
Model-Checking Alternating-time Temporal Logic with

Strategies Based on Common Knowledge Is Undecidable

Raluca Diaconu1,2 and Cătălin Dima2

1 Department of Computer Science, “Al.I.Cuza” University of Iaşi, Iaşi 700506, Romania
2 LACL, Université Paris Est-Créteil, 61 av. du G-ral de Gaulle, 94010 Créteil, France

Abstract. We present a semantics for the Alternating-time Temporal Logic (ATL) with imper-
fect information, in which the participants in a coalition choose their strategies such that each
agent’s choice is the same in all states that form the common knowledge for the coaltion. We
show that ATL with this semantics has an undecidable model-checking problem if the semantics
is also synchronous and the agents have perfect recall.

1 Introduction

Alternating-time Temporal Logic (ATL) (Alur et al., 1998, 2002) is a modal logic that gener-
alizes CTL. It is defined over concurrent game structures with one or more players. A formula
⟪A⟫φ in ATL expresses that a coalition A of agents can cooperate to ensure that the formula
φ holds.

Different semantics have been given for the cooperation modalities, depending on whether
the knowledge that each agent has of the current state of the game is complete or not (i.e.
semantics with complete, resp. incomplete information), whether agents can use knowledge
of the past game states when deciding on their next move (i.e. semantics based on perfect,
resp. imperfect recall), and whether the agents in the coaltion are aware of their possibility to
enforce their goal, or they must be told so – i.e. de re vs. de dicto semantics (Jamroga and
van der Hoek, 2004). Other variants of the semantics of ATL are studied in e.g. (Schobbens,
2004; Jamroga and Agotnes, 2007), see also (Bulling et al., 2010) for a recent survey on the
topic.

In this paper we study a variation of the semantics for ATL, in which agents in coalitions
choose their strategies based on the common knowledge, available inside the coalition, of
the system history. More precisely, when an agent chooses her next move, she uses not only
the information she observes of the system history, but also the knowledge she has about
the knowledge of the other agents in the coalition, and the knowledge she has about the
knowledge the other agents have about their knowledge, etc. This is a variation of the ATLiR

logic studied in (Schobbens, 2004), see also (Jamroga and van der Hoek, 2004; Bulling et al.,
2010). However, in our semantics, all the agents in a coalition utilize the same information
about the system state : the common knowledge, for that coalition, of the system state. This
is where our semantics differs from the one in (Schobbens, 2004; Jamroga and van der Hoek,
2004; Bulling et al., 2010), where the information which is used by each agent in a coalition
depends only on her individual knowledge of the system state, and thus might be different for
two distinct agents in the same coalition. Our semantics is therefore closer to the one studied
in (Dima et al., 2010), where the strategies used by the agents of a coalition are based on the
distributed knowledge inside the coalition.

Group strategies based on common knowledge have the following property: after the strat-
egy is fixed and shared between the agents in the coalition, at each subsequent time instant,

each agent knows exactly what is the sequence of actions that any other agent in the coalition
has issued upto that instant. This means that if, e.g., for trust purposes, agent Alice wants
to check whether agent Bob in the same coalition has applied the appropriate sequence of
actions that he was supposed to, and this is checked by e.g. verifying Bob’s log, the access
that Alice gets to Bob’s log does not give her any extra information about Bob’s local state
at any moment, besides the information that Alice already had when the coalition was cre-
ated and the joint strategy was fixed. If strategies based on individual knowledge were used
within coalitions, then such a scenario would lead to information leak since e.g. when Alice

gets informed about the actual sequence of actions taken by Bob, she might deduce some
information about Bob’s initial local state, since Bob’s strategy might differ when applied in
distinct states that are identically observed by Alice.

In this paper we only concentrate on the simplest setting of ATL with strategies based
on common knowledge and do not model the trust part of the above scenario. The main
result of our paper is that, for ATL with common-knowledge strategies, the model-checking
problem is undecidable. Our proof is an adaptation of (van der Meyden, 1998; Shilov and
Garanina, 2002), where it is shown that the model checking problem is undecidable for CTL

with common knowledge, with a synchronous and perfect recall semantics, see also (van der
Meyden and Shilov, 1999). Note that the results from the cited papers cannot be used directly
since the common knowledge operator cannot be expressed in ATL with our semantics. The
only connection is the following: for systems in which agents have a single choice in each state,
⟪A⟫◻φ is equivalent with CA◻φ, where CA is the common knowledge operator for the group
A.

The rest of the paper is organized as follows: in the next section we recall the game
arenas framework for interpreting ATL, and present the three variants of group strategies
that can be used for interpretion the coalition operators: individual strategies, strategies
based on distributed knowledge, and strategies based on common knowledge, and we give the
relationship between the three types of strategies. In the third section we recall the semantics
of ATL and introduce the new semantics based on group strategies with common knowledge.
The fourth section contains our undecidability proof. We end with a section with conclusions.

2 Background

In this section we give some basic definitions and fix some notations. We recall here the
notations for game arenas with emphasis on the equivalence relations. We present the three
types of strategies: group strategies based on individual knowledge, group strategies based
on distributed knowledge, and groupe strategies based on common knowledge, and give the
relationship between them.

Definition 1. A game arena Γ = (Ag,Q, (Qa)a∈Ag,Qe, (Ca)a∈Ag, δ, λ,Q0) is a tuple where

– Ag is a finite set whose elements are called agents; subsets A ⊆ Ag are called coalitions.

– Qa is a finite set of local states for agent a, and Qe is a finite set of environment states.

– Q =×a∈Ag
Qa ×Qe is the set of global states.

– Ca is a finite set of actions available to agent a. We denote by CA the set of actions
available for the coalition A, CA =×a∈ACa, and C = CAg.

– δ ⊆ Q ×C ×Q is the transition relation.

– Q0 ⊆ Q is the set of initial states.

– Π is the set of atomic propositions and λ ∶ QÐ→ 2Π is the state-labeling function, associ-
ating with each state q ∈ Q the set of atomic propositions which hold in q.

