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Abstract

We study the quantified H-colouring problem for directed graphs. We

prove that the quantified H-colouring problem is tractable when H is a

directed cycle or a semicomplete digraph with at most one cycle. We give

sufficient criteria for the quantified H-colouring problem to be in NP, and

thus infer NP-completeness of the quantified H-colouring problem when

H is semicomplete with more than one cycle and both a source and a sink.

1 Introduction

A very natural generalisation of digraph colouring problems is defined in terms
of graph homomorphism; the problem takes as input a digraph G and accepts it
if, and only if, there exists a homomorphism into a fixed digraph H . This prob-
lem is known as the H-colouring problem1. In [10], Hell and Nešetřil proved that
the class of H-colouring problems exhibits dichotomy when H is undirected and
antireflexive: the problem is tractable if H is bipartite and NP-complete other-
wise. In [1], Bang-Jenson, Hell and MacGillavray studied the H-colouring prob-
lem for semicomplete H , again deriving a dichotomy: the problem is tractable
if H has at most one cycle, and is NP-complete otherwise. Constraint satisfac-
tion Problems (CSPs), when parameterised by their constraint language – also
known as non-uniform CSPs – are closely related to the H-colouring problem.
Specifically, every H-colouring problem is an example of a (non-uniform) CSP,
and every (non-uniform) CSP is polynomially equivalent to some H-colouring
problem [8]. In the case of CSPs with boolean domains, known as generalised
satisfiability, Schaefer proved a dichotomy by an exhaustive analysis of the types
of expressible relations [14]. An algebraic approach has been successful in iden-
tifying certain tractable and NP-complete cases (see for example [12, 4]), and
has enabled Schaefer’s dichotomy to be extended to domains of size three [3].
However, the dichotomy conjecture [8], that states that every CSP is either
tractable or NP-complete, is still open.

Building on the result from [14], dichotomy results were proved indepen-
dently in [6] and [7] for quantified generalised satisfiability problems without

1Traditionally, this is defined only for undirected graphs. However the extension to digraphs

is natural and merits no special introduction.
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constants (In [14], the result was proved only in the case where the boolean
constants were included): they are either tractable or Pspace-complete. The
algebraic approach to the CSP has successfully been applied to quantified con-
straint satisfaction problems (QCSPs), to determine sufficient conditions for
tractability and Pspace-completeness (see [2, 5]). Partial trichotomy results
have been proved for QCSP (respectively, quantified H-colouring) in [2] (re-
spectively, [13]): for two restricted classes the authors prove that every problem
is either tractable, NP-complete or Pspace-complete.

In this paper we explore the quantified H-colouring problem for certain
digraph templates H . We prove that the the quantified H-colouring problem is
tractable when H is a directed cycle or is a semicomplete digraph with at most
one cycle. This demonstrates that those semicomplete digraph templates which
give rise to tractable CSPs also give rise to tractable QCSPs. Further, we prove
that the quantified H-colouring problem is in NP whenever H has both a source
and a sink. As a corollary, we derive that the quantified H-colouring problem is
NP-complete when H is a semicomplete digraph with more than one cycle and
both a source and a sink.

2 Preliminaries

In this paper, we consider only finite antireflexive directed graphs. In a digraph,
a vertex x is said to be a source (respectively, sink) if it has in-degree (respec-
tively, out-degree) zero. For n ≥ 2, we define the directed n-cycle DCn to be
the digraph with vertices {0, . . . , n − 1} and edge set {(i, j) : j = i + 1 mod n}.
An oriented n-path2 is a digraph with vertices {0, . . . , n} and, for 1 ≤ i ≤ n,
exactly one of the edges (i, i + 1) or (i + 1, i). The net length of this oriented
path is the number of instances of edges (i, i + 1) (forward-edges) minus the
number of instances of edges (i + 1, i) (backward-edges). An oriented path in a
digraph G is a (not necessarily induced) subgraph of G that is (isomorphic to)
some oriented n-path. A semicomplete digraph of size n consists of vertex set
{0, . . . , n − 1} and, for 1 ≤ i, j < n and i 6= j, at least one of the edges (i, j)
or (j, i). A semicomplete digraph such that for no i, j are both (i, j) and (j, i)
edges is called a tournament. A semicomplete digraph such that for all i 6= j
both (i, j) and (j, i) are edges, is called a clique. The unique clique of size n
will be denoted Kn. Note that the directed 2-cycle DC2 and the 2-clique K2

