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I. - An attempt to de�ne Weak Arithmeti
s from the

Journ�ees sur les Arithm�etiques Faibles

It is amusing, indeed astonishing, that no-one among a 
ommunity of about one hundred


omputer s
ientists, logi
ians and mathemati
ians organizing meetings twi
e a year for al-

most ten years

1

has thought it advisable properly and pre
isely to de�ne the �eld of resear
h

one usually 
allsWeak Arithmeti
s. In my opinion, everybody, within this group, brought to

it his own interest and wondered at not having to justify the relevan
e of Weak Arithmeti
s.

In dis
ussions by ourselves, it appears that this relevan
e is intuitively founded on a 
ommon

�eld of mathemati
al interest, a 
ommon set of questions and logi
al methods to investigate

problems, and a general 
ulture within 
omputer s
ien
e. Basi
ally, a s
ientist interested

in Weak Arithmeti
s knows some mathemati
al logi
, likes Peano Arithmeti
 and the two

G

�

odel Theorems, works or has been working on de
ision problems, on algorithms and

their 
omplexities, and uses all kinds of abstra
t ma
hines. Through these ma
hines Weak

Arithmeti
s are strongly in
uen
ed by the 
omputer-dominated modern world. The Weak

Arithmeti
s s
ientist is not a professional mathemati
ian who studies numbers (using su
h

tools as algebrai
 methods, 
omplex analysis and algebrai
 geometry) but is often (or always

in some areas) in 
onta
t with Number Theory. Therefore it is diÆ
ult to give a pre
ise

de�nition of Weak Arithmeti
s as a dis
ipline in the same way as - say - Model Theory.

Nevertheless we 
an nowadays 
onsider the list of le
tures and talks given from JAF1 to

JAF17, in order to determine the main dire
tions and themes provided by the parti
ipants

at those events. One 
an distinguish four groups of le
tures whi
h the reader 
an �nd in the

Annex.

Theme 1.- Constru
tion of Nonstandard Models of �rst-order Arithmeti
s in order to in-

vestigate:

1) axiomatizations of subtheories of Peano Arithmeti
 (denoted PA) in whi
h indu
tion

s
hemata are restri
ted to a spe
ial subset of formulas;

2) 
omplexities of the 
onsidered subtheories, espe
ially for developing polynomial time

algorithms.

This theme is 
losely linked, on the one hand, to the study of indu
tion s
hemata whi
h

are respe
tively 
alled logarithmi
, open, parameter free, �

k

-indu
tion, et
., and, on the

other hand, to the Buss Arithmeti
. In this theme, logi
ians try to 
onstru
t (nonstan-

dard) models having spe
i�
 properties (for example an ordered �eld without an integer

part (Boughattas)). One tries also to prove (or disprove) some axiomatizability prop-

erties su
h as the fa
t that open-indu
tion in normal rings is not �nitely axiomatisable

(Boughattas). Algorithmi
 and Complexity theories are also 
onne
ted to this theme be-


ause 
omputability in polynomial time 
orresponds to some spe
i�
 axiomatisations one


an 
hara
terize: for instan
e P. Pudlak, Takeuti and Kraji
ek proved the equivalen
e

between the provability in bounded arithmeti
 of the 
ollaps of the stri
t polynomial time hi-

erar
hy and the �nite axiomatizability of the arithmeti
al theory in the language of addition,

multipli
ation and x

dlog xe

with indu
tion s
hemata restri
ted to �

0

-formulas.

The lively style of the prefa
e by J.P. Ressayre provides a pre
ise and well-do
umented

presentation, the deep links between nonstandard models, axiomatizability and algorithmi



omplexity. So on this matter, we refer to his text.

