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Complexity
We classify computational problems according to the amount of
various resources needed to solve them by an optimal
algorithm. For example, being able to solve a problem in
polynomial time (class P), or being able to solve a problem
using only polynomial space (class Pspace)..
The evident aim is to model whether one can improve on a
known algorithm or not. Complexity theory offers few
established lower bounds and relies on conjectures, For
example on the famous P 6= NP conjecture.
In practice, we often show that
a problem is complete for a
complexity class. That is for a
suitable notion of reduction
(e.g. polynomial-time many-one
reduction) every computational
problem in this complexity class
reduces to our problem.



Limits of this approach
First issue

I The computational model is defined for words
I Our computational problems are more often than not on

more elaborate structures such as graphs, hypergraphs or
relational structures.

I One can of course encode such an elaborate structure by
a word (adjacency list, enumeration of the lines of an
adjacency matrix, ...)

I But this induces an artificial order on the data.

Example
A database is not ordered in particular in a distributed context.



Limits of this approach
Second issue

I Complexity classes may change if the computational
model is amended slightly

I Additional tapes on a Turing machine.
I One-dimensional vs Two dimensional Turing machine
I Turing Machine vs RAM Machine 1

Example
Linear Time is not the same on a Turing machine and on a
RAM machine.

TimeTuring(n) ( TimeRAM(n) = DLIN

1Random Access Machine



What we would like

I a model that is fit for mote elaborate datastructures than
words.

I a model that is machine independent.



The key idea

I We shall not describe the computation (algorithm)
I But the question (problem specification)
I For this we shall use Logic

... or more precisely the logics
I We shall measure the complexity of a computational

problem by the richness of the logical language needed to
specify it.

This research area is known as Descriptive Complexity
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Descriptive Complexity
Descriptive Complexity establishes a link between finite model
theory (the study of logic on finite structures) and Complexity
theory.

Computer Science

Computational
Complexity

Descriptive
Com-
plexity

Mathematics
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Theory

Finite
Model
Theory



Descriptive Complexity

We shall discover the fascinating interplay between
specification and computation, between the richness of a
language necessary to specify a problem and the
computational resources necessary to solve this problem.
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What is computation?
How does one measure its efficiency?

Machine

Input Output

I Machine model: finite automaton, possibly with a stack
(pushdown automaton), more generally a Turing machine, a
RAM machine, etc

I Typically the input is a word
I What is efficiency?

Typically a

I parameter: the input size n
I evaluation: amount of resources such as Time and Space as a

function of this parameter.

afor enumeration problems where the output may be fairly large compared
to the input, one often choses the sum of not input and outputs sizes
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Decision problems and Turing Machines

Turing
Machine

Input a word Output
yes/no

Associated Problem/Language: set of accepted words.
Vocabulary. We say that the machine decides this language.



Worst Case Complexity

I parameter: the input size n
I evaluation: amount of resources such as Time and Space

as a function of this parameter in the worst case.

Example
For the binary alphabet {0,1}. For all words but the word that
consists only of 1s, the machine scans the input word and
accepts (time O(n)). For the word that consists only of 1s, the
machine goes back to the first letter and replace it by 0, then it
goes back to the last letter and replaces it by a 0, and so on
and so forth until all letter are 0s (time O(n2)).
→ (worst case) Time Complexity O(n2).
There are other complexity models such as average case
complexity, or Kolmogorov Complexity.



Turing Machine

I Time unit: 1 head movement
I Space unit?

For a finer measure of space complexity we add a working
tape and we count 1 space unit per cell of this tape.
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Non deterministic Turing Machine

Non-determinism
I The transition function becomes a transition relation
I accepts iff one computation accepts
I Rejects iff all computations reject

For polynomial time, one can pitch the deterministic machine
that computes an answer in polynomial-time to the non
deterministic one which checks an answer in polynomial time
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What is reasonable time?
P vs. NP

polynomial solving vs. polynomial checking
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What is reasonable time?
P vs. NP

polynomial solving vs. polynomial checking

start

x = ⊥

y = ⊥

z = ⊥ z = >

y = >

z = ⊥ z = >

x = >

y = ⊥

z = ⊥ z = >

y = >

z = ⊥ z = >

Fo SAT, 2n possibilities for n variables.
Brute Force Search⇒ exponential time.



Complexity Classes

Class: set of decision problems (languages).
Typically, for which there is an algorithm (a Turing machine) that
works with a limited resource (Time or Space).

Well known Classes
Logarithmic Space L (Logspace)
(non-det. version) NL (NLogspace)
Polynomial Time NP (NPtime)
(non-det. version) P (Ptime)
Polynomial Space Pspace

L

NL

P

NP

PSPACE



Reductions

There are several notions of a reduction from a problem Ω1 to
another problem Ω2.

I The reduction is simply a mean of producing a program for
solving Ω1 given one for Ω2.

I The most general (Turing reduction) allows several calls to
the program for Ω2.

I The least general (Karp reduction) allows only one and at
the end of the reduction process

I We restrict the resources of the reduction according to the
computational class under study2

2We attempt to work with reductions under which the complexity class is
invariant.