We write q
c
Ð→ q′ for a transition (q, c, q′) ∈ δ. Also, given a global state q, we denote q

a
its

a-component and call it the a-projection of q.

A run ρ is a (finite or infinite) sequence of transitions agreeing on intermediate states, i.e.

ρ = (qi−1
ciÐ→ qi)

1≤i≤η
with η ∈ N or ρ = (qi−1

ciÐ→ qi)
1≤i<∞

. The length of a run ρ, denoted ∣ρ∣, is
the number of its transitions, η, in the case of finite runs, or ∞ for infinite runs. A run ρ is
initialized if q0 ∈ Q0.

We denote by Runsf(Γ) the set of finite initialized runs and by Runsω(Γ) the set of
infinite initialized runs of Γ . When the game arena is understood from the context, we only
use the notations Runsf , resp. Runsω. ρ [i] denotes the state on i-th position in the run ρ,
and ρ [0⋯i] denotes the prefix of ρ of length i, for all i, 0 ≤ i ≤ ∣ρ∣. Note that, if ρ ∈ Runsf(Γ)
or ρ ∈ Runsω(Γ), then we have ρ [0⋯i] ∈ Runsf(Γ), for all i, 0 ≤ i < ∣ρ∣.

Two states are observationally equivalent for agent a if the same atomic propositions
observable by agent a have the same truth values in both states. Denote this relation for
states ∼a, ∼a⊆ Q ×Q. Thus, formally,

q ∼a q
′ iff q

a
= q′

a
(1)

We extend the relation ∼a for finite runs in the following way: given two runs of equal length,
∣ρ∣ = ∣ρ′∣,

ρ ∼a ρ
′ iff ρ[i] ∼a ρ′[i] for all 1 ≤ i ≤ ∣ρ∣. (2)

The distributed knowledge equivalence relation is an extension of this relation to coalitions
that are “willing to exchange” information about their local states. On states, the distributed
knowledge relation inside the set of agents (coalition) A is defined as follows:

q ∼A q′ iff q ∼a q
′ for all a ∈ A.

This relation is then extended straightforwardly on runs as follows: given two runs of equal
length, ∣ρ∣ = ∣ρ′∣,

ρ ∼A ρ′ iff ρ[i] ∼A ρ′[i] for all 1 ≤ i ≤ ∣ρ∣.

The common knowledge equivalence relation on states is a different extension of the ob-
servability reltions ∼a to coalitions in which agents are “not willing to share” the information
about their local state with the other agents in the coalition. This relation is denoted by ∼CA
and is formally defined as follows:

∼CA= (⋃
a∈A

∼a)
∗
. (3)

Note that when card(Q/ ∼CA) = card(Q) for all coalitions A ⊆ Ag, the system is equivalent
to a system with complete information.

∼CA can be extended on runs in the following way:

ρ ∼CA ρ′ iff ∃n ∈ N s.t. ∃ρ0, ρ1,⋯, ρn ∈ Runsω and ∃a1,⋯, an ∈ A

s.t. ρ = ρ0, ρ
′ = ρn, ρi ∼ai+1 ρi+1,∀0 ≤ i < n. (4)

Definition 2 ((Dima et al., 2010)). A strategy with distributed knowledge (or dk-

strategy for short) for a set of agents (coalition) A is any mapping σ ∶ (Q/ ∼A)
∗
Ð→ CA.

An individual strategy for an agent a is a strategy for the set of agents {a}.

We write Σdk(A,Γ) for the set of all strategies of coalition A in game arena Γ . Given
a dk-strategy σ ∈ Σdk(A,Γ), we define the projection on agent a ∈ A of σ as the mapping
σ

a
∶ (Q/ ∼A)

∗
→ Ca with σ

a
(α) = σ(α)

a
for all α ∈ (Q/ ∼A)

∗
.

Furthermore, Σind(A,Γ) denotes the set of tuples of individual strategies for agents in A,
i.e.

Σind(A,Γ) = {(σa)a∈A ∣ σa ∈ Σdk({a}, Γ)}.

In the sequel the term ind-strategy for a coalition A denotes a tuple of individual strategies,
one for each agent in A. In an ind-strategy, each agent plans his future actions based solely on
his information about the system state, without any other interaction with the other agents
or reference to the knowledge the other agents have about the current state.

Note that in a strategy with distributed knowledge for a coalition with at least two agents,
the agents’ actions depend on the common observations of all agents in the coalition. There-
fore, implementing such strategies requires some type of communication between agents. One
of the suggested communication patterns in (Dima et al., 2010) is the use of an “arbiter” that
gathers the information about the local states of each agent in the coalition, and then issues
to each agent its action according to the dk-strategy under play. The more classical notion of
coalition in e.g. (Jamroga and van der Hoek, 2004; Bulling et al., 2010) is to consider that a
coalition acts together simply when each agent in the coalition follows an individual strategy
for his play.

Definition 3. A strategy with common knowledge (or ck-strategy for short) for a set
of agents A is a mapping σ ∶ (Q/ ∼CA)

∗
→ CA.

We write Σck(A,Γ) for the set of all strategies of coalition A in game arena Γ .
A ck-strategy maps each history of common knowledge observations for coalition A to a

tuple of actions for the given coalition. The intuition is that each agent chooses the same
action for histories (i.e. sequences of observations) that might be different according to their
individual knowledge, but are considered identical w.r.t. the common knowledge of the group
A.

Similarly with the case of dk-strategies, we define the projection on agent a ∈ A of a
ck-strategy σ ∈ Σck(A,Γ) as the mapping σ

a
∶ (Q/ ∼CA)

∗
→ Ca with σ

a
(α) = σ(α)

a
for all

α ∈ (Q/ ∼CA)
∗
.

A dk-strategy σ is compatible with a run ρ = (qi
ci+1
ÐÐ→ qi+1)i≥0 if for all i ≤ ∣ρ∣,

σ(ρ[0⋯i]∼A) = ci+1∣A.

Similarly, a ck-strategy σ is compatible with ρ if for all i ≤ ∣ρ∣,

σ(ρ[0⋯i]∼C
A
) = ci+1∣A.