Another illustration of this theme is bounded arithmeti
s, whi
h were introdu
ed by Buss

within a �rst-order logi
al language whi
h we denote L(BA). This language 
ontains the

1

The �rst \Journ�ees sur les Arithm�etiques Faibles" had been held in june 1990 at the \

�

E
ole Normale

Sup�erieure de Lyon"
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symbols of su

essor, addition, multipli
ation, 0, b(x=2)
, length of x, that is to say d(log

2

(x+

1))e, the fun
tion 2

jxj:jyj

, identity and natural order. In this language, Buss de�nes a spe
ial

indu
tion-s
hemata on 
ertain subset of formulas providing a Weak Arithmeti
al theory S

su
h that a subset A of N is P if and only if it is S-provably NP \ (Co � NP ). In so

doing, Buss provides a promising method to prove a set A is P sin
e, a

ording to this

result, it is suÆ
ient to prove it is both NP and Co � NP in some expli
itly known and

spe
i�
 (weak) theory. About this result, P. Cegielski wrote: Pra
ti
ally, if we know it

is both NP and Co � NP , then the method used to prove this result 
ertainly is not too


omplex and the demonstration 
an be formalized in su
h a theory. However, up to now,

no set has been shown in P by su
h a method. The reason is that bounded arithmeti
s are

still not widely developed. For instan
e we do not know whi
h 
lassi
al theorems of Number

Theory are true in these Weak Arithmeti
s. The length of proof of any 
lassi
al theorem

in
reases greatly with weakness of the arithmeti
al theory in whi
h this proof takes pla
e. For

instan
e, a proof of Diri
hlet theorem on (in�nity of) primes in arithmeti
al sequen
es in

primitive re
ursive arithmeti
 PRA is one hundred pages long. Su
h results would help to

apply Buss'(results).

Theme 2.- De�nability and de
idability of weak substru
tures of the Standard Model of

Peano.

The general framework of de�nability is presented in a detailed way in the survey 
arried

out by P. Cegielski in the annals of mathemati
s and artifi
ial intelligen
e, vol.

16 n

os

1.4 (1996). For a stru
ture M , we denote by DEF(M) the set of 
onstants, fun
tions

and relations whi
h are �rst-order de�nable within M . Following Chur
h and Turing's

proof in 1936 that the theory of natural integers equipped with addition and multipli
ation

and identity is not de
idable, we obtain a method for proving the unde
idability of the

theory of a stru
ture M whi
h 
onsists in showing DEF(M) = DEF(N;+;�;=). The set

DEF(N;+;�;=) is well-known and K. G

�

odel proved it 
ontains any relation we 
an de�ne

by re
ursion (with some parti
ular set of natural fun
tions as primitives) so that , if M is a

sub-stru
ture of the standard model, then the in
lusion of DEF(M) into DEF(N;+;�;=)

is trivial. One of the most famous questions to have been solved in the framework of

arithmeti
al de�nability is Hilbert's tenth problem; It asks for an algorithm to determine

whether a given diophantine equation has a solution or, in other words whether there exists

a program su
h that given a polynomial P (x

1

; : : : ; x

n

) with integer 
oeÆ
ients as input, we


an obtain as output the set, possibly empty, of integer solutions of P (x

1

; : : : ; x

n

) = 0. In

1970, I. Matiassevit
h proved the key-results leading to a negative answer to this prob-

lem: exponentiation is de�nable by a diophantine equation, i.e. by a �

1

-formula within

Peano Arithmeti
. Of 
ourse, this result was obtained after years of resear
h and 
ollab-

oration with M. Davis, H. Putnam, J. Robinson who provide many 
lassi
al theorems

and 
onje
tures. Due to this 
ooperation, in the de�nability area we refer to as the MDRP

(for Matiassevit
h-Davis-Robinson-Putnam) theorem the fa
t that every �

1

-formula

is equivalent to a Diophantine formula. The key-points of this famous proof of the negative

solution of the tenth-Hilbert problem belong to arithmeti
al 
oding and de�nability:

- It is possible to 
ode the pro
ess of register ma
hines by the masking relation r + s between

the integers r and s given in their binary expansion; more pre
isely, we say that s masks r

if and only if when 0 appears as a digit in the binary expansion of s then 0 also appears as

the digit of the same rank in the binary expansion of r;