Reductions

For the complexity class we will be working with (P and NP), we
shall use polynomial time Karp reductions.

For this classes (P,NP) and classes of lower coplexity (L,NL),
one uses weaker reductions in the literature, the so-called
logspace reductions.



Complete Problemes

A problem is complete for a class if all other problems reduce to
it3.

Classe Problèmes complets
L 2-Col Graph accessibility in undirected graphs
NL 2-Sat Graph accessibility in directed graphs
P Horn-Sat Accessibility in 3-Hypergraphs
NP Sat 3-Col
Pspace QSat Accessibility game (Hex)

Consequence: Sat being in P would imply P=NP.

3To be more precise, one should indicate the notion of a reduction under
use
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Structure
We fix names of symbols. For example for graphs, we use a
binary symbol E to denote the edge relation.
We could also use K to denote a vertex subset.
One can also have relation symbols of higher arity (tables in
databases, hypergraphs), and even several relations (graphs
with several types of edges, say “coloured edges”)
We call signature of the structure the set of these symbol
names and their arity.
We may also use constant symbols (= 0-ary relation).

Example
To model graph accessibility, we need a graph and two special
vertices (2 constants) s and t . signature: E of arity 2, s of arity
0 and t of arity 0.

We may also consider signatures with function symbols and
structures with functions. We shall restrict ourselves to
relational structures in this lecture.
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structure

We have just defined the notion of a signature. A structure
(over such a signature) is given by a set (the universe or
domain) and an interpretation of the correct arity for each
symbol of the signature.

Example
For the signature E of arity 2, z of arity 0 and t of arity 0, we
consider a structure S that consists of

I a domain V (); and,
I an interpretation for E which is a relation ES ⊆ V × V
I an interpretation for s which is an element sS of V
I an interpretation for t which is an element tS of V

ES denotes the concrete relation and E the relation symbol.
When it is clear from context, we shall use the latter to denote
both.
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First Order Logic

We consider an infinite set of variables x , y , z, . . . (intuition: the
value of a variable will be a graph vertex).

I The terms are built from the relation symbols, variables
and constant symbols (example: E(x , y) to denote an
edge from x to y ).

I We use the connectors
∧ and
∨ or
¬ negation

I and the quantifiers
∀ universal
∃ existential



First Order Logic
Definition (Formulae)

I atomic formulae
I (relational) term that is an r -ary symbol from the signature, and

r variables or constants; or,
I an identity x = y .

I inductive definition
I If ϕ1 are ϕ2 are formulae then ϕ1∧ϕ2, ϕ1∨ϕ2 and ¬ϕ1 are also

formulae
I If ϕ is a formula then ∃xϕ and ∀xϕ are formulae.

Vocabulary

I A formula is quantifier-free if it does not contain the quantifier
symbols ∃ or ∀.

I A variable x is bound if it appears in the scope of a quantifier,
that is it appears in a subformula which is preceded by ∀x or
∃x .

I A formula that is not bound is said to be free.
I We write ϕ(x̄) to denote that the variables x̄ are free.



Example

In the settings of directed graphs that may have loops.
Signature: E binary.

Property: every vertex has a successor distinct from itself

∀x∃yE(x , y) ∧ ¬(x = y)

We shall also use some abbreviations for the sake of readability
such as x 6= y instead of ¬(x = y).

∀x∃yE(x , y) ∧ x 6= y



Semantic

A graph G (encoded as a structure over the signature E binary)
satisfies the formula

ϕ := ∀x∃yE(x , y) ∧ x 6= y

iff
every vertex of G has a successor distinct from itself.

Notation and vocabulary
G |= ϕ
G is a model of ϕ
G satisfies ϕ



Semantic
We defined the meaning of S |= ϕ(ā) inductively.
(here ā represents a tuple of values from the of S, one value for
each variable of x̄).

I We interpret a (constant symbol) c by cS and a free
variable xi(ā) by ai .

I An identity holds iff the two terms either side of the =
symbol have the same value in S

I A relational term R(t1, t2, . . . , tr ) holds in S if the tuple
R(tS

1 (ā), tS
2 (ā), . . . , tS

2 (ā)) belongs to the relation RS of S.
I S |= ¬ϕ1(ā) if it is not the case that S |= ϕ1(ā)

I S |= ϕ1(ā)∧ϕ2(ā) iff we have both S |= ϕ1(ā) and
S |= ϕ2(ā)

I S |= ϕ1(ā)∨ϕ2(ā) iff we have S |= ϕ1(ā) or S |= ϕ2(ā)

I S |= ∃yϕ(y , ā) iff there exists a domain value a′ for y such
that S |= ϕ(a′, ā)

I S |= ∀yϕ(y , ā) iff for all value of the domain a′ for y , we
have S |= ϕ(a′, ā)



Examples

Property: a vertex has a predecessor, or a successor

∀x(∃yE(x , y) ∧ x 6= y) ∨ (∃zE(z, x) ∧ x 6= z)

Remark: we may reuse variable names.

