation with Hedetniemi’s conjecture [29]). It turns out
that a notion of the exponential of a representation can also be defined [24]. In a
forthcoming paper, we will elaborate on this and delineate the relationship between
the two approaches.

Another direction for further research relates to the containment problem and
is as follows. A homomorphism problem is given by its template; hence, given two
homomorphism problems CSP (A) and CSP (B) over the same signature, it is decid-
able whether CSP (A) ⊆ CSP (B). As a matter of fact, the containment problem for
homomorphism problems is nothing other than the uniform homomorphism problem,
known to be NP-complete (as we noted in Remark 2.4). We would like to extend
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this result to the more general containment problem for forbidden patterns problems
(given by their representations). Indeed, Feder and Vardi proved in [15] that the
containment problem for MMSNP is decidable; hence by Theorem 3.7, it follows
that the containment problem for forbidden patterns problems is decidable. However,
to the best of our knowledge, nothing has been proved about the complexity of the
containment problem for MMSNP.

We know that the existence of a recolouring implies the containment of the corre-
sponding problems and this provokes the following question: ‘Does the existence of a
recolouring correspond to the containment of the corresponding problems?’. However,
we can answer this question negatively. Indeed, the major inconvenience of forbidden
patterns problems, in comparison with homomorphism problems, is that the inclu-
sion of two problems does not necessarily reduce to the question of the existence of
a recolouring; for in [24], an example is given where a representation is transformed
into an equivalent representation, using Feder-Vardi reductions, but such that the
representations are not equivalent with respect to recolourings. However, we think
that the right notion of a morphism for representations should constitute a finite se-
quence of recolourings and Feder-Vardi reductions. More precisely, we believe that the
following question can be answered affirmatively: ‘Does the existence of a recolouring
correspond to the containment of the corresponding problems in the case of normal
(connected) representations?’. In [24], a few restricted cases for which an affirmative
answer to the above question is obtained and this leads us to propose the following
conjecture (where for any representation R, normal(R) is a normal representation
equivalent to R).

Conjecture 7.1. Let R1 and R2 be two non-trivial connected representations.
FPP (R1) ⊆ FPP (R2) if, and only if, normal(R1) → normal(R2).
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