coincide. The unique acyclic tournament of size n is known as the transitive
n-tournament, and is denoted T t

n. For more on these definitions see [11].

Given digraphs G and H , a homomorphism f from G to H , denoted G
f

−→H ,
is a vertex-mapping function f : V (G) → V (H) such that (x, y) ∈ E(G) implies
(f(x), f(y)) ∈ E(H). We write G−→H if there exists a homomorphism from
G to H . The H-colouring problem takes as input a digraph G, which is a yes-
instance if, and only if, there exists a homomorphism from G to H . For n ≥ 0,
an n-partitioned digraph G consists of a digraph G together with a partition

2Note that, while n-cycles have n vertices, n-paths have n + 1 vertices.
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{U1, X2, U3, X4, . . . , U2n+1, X2n+2} of V (G). In the following, G will always
designate the underlying digraph of G . Let G be an n-partitioned digraph
and H be a (non-partitioned) digraph. The (G , H)-game is a two-player game,
that pitches Adversary (male) against Prover (female). Adversary plays on the
universal partitions (the sets Ui) and Prover plays on the existential partitions
(the sets Xi). They play alternate partitions, in ascending order, until all the
partitions have been played. The game goes as follows. For 0 ≤ i ≤ n:

• for every vertex in partition U2i+1, Adversary chooses a vertex in H : i.e.
he gives a function fU2i+1

: U2i+1 → V (H); and,

• for every vertex in partition X2i+2, Prover chooses a vertex in H : i.e. she
gives a function fX2i+2

: X2i+2 → V (H).

Prover wins if, and only if, the function f := fU1
∪ fX2

∪ . . . ∪ fX2n+2
is

a homomorphism from G to H . We say that there exists an alternating-
homomorphism from the n-partitioned digraph G to the (non-partitioned) di-

graph H , and we write G
alt
−→H if, and only if, for all functions fU1

: U1 → V (H),
there exists a function fX2

: X2 → V (H), such that, . . ., for all functions
fU2n+1

: U2n+1 → V (H), there exists a function fX2n+2
: X2n+2 → V (H), such

that, fU1
∪ fX2

∪ . . . fU2n+1
∪ fX2n+2

is a homomorphism from G to H .
If the n-partitioned digraph G is viewed as a quantified sentence, then our

game is exactly a model-checking, or Hintikka, game [9] over the model H . In
this guise our game is closely related to that used in the analysis of QCSP

by Chen [5]. In any case, the following is a direct consequence of the above
definitions.

Proposition 1. Let G be an n-partitioned digraph and H be a (non-partitioned)

digraph. G
alt
−→H if, and only if, Prover has a winning strategy in the (G , H)-

game.

We define the quantified H-colouring problem as the decision problem which
takes as input a partitioned digraph G (n-partitioned, for some n) and whose

yes-instances are those G for which G
alt
−→H . We refer to H as the problem’s

template.

Example 1. Consider the following partitioned digraph G together with the
template digraphs H1 and H2.

U1

X2

G
H1 H2

There will be an alternating-homomorphism from G to a digraph H iff H con-
tains neither a source nor a sink. This is clear since, in the (G , H)-game, Prover
must be able to answer any vertex that Adversary chooses in H with both a
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forward-neighbour and a backward-neighbour. It follows that, while the under-

lying graph G maps homomorphically into both H1 and H2, we have G
alt
−→H1

but G
alt
−→/ H1.