- (A 
orollary of Lu
as' Theorem) the mira
le is that r + s if and only if

�

r

s

�

� 1 (mod 2),

whi
h means that one 
an 
ompletelydes
ribe in the language of �rst-order arithmeti
 not

only the operation of a register ma
hine, but also that of a normal 
omputer as well;

- the des
ription, via �rst-order arithmeti
al formulas des
ribing the operating 
y
les, of a

register ma
hine, 
an �nally be rewritten as a 
onjun
tion of diophantine equations; this is

due to arithmeti
al properties su
h as, for instan
e, the exponential growth of the sequen
e

of the solutions x

a

(n) and y

a

(n) to the Pell-Fermat equation x

2

�

p

a

2

� 1y

2

= 1.

A by-produ
t of this is the possibility of �rst-order de�ning the set of prime as the set of

positive value P (N

n

) \ N of a 
ertain polynomial P due to J.P. Jones and al...

In the present theme, usually we 
onsider an arithmeti
al substru
ture M of the standard

model and we try to prove that either the whole arithmeti
al standard model is de�nable
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within M , orM is de
idable and in this 
ase we investigate the 
omplexity of the 
onsidered

stru
ture. This is not an alternative: there are unde
idable weak substru
ture of Peano

where addition and multipli
ation are not simulteneously de�nable and whi
h are unde
id-

able. The problem of de�nability whi
h is the main topi
 of theme 2 goes ba
k to Number

Theory questions raised a long time ago, as we shall show in part II below. Arithmeti
al

de�nability is 
losely related to Number Theory and, in a sense, sheds new light on its 
las-

si
al results. In part II of the present prefa
e, we intend to develop on an example having

histori
al roots going ba
k a 
entury before the se
ond main theme of Weak Arithmeti
s,

namely the problem of mutual de�nability of arithmeti
al relations within �rst-order Num-

ber Theory. Unde
idability is a 
orollary of de�nability of addition and multipli
ation in

the framework of Peano Arithmeti
. Weak Arithmeti
s therefore also in
lude arithmeti-


al de
ision problems su
h as de
idable extensions of Presburger (additive) arithmeti


and Skolem (multipli
ative) arithmeti
. The de
ision problem for additive prime number

theory is adressed both within Number Theory and the Theory of Automata. There are


onditional results in this �eld (mostly due to A. Woods) under Shinzel's Hypothesis on

primes, and absolute results re
ently proved by Cegielski, Ri
hard and Vsmirnov. The

study of the set RUD of rudimentary predi
ates (Grzegor
zyk and Esbelin) is linked

both to Buss Arithmeti
s, and to algorithmi
 and Spe
tra problems whi
h 
on
ern the set

of 
ardinalities of the �nite models of a given �rst-order formula. It is worth noting that

rudimentary predi
ates extend to real analysis and to the problem of speeding up software

used in 
omputer s
ien
e and numeri
al analysis. In our somewhat arbitrary 
lassi�
ation,

we put RUD in a spe
ial theme with the study of the problem of spe
tra (�nite models),

arithmetisation of graphs and Grzegor
zyk hierar
hy.

Theme 3.- Abstra
t Ma
hines, Automata and Words.

Any program in a spe
i�ed language whi
h we use in a 
omputer has a 
orresponding abstra
t

ma
hine, for instan
e a Turing ma
hine. A
tually, we 
an formalize any program be
ause

with addition and multipli
ation we 
an de�ne (or simulate) all re
ursive s
hemata. Now

if we 
onsider only some Weak Arithmeti
 (for instan
e Presburger Arithmeti
) then a


orresponding abstra
t ma
hine 
omputing fun
tions and relations de�nable in this theory,

or in a model of this one, is of 
ourse weaker than a Turing Ma
hine (for instan
e it 
an be

an automat on for Presburger Arithmeti
). In this way, it is natural to asso
iate abstra
t

ma
hines (Automata, Push Down Automata, Cellular Automata, Beltiukov Ma
hines,

Alternating Turing Ma
hines, et
) with di�erent weak arithmeti
al theories and to the