Remark 1. In many practical situations, it is more convenient to define the local states of the
agents by means of some subsets of atomic propositions Πa ⊆ Π which are assumed to be
observable to agent a, subsets might not be pairwise disjoint. In this framework, the labeling
of any two global states q, q′ whose a-projection is the same, i.e. q

a
= q′

a
, has the property

that λ(q) ∩Πa = λ(q′) ∩Πa. Then, for each global state q, we identify, by abuse of notation,
the local state of a in q (i.e. q

a
) with λ(q) ∩Πa.

For a given set of agents A ⊆ Ag, we denote ΠA = ⋃a∈AΠa. We also denote λA ∶ QÐ→ 2ΠA

the function defined by λA(q) = λ(q) ∩ΠA, and, by abuse of notation, we write λa for λ{a}.

Note also that, within this framework, a dk-strategy is a mapping σ ∶ (2ΠA)∗ Ð→ CA.
We will utilize this variant of game arenas in the third section of this work.
The following resuls follows directly from the definitions:

Proposition 1. The following strict inclusions hold:

Σck(A,Γ) ⊊ Σind(A,Γ) ⊊ Σdk(A,Γ)

3 Syntax and Semantics of ATL and ATL
prs

C

We recall here the syntax of ATL, and present the three variants of its semantics, correspond-
ing to the utilization of ind-strategies, dk-strategies or ck-strategies for interpreting coalition
operators.

The syntax of ATL is defined by the following grammar:

φ ∶∶= p ∣ φ ∧ φ ∣ ¬φ ∣ ⟪A⟫# φ ∣ ⟪A⟫φU φ ∣ ⟪A⟫φW φ

where p ∈Π and A ⊆ Ag.
Formulas of the type ⟪A⟫φ read as “coalition A can enforce φ”. The operator ⟪⋅⟫ is a path

quantifier and #(“next”), U(“until”), W(“weak until”) are temporal operators.
The usual derived operators can be obtained as follows:

⟪A⟫ ◻ φ ≡ ⟪A⟫φW false ⟪A⟫◇ φ ≡ ⟪A⟫trueU φ

⟦A⟧ ◻ φ ≡ ¬⟪A⟫◇¬φ ⟦A⟧◇ φ ≡ ¬⟪A⟫ ◻¬φ

Formulas of the type ⟦A⟧φ reads as “coalition A cannot avoid” φ.
ATL is interpreted over concurrent game structures. Three different interpretations can

be given, according to the possibility given to coalitions to utilize ind-strategies, dk-strategies
or ck-strategies. We denote ⊧ind, ⊧dk and ⊧ck the three variants of semantics.

Formally, given a game structure Γ , an infinite run ρ ∈ Runsω(Γ), a point i ∈ N, we put:

– (Γ,ρ, i) ⊧α p if p ∈ λ(ρ[i]) for any α ∈ {ind, ck, dk}.
– (Γ,ρ, i) ⊧α φ1 ∧ φ2 if (Γ,ρ, i) ⊧α φ1 and (Γ,ρ, i) ⊧α φ2, again for any α ∈ {ind, ck, dk}.
– (Γ,ρ, i) ⊧α ¬φ if (Γ,ρ, i) ⊭α φ, for any α ∈ {ind, ck, dk}.
– (Γ,ρ, i) ⊧ind ⟪A⟫ # φ if there exists σ ∈ Σind(A,Γ) such that
(Γ,ρ′, i+ 1) ⊧α φ for all runs ρ′ which are compatible with σ and satisfy ρ′[0⋯i] = ρ[0⋯i];

– (Γ,ρ, i) ⊧ind ⟪A⟫φ1 U φ2 if there exists σ ∈ Σind(A,Γ) such that for all runs ρ′ which are
compatible with σ and satisfy ρ′[0⋯i] = ρ[0⋯i] there exists j ≥ i such that (Γ,ρ′, j) ⊧ind φ2

and (Γ,ρ′, k) ⊧ind φ1, for all k, i ≤ k ≤ j − 1;
– (Γ,ρ, i) ⊧ind ⟪A⟫φ1W φ2 if there exists σ ∈ Σind(A,Γ) such that for all runs ρ′ which are

compatible with σ and satisfy ρ′[0⋯i] = ρ[0⋯i] there exists j ≥ i such that (Γ,ρ′, j) ⊧ind φ2

and (Γ,ρ′, k) ⊧ind φ1, for all k, i ≤ k ≤ j − 1, or (Γ,ρ′, j) ⊧ind φ1, for all j ∈ N, j ≥ i.

For the case of ⊧ck, the semantics of the coalition operators must be rewritten as follows:

– (Γ,ρ, i) ⊧ck ⟪A⟫ # φ if there exists σ ∈ Σck(A,Γ) such that
(Γ,ρ′, i+1) ⊧ck φ for all runs ρ′ which are compatible with σ and satisfy ρ′[0⋯i] ∼A ρ[0⋯i];

– (Γ,ρ, i) ⊧ck ⟪A⟫φ1U φ2 if there exists σ ∈ Σck(A,Γ) such that for all runs ρ′ which are
compatible with σ and satisfy ρ′[0⋯i] ∼A ρ[0⋯i] there exists j ≥ i such that (Γ,ρ′, j) ⊧ck φ2

and (Γ,ρ′, k) ⊧ck φ1, for all k, i ≤ k ≤ j − 1;
– (Γ,ρ, i) ⊧ck ⟪A⟫φ1W φ2 if there exists σ ∈ Σck(A,Γ) such that for all runs ρ′ which are

compatible with σ and satisfy ρ′[0⋯i] ∼CA ρ[0⋯i] there exists j ≥ i such that (Γ,ρ′, j) ⊧ck φ2

and (Γ,ρ′, k) ⊧ck φ1, for all k, i ≤ k ≤ j − 1, or (Γ,ρ′, j) ⊧ck φ1, for all j ∈ N, j ≥ i.

Finally, the ⊧dk semantics is defined similarly with ⊧ck, with the difference that all ref-
erences to ∼CA are replaced with references to ∼A, and each quantification over strategies is
restricted to elements from Σck(A,Γ).