2.1 Restricting partitions

We will be particularly interested in templates H whose quantified H-colouring
yes-instances are partitioned inputs G that in some way collapse to be evaluable
within NP.

Let G be a partitioned digraph. We say that G is in Σ1-form (respectively,
Π2-form), if the only non-empty partition is X2 (respectively, if the only non-
empty partitions are among {U1, X2}). If G is in Π2-form and there is at most
one vertex in U1, then we say that G is in Π2-fan form. Finally, we say that G

is in Π2-multifan form, if G is the disjoint union of digraphs in Π2-fan form.

Theorem 2. The restriction of the quantified H-colouring problem to parti-
tioned digraphs in Π2-multifan form is in NP.

Proof. Let G be the disjoint union of G1, G2, . . . , Gm, all in Π2-fan form. Note

that G
alt
−→H if, and only if, Gi

alt
−→H , for every 1 ≤ i ≤ m. To test whether

Gi
alt
−→H we may consider all possible maps for the vertex in U1 (if there is one)

and then guess the remainder of the homomorphism and verify in polynomial
time.

We describe two partitioned digraphs G and G ′ as problem-equivalent if, and

only if, for all templates H , G
alt
−→H iff G ′

alt
−→H . From a partitioned graph G ,

we derive the reduced digraph G by collapsing all universal partitions to U1 and
all existential partitions to X2. Note that G and G share the same underlying
digraph G.

3 Cases in NP

In this section we will find that, for certain H , every input that is not essentially
in Σ1-form or Π2-multifan form can be discarded.

3.1 H is a digraph with both a source and a sink

Let H be a digraph with both a source s and a sink t. We begin by proving
that certain edges are forbidden in G , due to the presence of both a source and
a sink in H . The following may be seen as a generalisation of part of Lemma
1 and Theorem 2 in [13] (note that an isolated vertex is both a source and a
sink).

Lemma 3. Let H be a digraph with both a source and a sink. For any i, j: if
there is a forward-edge in G between any x ∈ Xi and y ∈ Uj or between any
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x ∈ Ui and y ∈ Uj, then G
alt
−→/ H; if there is a backward-edge in G between any

x ∈ Xi and y ∈ Ujor between any x ∈ Ui and y ∈ Uj, then G
alt
−→/ H.

Proof. For the first part, Adversary plays s for y and wins; for the second part,
Adversary plays t for y and wins.

Theorem 4. If H is an antireflexive digraph with both a source and a sink,
then the quantified H-colouring problem is equivalent to the H-colouring problem
under logspace reduction.

Proof. The H-colouring problem reduces trivially to the quantified H-colouring
problem.

We define the converse reduction as follows. Let N be a fixed no-instance of
the H-colouring problem (say, H augmented with one vertex adjacent to every
vertex of H). If G has an edge as in the previous lemma then we know that it is
a no-instance and we reduce G to N (with all vertices in X2). If G has no such
edge then every element in a universal partition is isolated, and G is essentially
in Σ1-form. We reduce G to its underlying digraph G.

Corollary. For each of the transitive n-tournaments T t
n, the quantified T t

n-
colouring problem is tractable.

Proof. Note that T t
n has both a source and a sink. The result follows from the

previous theorem and the fact that the T t
n-colouring problem is tractable [1].

Corollary. If H is a semicomplete digraph with more than one cycle, and both
a source and a sink, then the quantified H-colouring problem is NP-complete.

Proof. It is proved in [1] that the H-colouring problem is NP-complete. The
result now follows from the previous theorem.

3.2 Tractable cases

Having established that the quantified T t
n-colouring problem is tractable, for

each transitive n-tournament, we examine other digraph templates that give
rise to tractable quantified colouring problems.