∀x(∃yE(x , y) ∧ x 6= y) ∨ (∃yE(y , x) ∧ x 6= y)



Examples

Property: The binary relation E is symmetric and non reflexive
(in short it represents the edge relation of a loopless undirected
graph).

∀x¬E(x , x) ∧ ∀yE(x , y) =⇒ E(y , x)

Notation
We us the abbreviation ϕ =⇒ ψ for ¬ϕ ∨ ψ.
We use also ϕ ⇐⇒ ψ for (ϕ =⇒ ψ) ∧ (ψ =⇒ ϕ)



Examples

Property: diameter at most 2 (without taking orientation into
account).

∀x∀y x = y ∨ (E(x , y) ∨ E(y , x))

∨ ∃z(E(x , z) ∨ E(z, x)) ∧ (E(z, y) ∨ E(y , z))

As to keep formulae readable, when working over undirected
graphs, we’ll assume E to be symmetric and write:

∀x∀y x = y ∨ E(x , y) ∨ ∃zE(x , z) ∧ E(z, y)



Example: other signature

Structure: Graph (edge E) + a vertex set K
Property: K is a Kernel of G (independent set that covers all
vertex).

Exercise
FO formula?



Representing words

I Alphabet Σ = {a,b}.
Word: s1s2 . . . sn

I Encode by a structure with domain {1,2, . . . ,n} that has a
binary relation < (such that i < i + 1) and two unary
predicates A and B. We have A(i) iff si = a and B(i) iff
si = b.

I FO formula for the following language ab∗a?
There is at least 2 letters and
There is a a at the beginning and a a at the end; and,
There is no a among the other letters.
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Weakness of FO

We can prove that we can not express simple property such as:

I The universe has even size
I Accessibility

In fact, in general FO may only express local properties (in a
precise sense).



Second Order Logic

Idea
We allow to quantify over new relations symbols.

Example
We may “guess” a binary relation L and state that it is a linear
order.

ϕL := ∃L∀x¬(L(x , x) ∧ ∀x , y , z
(
(x , y) ∧ L(y , z) =⇒ L(x , z)

)
∧ ∀x , yL(x , y) ∨ L(y , x)



Successor

We may deduce from a linear order, the underlying successor
relation.

ϕS := ϕL ∧ ∃S
∀x , yS(x , y) ⇐⇒

(
L(x , y) ∧ ¬L(x , z) ∧ L(z, y)

)
Once we have an order, we may easily “walk”along the path
defined by S and check that we indeed have an even numbe of
elements.



Example: 3 colorability

We want to describe the following property.
It is possible to colour each vertex of a graph in red, green or
blue, such that adjacent vertices have different colours.



3 colorability

∃R∃B∃V∀x
(
R(x) ∨ B(x) ∨ V (x)

)
∧

∀x
(
¬
(
R(x) ∧ B(x)

)
∧ ¬

(
R(x) ∧ V (x)

)
∧ ¬

(
B(x) ∧ V (x)

))
∧

∀x∀y¬
(
E(x , y) ∧ R(x) ∧ R(y)

)
∧

¬
(
E(x , y) ∧ B(x) ∧ B(y)

)
∧ ¬

(
E(x , y) ∧ V (x) ∧ V (y)

)

I In the example of 3-colorability, the second order predicates
are all sets

I In this restricted case, we speak of Monadic Second Order
logic (MSO)

I Note also that unlike in this example, in general in MSO we
may quantify universally over a set.

I MSO plays a central role in language theory.



Syntax and Semantic

Syntax
Similar to FO, but we allow terms using the new symbols4 and
we allow their quantification, whether existential ∃R or universal
∀R.

Semantic
Similarly to FO, we interpret a new symbol R of arity r as a new
relation RS or arity r over the structure.

Notation
Traditionally we reserve uppercase letters to predicates (SO
variables or signature symbols) and use lower case letters for
FO variables or constant symbols.

4We allow for infinitely many symbols of each arity.



Various fragments of ESO

SO Second
Order Logic

extension of First Order Logic with new sym-
bols representing relations

MSO Monadic
Second
Order Logic

restriction of Second Order Logic where the
new relation symbols are necessarily sets
(arity 1)

ESO Existential
Second
Order Logic

of the form ∃ second order symbols followed
by a first-order formula

FO First Order
logic

No new symbols, only those from the signa-
ture



Teaser

Theorem (Büchi)
For words: Regular Languages = MSO

Theorem (Fagin)
For structures: NP = ESO
There are many other logics of interest in the context of
Complexity Theory





The graal: a logic for P

One of the famous open question from Descriptive Complexity
asks for a logic suitable for P.

Motivation: to have a query language in database theory that is
both efficient and as expressive as possible.



Next Lectures

5 Last lecture on graphs (Anne Berry)
6 Logic et Automaton (Mamadou Kanté)
7 Fagin’s theorem (me)

8,9 MSO and tree decomposition
(Courcelle’s theorem) (Mamadou Kanté)

10 Constraint Satisfaction problems and decomposition (me)
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