We say that a formula φ is satisfied in the game arena Γ , written Γ ⊧α φ, if (Γ,ρ,0) ⊧α φ

for all ρ ∈ Runsω(Γ).
We note that the usual notation ATL denotes the logic in which the semantics is given by

⊧ind. Also, in (Dima et al., 2010), ATLD
prs denotes the logic in which the semantics is given by

⊧dk. This is a modification the ATL logic with operators of the type ⟪A⟫D(A) from (Jamroga
and van der Hoek, 2004), by ensuring that strategies are not only feasible when the coalition
is created, but also during the whole existence of the coalition. A similar relationship can be
observed between the semantics ⊧ck and the operators of the type ⟪A⟫C(A) from (Jamroga
and van der Hoek, 2004).

In the balance of the paper, ATLprs
C denotes the logic whose semantics is given by ⊧ck.

4 Undecidability of the model-checking problem for ATL
prs

C

In this section we present our undecidability result for the model checking problem in ATL
prs
C

.
The problem statement is the following:

Problem 1. (The Model Checking Problem for ATLprs
C

) Given a game arena Γ and an ATL
prs
C

formula φ, decide whether Γ ⊧ck φ.

Theorem 1. The model checking problem for ATL
prs
C

is undecidable.

Proof. We reduce the Halting problem for Turing machines that start with an empty tape to
the model checking problem for ATLprs

C
. The proof is structured as follows: first we present

how to encode a Turing machine into a game arena, second we explain how the transitions
are simulated in the model and then we prove the correctness of the theorem statement.

W.l.o.g. we restrict the halting problem to Turing machines satisfying the following prop-
erties:

1. they never write a blank symbol;
2. they have a single initial state, denoted q0;
3. during a computation the machines never return to the initial state q0;
4. they halt when they reach a final state, i.e. there are no transitions leaving a final state.

The construction is similar to (van der Meyden, 1998; Shilov and Garanina, 2002), see
also (van der Meyden and Shilov, 1999). In (van der Meyden, 1998) asynchrony is used to
“guess” the amount of space required by the computation. Instead of asynchrony, we shall
use temporal operators to describe an arbitrary long but finite computation.

Intuitively, we encode the configurations of the Turing machine and the transitions between
the configurations as runs in the game arena. The runs consist of states which encode the

contents of the tape cells and the positions of the R/W head. Some extra bits of information
are needed, like the fact that some state represents a cell which is at the left (or the right)
of the head position, or that some states represent the transition which is applied on a tape
cell, encoding both the previous and/or the next tape symbol for that transition, and the
direction where the head moves after taking the transision.

Also some states represent the left and right limit of the tape space. We use a special
state marking the right limit as a guess of the amount of space that is needed for simulating
a Turing machine which halts when starting with an empty tape.

The transitions between configurations of the Turing machine are also encoded as runs
in the game arena. Then, the observability relations of one agent in the arena is utilized
for connecting a run encoding a configuration with a run encoding a transition between
configurations, which is then connected with the run encoding the next configuration with
the aid of the observability relation of the second agent.

Finally, checking that the constructed game arena can simulate a halting run of the given
Turing machine is done by checking the satisfiability of a reachability formula, saying that the
two agents in the game cannot avoid (in the sense of choosing some strategy with common
knowledge which applies to any identically observable history) the situation in which the
game reaches some state which signals that the Turing machine halts.

Formally, for a Turing machine M = ⟨QM , ΓM , β,ΣM , δM , q0, F
M ⟩ we construct a game

arena denoted Γ = (Ag,Q, (Qa)a∈Ag, (Ca)a∈Ag, δ, λ,Q0) for two agents, in which the set of
global states is:

Q = ΣM●
∪
●ΣM

∪ΣM● ∪
●ΣM ∪ {β̃} ∪ (ΣM

×QM)
∪(ΣM

×QM
×ΣM

× {left, right} × {prev,next})
∪{ǫL, ǫR, ǫL, ǫR, ǫ̃L, ǫ̃R} .

(5)

(The local states will be defined by identifying which sets of the atomic propositions that can
be seen by each agent, as in Remark 1 above.)

The sets of states ΣM●, ●ΣM , ΣM● and ●ΣM are four copies of the set of states of
M . The states in ΣM● = {s● ∣ s ∈ ΣM , s ≠ β} correspond to the symbols preceding the head.

The states in ●ΣM = {●s ∣ s ∈ ΣM} correspond to the symbols that follow the head. The
blank symbol can never appear on the tape segment at the left of the head since we have
only Turing machines that do not write blank symbols. We shall call the states in ΣM● =
{s● ∣ s ∈ ΣM , s ≠ β} and ●ΣM = {s● ∣ s ∈ ΣM} overlined states. We shall use them to encode

final configurations. The state β̃ is used to enforce the system to have an initial configuration.
In a run this state will always follow the state ⟨β, q0⟩, where q0 is the initial state. We use
the tuples in (ΣM

× QM
× ΣM

× {left, right} × {prev,next}) to encode transitions of the
Turing machine. The labels left, right indicate whether the head will move to the left or,
respectively, to the right, and the labels prev and next mark the previous position of the
head, respectively the next position where the head is moving.

The symbols in the last line of (5) represent delimiters in order to assure that the machine
does not move its head off the “guessed” space. In a run, the state ǫL will encode the left
margin of the tape and the state ǫR, the right margin. Likewise, ǫ̃L, ǫ̃R and ǫL, ǫR are delimiters
corresponding to the initial and, respectively, to the final configuration.

The set of initial states is Q0 = {ǫL, ǫL, ǫ̃L} and the set of actions consists of a singleton
set C1 = C2 = C = {act}.

The transition relation is given by the following rules:

– Transitions that encode a sequence of symbols on the machine’s tape are the following:

for all s, s′ ∈ ΣM , s●
act
Ð→ s′

● ∈ δ, ●s
act
Ð→ ●s′ ∈ δ, β

act
Ð→ β ∈ δ, s●

act
Ð→ s′● ∈ δ, ●s

act
Ð→ ●s′ ∈ δ,

β
act
Ð→ β ∈ δ.