3.2.1 Directed cycles

In a directed n-cycle, any oriented path between a vertex and itself must have
net length 0 mod n. Furthermore, any path between a vertex and its forward-
neighbour must have net length 1 mod n (and every vertex has a forward-
neighbour). These facts will allow us to consider only partitioned inputs in
Π2-multifan form since:

Lemma 5. For n ≥ 2: if there is a path in G between any x ∈ Xi and y ∈ Uj

(for i < j) or between any x ∈ Ui and y ∈ Uj (x 6= y; any i, j), then G
alt
−→/ DCn.
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Proof. We prove the first claim, the proof of the second is similar. If the path
has net length 0 mod n, then, if Prover plays a for x, Adversary plays the
forward-neighbour b of a for y, and wins. If the path has net length other than
0 mod n, then, if Prover plays a for x, Adversary also plays a for x, and again
wins.

The following result shows that every partitioned digraph that does not have
the paths mentioned in Lemma 5 is essentially in Π2-multifan form.

Lemma 6. If there is no path in a partitioned digraph G between any x in Xi

and y in Uj (for i < j), or between any x in Ui and y in Uj (x 6= y; any i, j),
then G is in Π2-multifan form and is problem-equivalent to G .

Proof. It suffices to prove, for every connected component G ′ of G , that G ′ is
in Π2-fan form and is problem-equivalent to G ′. Let G ′ be such a component
and let 0 < i ≤ n be the largest integer such that U2i+1 is non-empty. Take
x in U2i+1, and let y be any element of G ′ connected to x via a path. It
follows from the second assumption that y can not be in a universal partition
(U2i+1 included). Thus, it follows from the first assumption that y belongs to
an existential partition of index at least 2i + 2. It is not hard to see that we
can move x to U1 and all other [existential] vertices of G ′ to X2, preserving
problem-equivalence, and generating G ′ in Π2-fan form.

Lemma 7. Let G be in Π2-multifan form. For n ≥ 3, the following are equiv-
alent:

• G
alt
−→DCn

• G−→DCn

Proof.
(⇒) Trivial.
(⇐) Let G1, . . . , Gm be the Π2-fan components of which G is the disjoint

union. If G −→ DCn then it follows that Gi −→ DCn for each component

Gi. We aim to prove that Gi
alt
−→ DCn for each component Gi, which clearly

yields G
alt
−→ DCn . If Gi is in Σ1-form, the result is trivial. Otherwise, let x

be the vertex in U1, and let Adversary play it on some vertex c of DCn. The
result now follows immediately from the symmetry of DCn: taking the assumed

homomorphism Gi
hi−→ H , together with the automorphism ai of DCn which

maps hi(x) to c, Prover wins by playing the partition X2 under the strategy
ai ◦ hi (where ◦ denotes functional composition).

Theorem 8. For n ≥ 2, the quantified DCn-colouring problem is tractable.

Proof. We propose the following algorithm to solve the quantified DCn-colouring
problem. The input G should be scanned to see if there are any of the forbidden
paths of Lemma 6 : if there are any, then the input should be rejected. Oth-
erwise, solve the DCn-colouring problem, known to be tractable [1], with input
G.
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This algorithm is clearly polynomial; we prove its correctness. If G has
none of the forbidden paths of Lemma 3, then it is problem-equivalent to the

reduced G in Π2-multifan form, by Lemma 6. The equivalence of G
alt
−→DCn

and G−→DCn holds by the previous lemma, and we are done.

3.2.2 The tournaments T u
m+3

We now examine the tournaments T u
m+3 which are constructed from the directed

3-cycle by repeatedly adding a source m times. (The superscript u suggests the
unique cycle.)

Definition. We define T u
m+3 inductively:

• Let T (0) := T u
3 := DC3, the directed 3-cycle.

• From T (r) build T (r+1) by adding a new source, i.e.,
V (T (r+1)) := V (T (r)) ] {r + 3}3 and E(T (r+1)) := E(T (r)) ] {{r + 3, i} :
i ∈ V (T (r))}.

• Let T u
m+3 := T (m).

Since we have dealt with the case of the directed 3-cycle, we consider m > 0,
i.e. when T u

m+3 has a source.

Lemma 9. For m > 0, if

• there is a directed edge in G between x ∈ Xi and y ∈ Uj (i < j), or

• there is a directed edge in G between x ∈ Ui and y ∈ Uj (any i, j), or

• there is a directed edge in G from x ∈ Xj to y ∈ Ui (i < j),

then G is a no-instance of the quantified T u
m+3-colouring problem.

Proof. The first two parts follow from the antireflexivity of T u
m+3: Adversary

plays the same vertex for y as Prover plays for x, and wins; or Adversary plays
the same vertices for x and y, and wins. For the final part, if Adversary plays
y to the source of T u

m+3, Prover can have no reply for x.

Let G be a partitioned digraph, we define its cousin G̃ inductively:

• G
(0) := G .

• From G
(r) we build G

(r+1) by removing all sources that are in existential
partitions.

• G̃ := G (m).

3
T

(r), being a tournament with r +3 vertices, will already have vertex numbers 0 to r +2.
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Let Ex(G −G̃ ) be those existential vertices in G that are not in G̃ , and let Ex(G̃ )

be those existential vertices in G that are also in G̃ (since G̃ ⊆ G these are the

existential vertices of G̃ ). Let PrEx(G ) be those vertices of G in existential
partitions to which there is a directed path from some vertex in a universal
partition. Let Un(G ) be the set of universal vertices of G . Let G̃ denote the

underlying digraph of G̃ . We refer to the vertices of T u
m+3 that are not in the

3-cycle as the tail of T u
m+3.

We will benefit from examining which vertices of the underlying digraph G
have been removed in the digraph G̃. It should be clear that vertices in Un(G )
and PrEx(G ) can never be removed, and are, therefore, protected. Let us
consider the sub-partitioned-digraph G1 of G induced by the existential vertices
that are not protected. G1 may be put through our given inductive scheme,

iteratively removing sources m times, so obtaining G̃1. It should be clear that G̃

is that subdigraph of G induced by the set Un(G ) ∪ PrEx(G ) ∪ V (G̃1). Apart
from the universal vertices and those existential vertices that are protected, our
construction is that given for proving the tractability of the T u

m+3-colouring
problem in [1]. All of the sets we have defined should now be considered as

subsets of V (G ) (though some may be subsets of V (G̃ ) too). Before going on
we will benefit from the following lemmas.

Lemma 10. In a winning strategy for Prover in the (G , T u
m+3)-game: if Ad-

versary plays all his vertices to the 3-cycle, then Prover must play all of the
vertices of Ex(G̃ ) [in G ] to the 3-cycle.

Proof. Again, let G1 be the sub-partitioned-digraph of G induced by those ex-
istential vertices of G that are not protected. Recall that G̃ is the subdigraph

of G induced by Un(G ) ∪ PrEx(G ) ∪ V (G̃1). So Ex(G̃ ) is PrEx(G ) ∪ V (G̃1).
Since universal vertices are played to the 3-cycle, it follows that all vertices of

PrEx(G ) must be played to the 3-cycle. Furthermore, if any vertex of V (G̃1)
[in G ] could be played to the tail of T u

m+3, then this could not be extended to a

homomorphism from G to T u
m+3 – by definition of G̃1 – so this could not be a

winning strategy for Prover on (G , T u
m+3). The result follows.

Lemma 11. Assume that G has none of the edges of Lemma 9. Then Adversary
can win the game on (G , T u

m+3) iff he can win it whilst never playing in the tail
of T u

m+3.