– A state in the set ΣM
× QM is preceded by the states in ΣM● and followed by states

in ●ΣM ; this is modeled by the following transitions: for all s, s′, s′′ ∈ ΣM , s ≠ β, for all

q ∈ QM
∖ (FM

∪ {q0}), s●
act
Ð→ ⟨s′, q⟩ ∈ δ, and ⟨s′, q⟩

act
Ð→ ●s′′ ∈ δ.

– The same rule applies for the final configuration: for all s, s′ ∈ ΣM , s ≠ β, for all qf ∈ FM ,

s●
act
Ð→ ⟨s′, qf ⟩ ∈ δ, ⟨s′, qf ⟩

act
Ð→ ●s ∈ δ.

– In a run encoding a transition we mark the position where the head was and the position
where the head is moving. If the head moves to left then for all symbols s, s′, sn, sp ∈ ΣM

and for all states qp, qn ∈ QM
∖ (FM

∪{q0}) for which (sn, qn,L) ∈ δM (sp, qp) holds, s●
act
Ð→

⟨sn, qn, left, next⟩ ∈ δ, ⟨sn, qn, left, next⟩
act
Ð→ ⟨sp, qp, left, prev⟩ ∈ δ, ⟨sp, qp, left, prev⟩

act
Ð→

●s′ ∈ δ,
– When the head moves to right we have s●

act
Ð→ ⟨sp, qp, right, prev⟩ ∈ δ, ⟨sp, qp, right, prev⟩

act
Ð→

⟨sn, qn, right,next⟩ ∈ δ, ⟨sn, qn, right,next⟩
act
Ð→ ●s′ ∈ δ for all symbols s, s′, sp, sn ∈ ΣM and

for all states qp, qn ∈ QM
∖ (FM

∪ {q0}) for which (sn, qn,R) ∈ δM (sp, qp) holds.
– No transition leading to the initial state is permitted. Instead, from the initial state we can

pass into any other symbol: ǫL
act
Ð→ s● ∈ δ, ǫL

act
Ð→ ⟨s, q⟩ ∈ δ. In a run encoding a transition

the next state will be the leftmost encoding the transition. ǫL
act
Ð→ ⟨s, q, right, prev⟩ ∈ δ,

ǫL
act
Ð→ ⟨s, q, left, next⟩ ∈ δ.

– A dual situation holds for the final state, ǫR: for all symbols s ∈ ΣM , and for all states

q ∈ QM , ●s
act
Ð→ ǫR ∈ δ, ⟨s, q⟩

act
Ð→ ǫR ∈ δ, ⟨s, q, right,next⟩

act
Ð→ ǫR ∈ δ, ⟨s, q, left, prev⟩

act
Ð→

ǫR ∈ δ.
– The same rules apply for the runs encoding the final configuration. In this situation the

head must be on a final state: ǫL
act
Ð→ s● ∈ δ, ǫL

act
Ð→ ⟨s, qf ⟩ ∈ δ, for all symbols s ∈ ΣM , s ≠ β

and for all final states qf ∈ FM ;

– ●s
act
Ð→ ǫR ∈ δ, ⟨s, qf ⟩

act
Ð→ ǫR ∈ δ, for all s ∈ ΣM and for all qf ∈ FM ;

– In the initial run the head is on the first position and encodes the initial configuration,

the empty tape. ǫ̃L
act
Ð→ ⟨β, q0⟩ ∈ δ. In order to force the game arena to encode the initial

configuration we distinguish between β and β̃. β̃ will only follow an initial state. ⟨β, q0⟩
act
Ð→

β̃ ∈ δ, β̃
act
Ð→ β̃ ∈ δ, β̃

act
Ð→ ǫ̃R ∈ δ;

– Once the final state is reached it is never left. ǫR
act
Ð→ ǫR, ǫ̃R

act
Ð→ ǫ̃R, ǫR

act
Ð→ ǫR;

– Finally, nothing else belongs to δ.

The set of atomic propositions is

Π = {p1, p2, p3} ∪ {pβ} ∪ {ps,1, pq,1, ps,2, pq,2 ∣ s ∈ ΣM , q ∈ Q} .

The valuation function is defined by the following rules:

p1 ∈ λ1(x), p1 ∈ λ2(x) for all x ∈ {β̃, ⟨β, qM0 ⟩ , ǫ̃L, ǫ̃R} (6)

p2 ∈ λ1(x), p2 ∈ λ2(x) for all x ∈ {s●, ●s, ⟨s, q⟩ , ǫL, ǫR ∣ s ∈ ΣM , q ∈ QM} (7)

p3 ∈ λ1(ǫ̃R), p1 ∈ λ2(ǫ̃R) (8)

Propositions p1, p2, p3 ∈Π are interpreted to false in any other state.
The extra propositions are used for clarifying the observability relation for each agent,

namely, for all s ∈ ΣM and q ∈ QM :

– ps,1 ∈ λ1(ς), for all
ς ∈ {s●, s●, ●s, ●s, ⟨s, q⟩ ∣ q ∈ QM}

∪{⟨s, q, left, next⟩ ∣ s′, s′′ ∈ ΣM , q′ ∈ QM , (s′′, q,L) ∈ δM (s′, q′)}
∪{⟨s, q, right,next⟩ ∣ s′, s′′ ∈ ΣM , q′ ∈ QM , (s′′, q,R) ∈ δM (s′, q′)}
∪{⟨s, q, right, prev⟩ ∣ s′ ∈ ΣM , q′ ∈ QM , (s′, q′,R) ∈ δM (s, q)}
∪{⟨s, q, left, prev⟩ ∣ s′ ∈ ΣM , q′ ∈ QM , (s′, q′,L) ∈ δM (s, q)} ;

– pq,1 ∈ λ1(ς), for all
ς ∈ {⟨s, q⟩ ∣ s ∈ ΣM}

∪{⟨s, q, right, prev⟩ ∣ s′ ∈ ΣM , q′ ∈ QM , (s′, q′,R) ∈ δM (s, q)}
∪{⟨s, q, left, prev⟩ ∣ s′ ∈ ΣM , q′ ∈ QM , (s′, q′,L) ∈ δM (s, q)} ;

– ps,2 ∈ λ2(ς), for all
ς ∈ {s●, s●, ●s, ●s, ⟨s, q⟩ ∣ q ∈ QM}

∪{⟨s′, q′, left, prev⟩ ∣ q ∈ QM , (s, q,L) ∈ δM (s′, q′)}
∪{⟨s′, q′, right, prev⟩ ∣ q ∈ QM , (s, q,R) ∈ δM (s′, q′)}
∪{⟨s, q, right,next⟩ ∣ s′ ∈ ΣM , q′ ∈ QM , (s, q,R) ∈ δM (s′, q′)}
∪{⟨s, q, left, next⟩ ∣ s′ ∈ ΣM , q′ ∈ QM , (s, q,L) ∈ δM (s′, q′)} ;

– pq,2 ∈ λ2(ς), for all
ς ∈ {⟨s, q⟩ ∣ s ∈ ΣM}

∪{⟨s, q, right,next⟩ ∣ s′ ∈ ΣM , q′ ∈ QM , (s, q,R) ∈ δM (s′, q′)}
∪{⟨s, q, left, next⟩ ∣ s′ ∈ ΣM , q′ ∈ QM , (s, q,L) ∈ δM (s′, q′)} ;

– pβ ∈ λi(β) ∩ λi(β̃) for both i = 1,2.

As above, the extra propositions are interpreted as false in any other state.
Figures 1, 2 and 3 offer a graphical representation of the encoding of a Turing machine.

In Figure 1 we represent the part of the game arena accepting runs which encode the initial
configuration. The automaton in Figure 2 accepts runs which encode intermediate configura-
tions and, respectively, in Figure 3, final configurations. Any run ρ ∈ Runsf(Γ) ∪Runsω(Γ)
is uniquely accepted by one of the three parts of the game arena.

ǫ̃Lstart

p1

⟨β, q0⟩

p1

β̃

p1

ǫ̃R

p1 p3

Fig. 1. The initial configuration

Next we describe the way configurations of the Turing machine are encoded as runs in
the game arena. We denote a configuration of the Turing machine as a word over the alpha-
bet ΣM

∪ (ΣM
×QM) where a character of ΣM

×QM appears only once. Hence the set of
configurations is ((ΣM

∖ {β})∗ ⋅ (ΣM
×QM) ⋅ (ΣM)∗).

In the game arena we have two types of run: runs that encode configurations and the runs
that encode transitions.

ǫLstart

s●1

s●2

⟨s1, q1⟩

⟨s2, q2⟩

●s1

β

●s2

ǫR

⟨s, q, left, prev⟩ ⟨s, q, left,next⟩

⟨s, q, right, prev⟩ ⟨s, q, right,next⟩

Fig. 2. An intermediate configuration (only the states corresponding with two symbols from ΣM are repre-
sented here)

ǫLstart

p2

s●
1

p2

s●
2

p2

⟨s, qf ⟩

p2

●s1 p2

β

p2

●s2 p2

ǫR

p2

Fig. 3. The final configuration

A configuration cnfg = s1⋯si−1 ⟨si, q⟩ si+1⋯sn is encoded by a run
ρ = ǫLs

●
1
⋯s●i−1 ⟨si, q⟩

●si+1⋯
●snβ

mǫR. There are infinitely many runs that encode one configura-
tion, in this case, all runs that start with the state sequence ǫLs

●
1
⋯s●i−1 ⟨si, q⟩

●si+1
●si+2⋯

●snβ
mǫR.

An initial configuration is encoded by all runs that start with ǫ̃L ⟨β, q0⟩ β̃mǫ̃R. Respectively, a
final configuration cnfgf = s1⋯sk−1 ⟨sk, qf ⟩ sk+1⋯sn is encoded by all the runs starting with

the overlined state sequence ǫLs
●
1
⋯s●

k−1 ⟨sk, q⟩
●sk+1⋯●snβ

mǫR, for m ∈ N, m ≠∞.

The other type of run that may occur in Γ encodes transitions. For two configurations

cnfg = s1⋯sk−1 ⟨sk, q⟩ sk+1sk+2⋯sn and

cnfg′ = s1⋯sk−1s
′
k ⟨sk+1, q′⟩ sk+2⋯sn

connected by a transition in which the R/W head of the Turing machine goes right, that is,
(s′k, q

′,R) ∈ δM (sk, q) for some s′k ∈ Q
M , q′ ∈ ΣM , the transition coding run associated to the

transition cnfg ⊢ cnfg′ is the following run in Γ :

ǫLs
●
1
⋯s●k−1 ⟨sk, q, right, prev⟩ ⟨sk+1, q

′, right,next⟩● sk+2⋯●snǫR.

Similarly, when cnfg′ = s1⋯sk−2 ⟨sk−1, q′⟩ s′ksk+1⋯sn and ∃s′k, q
′ for (s′k, q

′,L) ∈ δM (sk, q),
the transition coding run for the transition cnfg ⊢ cnfg′ is defined as follows:

ǫLs
●
1
⋯s●k−2 ⟨sk−1, q

′, left, next⟩ ⟨sk, q, left, prev⟩
●
sk+1⋯

●snǫR

Before showing the proof for correctness we give some helpful properties of the system
presented above.

Considering the valuation function, the following properties hold in our model:

Proposition 2. If ρ1 and ρ2 are two runs in the game arena Γ , then ρ1 ∼1 ρ2 iff ρ1 = ρ2 or
ρ1 encodes a configuration cnfg and ρ2 encodes a transition coding run cnfg ⊢ cnfg′.

Proof. The implication from right to left follows directly from the notation of transition coding
runs and the definition of the labeling function λ1. In order to prove the implication from left
to right, we shall verify whether we have another run different from the mentioned ones, ∼1
equivalent with ρ1.