Proof. Since edges of G from universal partitions only point toward vertices x
in higher existential partitions, if Adversary plays in the tail then he allows
Prover to answer x with anything on the 3-cycle. However, if he plays on the
3-cycle he limits Prover to a single adjacent vertex of the 3-cycle. It is clear
that Adversary gains nothing by playing in the tail.

Theorem 12. For m ≥ 0, the quantified T u
m+3-colouring problem is tractable.

Proof. The result for m = 0 follows from Theorem 8. For m > 0 we will solve
the quantified T u

m+3-colouring problem by taking any input G and constructing
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a given G ′. We will prove that

G
alt
−→T u

m+3 ⇔ G
′ alt
−→T u

3

whereupon we may appeal to the known tractability of the latter problem, and
our result will follow.

If G has any of the edges of Lemma 9 then we set G ′ to be any set no-instance
of quantified T u

3 -colouring (e.g. the transitive 4-tournament T t
4 with all vertices

in X2). If G has none of those edges then we set G ′ to be G̃ . This algorithm
is clearly polynomial; it remains for us to prove that it is correct. It is trivially
correct if G has any of the edges of Lemma 9: we assume it does not.

(⇒) For a winning strategy σ for Prover in the game on (G , T u
m+3), we

claim σ is also a winning strategy for her in the game on (G̃ , T u
3 ). This follows

immediately from Lemma 10.
(⇐) From a winning strategy σ for Prover in the game on (G̃ , T u

3 ), we
construct a winning strategy σ′ in the game on (G , T u

m+3) where Adversary
only plays in the 3-cycle. In that game on (G , T u

m+3), when Adversary plays on

the 3-cycle, then Prover answers the vertices in Ex(G̃ ) according to σ, and then

maps Ex(G − G̃ ) to the tail of T u
m+3. The result follows from Lemma 11.

3.2.3 The tournaments T u
3+m

These tournaments are analagous to the tournaments T u
m+3, but are constructed

by the repeated addition of a sink, rather than a source. It follows by a similar
argument that, for all m, the quantified T u

m+3-colouring problem is tractable.

3.2.4 The semicomplete digraphs Su
m+2

We now examine the digraphs Su
m+2 which are constructed from the directed

2-cycle (the 2-clique) by repeatedly adding a source m times.

Definition. Formally, we define Su
m+2 inductively:

• Let S(0) := Su
2 := DC2, the directed 2-cycle.

• From S(r) build S(r+1) by adding a new source, i.e.,
V (S(r+1)) := V (S(r)) ] {r + 2} and E(S(r+1)) := E(S(r)) ] {{r + 2, i} :
i ∈ V (S(r))}.

• Let Su
m+2 := S(m).

The reader will not be surprised by the following.

Theorem 13. For m ≥ 0, the quantified Su
m+2-colouring problem is tractable.

Proof. Consider Lemma 9 to Theorem 12 of Section 3.2.2 with all instances
of ‘T u

m+3’ and ‘3-cycle’ substituted by ‘Su
m+2’ and ‘2-cycle’, respectively. The

result follows.
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3.2.5 The semicomplete digraphs Su
2+m

These digraphs are analagous to the digraphs Su
m+2, but are constructed by

the repeated addition of a sink, rather than a source. It follows by a similar
argument that, for all m, the quantified Su

m+2-colouring problem is tractable.

3.2.6 A tractability result

Theorem 14. If H is a semicomplete digraph with at most one cycle, then the
quantified H-colouring problem is tractable.

Proof. It follows from standard results about semicomplete digraphs (e.g. see
[1]) that H is either a transitive tournament or is either T u

3 = DC3 or Su
2 = DC2

with a succession of sources and/or sinks added. If it has both a source and a
sink then, by Theorem 4, we can reduce the problem to H-colouring, which is
known to be tractable [1]. If it has no sink (resp., no source), then it is one of
the digraphs T u

m+3 or Su
m+2 (resp., T u

3+m or Su
2+m), whose quantified colouring

tractability has been detailed in the previous four sections.
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