Consider ρ1 = ǫLs
●
1
⋯s●i−1 ⟨si, qp⟩

●
si+1⋯

●snǫR and ρ2 = xLx1⋯xnxR. Consider (s′i, qn,L) ∈
δM (si, qp). The case when the head moves to right is similar. Suppose that ρ1 ∼1 ρ2, ρ1 ≠ ρ2
and ρ1 encodes a configuration cnfg1 and there is no configuration cnfg2 in the Turing
machine M such that ρ2 = (cnfg1 ⊢ cnfg2).

We consider only initialized runs, thus the initial state xl ∈ {ǫL, ǫL, ǫ̃L}. Since a run contains
ǫ̃L followed by ⟨β, q0⟩ and ǫL followed by ⟨s, qf ⟩, we have xL = ǫL. Following the same idea,
we observe that xR = ǫR for a finite configuration. Using the definition of λ1 and λ2 and the

fact that ⟨sj, q′, left, next⟩
act
Ð→ x if and only if x = ⟨sj+1, q′′, left, prev⟩, it follows that for all

j,1 ≤ j ≤ i − 2 we have xj = s●j . Hence we have xj = s●j for j, i + 1 ≤ j ≤ n.

Furthermore, we have that λ1(s●i−1) = {psi−1} = λ1(s) only for s ∈ {s●i−1, s
●
i−1,

●si−1, ●si−1} ∪ {⟨si−1, q, left, next⟩ ∣ s′, s′′ ∈ ΣM , q′ ∈ QM , s.t. (s′′, q,L) ∈ δM (s′, q′)}
∪{⟨si−1, q, right,next⟩ ∣ s′, s′′ ∈ ΣM , q′ ∈ QM , s.t. (s′′, q,R) ∈ δM (s′, q′)}. We can eliminate the
overlined states because an overlined state follows only another overlined state or a state con-
taining qf , qf ∈ FM . We also eliminate the states of the type ⟨si−1, q, right,next⟩ because
this states follow only ⟨s′, q′, right, prev⟩, for s′, s′′ ∈ ΣM , q′ ∈ QM , (s′′, q,R) ∈ δM (s′, q′). Now,
since only

s●i−1
act
Ð→ ⟨si, q⟩ and ⟨si−1, q′, left, next⟩

act
Ð→ ⟨si, q, left, prev⟩ belong to δ, we have either

xi−1 = s●i−1 and xi = ⟨si, q⟩, or xi−1 = ⟨si−1, q′, left, next⟩ and xi = ⟨si, q, left, prev⟩.
Because none of the observationally equivalent states can form a correct initialized run, we

have proved that ρ1 ∼1 ρ2 implies ρ1 = ρ2 or ρ1 encodes a configuration cnfg and ρ2 encodes
a transition coding run cnfg ⊢ cnfg′. ⊓⊔

Proposition 3. If ρ1 and ρ2 are two runs in the game arena Γ , then ρ1 ∼2 ρ2 iff ρ1 = ρ2 or
ρ1 encodes a configuration cnfg and ρ2 encodes a transition coding run cnfg′ ⊢ cnfg.

Proof. The proof is similar to the one used for Proposition 2. ⊓⊔

Putting together Proposition 2 and Proposition 3 we obtain the following property:

Proposition 4. For each computation in the Turing machine M , cnfg ⇒∗M cnfg′, where
cnfg and cnfg′ are instantaneous configurations of M , iff there exist ρ, ρ′ runs in the game
arena Γ that encode cnfg and, respectively, cnfg′, such that ∣ρ∣ = ∣ρ′∣ and ρ ∼C{1,2} ρ

′.

Proof. The proof is constructed by following a series of equivalences. In the Turing machine
M having the computation cnfg⇒∗M cnfg′ means that there exist a natural number m, the
length of the computation, and m configurations denoted cnfg0, cnfg1,⋯, cnfgm such that
cnfg = cnfg0 ⇒M cnfg1 ⇒M ⋯ ⇒M cnfgm = cnfg′. We write this cnfg0 ⇒∗M cnfgm =
(cnfgi ⇒M cnfgi+1)0≤i≤m−1.

From Proposition 2 and Proposition 3 it follows that for two instantaneous configurations
of the Turing machine M , cnfgi and cnfgi+1, we have cnfgi ⇒M cnfgi+1 iff there exist
ρi, ρi+1 two runs that encode cnfgi and, respectively, cnfgi+1 in the game arena Γ such that
∣ρi∣ = ∣ρi+1∣ ≥ ∣cnfgi∣ and ρi ∼1 (cnfgi ⊢ cnfgi+1) ∼2 ρi+1, for all i natural numbers. By fixing
the length of the runs and configurations to the “guessed” value or the length of cnfg′ we
can write that (ρi ∼1 (cnfgi ⊢ cnfgi+1) ∼2 ρi+1)0≤i≤m−1. According to our definition of λ1 and
λ2, we have now ρ1 ∼C{1,2} ρm.

Note that the reflexive transitive closure of ⇒M leads to the complete proof. Hence,
cnfg⇒∗M cnfg′ iff ∣ρ∣ = ∣ρ′∣ and ρ ∼C{1,2} ρ

′. ⊓⊔

We now turn to the proof of the theorem. We prove in the rest of this section that
(Γ,ρ,0) ⊧ck ⟦1,2⟧◇ (p1 ∧ p3 ∧ ⟦1,2⟧ ◻ p2) iff the the Turing machine M halts when starting
with the empty tape.

In order to prove the implication from left to right we state that starting with the empty
tape, machine M halts. This means that there exists n ∈ N, there exists i ∈ N,1 ≤ i ≤ n and
there exists a finite sequence of configurations cnfg0⇒∗M cnfgf , where cnfg0 = ⟨β, q0⟩βn−1 is
an initial configuration,
cnfgf = s1⋯sk−1 ⟨sk, qf ⟩ sk+1⋯sn is a final configuration for some s1,⋯, sk−1 ∈ ΣM ∖ {β}
and sk+1,⋯, sn ∈ ΣM , 0 ≤ k ≤ n. Consider the length of the computation to be f, f ∈ N. By
Proposition 4 we can also consider that in the game arena Γ there exists a finite sequence of
runs ρ0, ρ1,⋯, ρf and ρ̂0, ρ̂1,⋯, ρ̂f−1 such that

ρ0 ∼1 ρ̂0 ∼2 ρ1 ∼1 ρ̂1 ∼2 ⋯ ∼1 ρ̂f−1 ∼2 ρf and

ρ0 = ǫ̃L ⟨β, ρ0⟩ β̃n−1ǫ̃R encodes the initial configuration
ρi = ǫLs

●
1
⋯s●j−1 ⟨sj, q⟩

●
sj+1⋯,● snǫR encodes the i-th configuration

cnfgi, for all i,1 ≤ i ≤ f and for some j,1 ≤ j ≤ n.

ρf = ǫLs
●
1
⋯s●

l−1 ⟨sl, q⟩
●sl+1⋯●snǫR, encodes the final configuration

(Γ,ρ0, i) ⊧ck p1, (Γ,ρ0, n) ⊧ck p3, (Γ,ρf , i) ⊧ck p2, ∀i,1 ≤ i ≤ n.

(9)

We consider a game arena with a single action. Therefore there is only one corresponding
final run ρf , ∼

C
{1,2} reachable from ρ0, and, furthermore, the proposition p3 is visible in the

n-th state, of ρf . We therefore conclude that the ATLprs
C formula ⟦1,2⟧◇(p1 ∧p3∧⟦1,2⟧◻p2)

holds in the game arena Γ .

In order to prove the implication from right to left we show that for any run satisfying
the ATL

prs
C formula (Γ,ρ,0) ⊧ck ⟦1,2⟧ ◇ (p1 ∧ p3 ∧ ⟦1,2⟧ ◻ p2), there exists an initial run

∼C
1,2-equivalent with ρ.

If (Γ,ρ,0) ⊧ck ⟦1,2⟧◇ (p1 ∧ p3 ∧ ⟦1,2⟧ ◻ p2) then in the game arena there exists ρ′ a run
and there exist n ∈ N and i ∈ N,1 ≤ i ≤ n such that

ρ = ǫ̃L ⟨β, q0⟩ β̃nǫ̃R

ρ′ = ǫLs
●
1
⋯s●i−1 ⟨si, q⟩ ●si+1⋯●snǫR

This means that there exists k ∈ N, a sequence of k runs ρ0,⋯, ρk such that ρ = ρ0 ∼a1 ρ̂1 ∼a2
ρ2 ∼a1 ⋯ ∼a2 ρk = ρ′.

Following the Proposition 3 in the Turing machine M there exists a sequence of configu-
rations corresponding to the runs ρ1, ρ2⋯ρk such that

cnfg0⇒M cnfg1⇒M ⋯⇒M cnfgk.

where cnfg0 is an initial configuration and

cnfgk = s1⋯si−1 ⟨si, qf ⟩ si+1⋯sn,

for some i, is a final configuration.
Hence, the machine M halts when starting with an empty tape. ⊓⊔

5 Conclusion

We have presented a semantics for the coalition operators of ATL in which the agents utilize, in
their strategies, the same action in states that lie in the same common knowledge observability
for the coalition in which they participate. We have shown that the model checking problem
for is undecidable for ATL

prs
C

, a result inspired from the techniques used in (Fagin et al.,
2004; van der Meyden, 1998; van der Meyden and Shilov, 1999; Shilov and Garanina, 2002).

It would be interesting to investigate the possibility to generalize the decidability results
on model-checking temporal epistemic logics with common knowledge (van Benthem and
Pacuit, 2006; Lomuscio and Penczek, 2007) to the setting presented here.

Bibliography

Alur, R., Henzinger, T., and Kupferman, O. (1998). Alternating-time temporal logic. In
Proceedings of COMPOS’97, volume 1536 of LNCS, pages 23–60. Springer Verlag.

Alur, R., Henzinger, T., and Kupferman, O. (2002). Alternating-time temporal logic. Journal
of the ACM, 49(5):672–713.

Bulling, N., Dix, J., and Jamroga, W. (2010). Model checking logics of strategic ability:
Complexity. In Dastani, M., Hindriks, K. V., and Meyer, J.-J. C., editors, Specification and
Verification of Multi-Agent Systems, pages 125–160. Springer.

Dima, C., Enea, C., and Guelev, D. (2010). Model-checking an alternating-time temporal
logic with knowledge, imperfect information, perfect recall and communicating coalitions.
Electronic Proceedings in Theoretical Computer Science, 25:103–117.

Fagin, R., Halpern, J., Moses, Y., and Vardi, M. (2004). Reasoning about knowledge. The
MIT Press.

Jamroga, W. and Agotnes, T. (2007). Constructive knowledge: What agents can achieve
under imperfect information. Journal of Applied Non-Classical Logics, 17(4):423–475.

Jamroga, W. and van der Hoek, W. (2004). Agents that know how to play. Fundamenta
Informaticae, 63(2-3):185–219.

Lomuscio, A. and Penczek, W. (2007). Logic column 19: Symbolic model checking for
temporal-epistemic logics. CoRR, abs/0709.0446.

Schobbens, P.-Y. (2004). Alternating-time logic with imperfect recall. Electronic Notes in
Theoretical Computer Science, 85(2):82–93.

Shilov, N. V. and Garanina, N. O. (2002). Model checking knowledge and fixpoints. In
Proceedings of FICS’02, pages 25–39, Extended version available as Preprint 98, Ershov
Institute of Informatics, Novosibirsk.

van Benthem, J. and Pacuit, E. (2006). The tree of knowledge in action: Towards a common
perspective. In Proceedings of AiML’06, pages 87–106. College Publications.

van der Meyden, R. (1998). Common knowledge and update in finite environments. Infor-
mation and Computation, 140(2):115–157.

van der Meyden, R. and Shilov, N. V. (1999). Model checking knowledge and time in systems
with perfect recall (extended abstract). In Proceedings of FSTTCS’99, volume 1738 of
LNCS, pages 432–445.