models we investigate. During the JAF, many ma
hines, algorithms and the obje
ts they

represent were presented. Of 
ourse, the words - arguments whi
h these ma
hines use - with

the di�erent meaning we give to this notion in 
omputer s
ien
e, were studied. To this theme

also belong general 
oding theory and all problems of weak arithmeti
al stru
tures 
onsisting

of the usual integers with pairing fun
tions (su
h as Cantor pairing polynomial) or 
odings

of n-tuples (using for example the well-known �-fun
tion of G

�

odel). Ma
hines as tools for

solving problems of de�nability or de
idability were used by I.Kore

�


, A. B

�

es, V. Bruy

�

ere,

C. Mi
haux, J.E. Pin, J. Tomasik, et
. Ma
hines are not only tools but are themselves

the obje
ts of investigation su
h as for instan
e the smallest universal Turing Ma
hines

(M. Margenstern and Pavlotskaia), or the Matiassevit
h ma
hines introdu
ed to

solve problems of tra
e monoid (A. Mus
holl, Y. Matiassevit
h). Results on these

ma
hines are due to O.Teytaud and A. B

�

es. The problem of determining whether 
ounting

is possible with a given abstra
t ma
hine is 
losely 
onne
ted to question of 
omplexity

hierar
hies as in the 
ase of the Grzegor
zyk hierar
hy. Automata trees and modular


ounting were developed by H.A. Esbelin and R. Espel llima. In the framework of

in�nite games and parti
ularly on Borelsets, J. Dupar
, J.P. Ressayre, O. Finkel refer

to automata but this is 
onsidered to be on the boundary between Weak Arithmeti
s and

Set Theory.

We have seen that Weak Arithmeti
s 
over two main themes (Axiomatizibility and Com-

plexity in Subtheories of Peano Arithmeti
 on the one hand, and Arithmeti
al De�nability

and De
idability on the other). We have also noted that Abstra
t Ma
hines underlie our

investigations and thus be
ome another theme of studies within the framework of Weak

Arithmeti
s. Nevertheless these three areas do not exhaust the topi
s presented by par-

4



ti
ipants of the JAF. We list some re
urrent questions and some new 
on
epts in the last

se
tion of this part.

Other Themes.-

a) Graphs, Spe
tra and RUD;

b) Elementary proofs of 
lassi
al Number Theory results, Arithmeti
al Proof Theory;


) Fun
tional Programing and Re
ursivity;

d) General Logi
;

e) Applied Algorithmi
s.

Theme a) refers to Finite Models and to the Fagin 
onje
ture whi
h is also linked to

RUD a

ording to some results of A. Woods. The notion of Graph is 
entral and its

arithmetisation addresses this question within Weak Arithmeti
s. In the present issue there

is an arithmetisation of the four-
olour problem due to Y. Matiassevit
h.

Theme b) stems from the work Erd

�

os and Selfridge who were the �rst to ask for what

they 
alled elementary proofs (i.e. in the framework of real analysis instead of 
omplex

analysis) of results su
h as the Diri
helet Theorem on the in�nity of primes in arith-

meti
al sequen
es. Logi
ians su
h as Takaeuti, Kreisel and Simpson (with his reverse

mathemati
s) have 
ontributed to the subje
t but in a general way. P. Cegielski and O.

Suda
 have 
onstru
ted proofs for spe
i�
 
lassi
al theorems (su
h as the Prime Number

Theorem of De La Vall

�

ee Poussin). They have also 
onstru
ted some �rst order denu-

merable stru
tures modelling a version of Peano Analysis to provide proofs within Peano

Arithmeti
 models or even within the standard model of weaker arithmeti
al theories (e.g.

PRA, the Primitive Re
ursive Arithmeti
). It is 
lear that this work should be 
ontinued

in order to strengthen the tools developed by Buss.

Theme 
) is 
learly within the s
ope of Weak Arithmeti
s wherein one attempts to re
on-

stru
t a missing indu
tion or re
ursive s
hemata. In Fun
tional Programming also attempts

to avoid re
ursion and re
ursive de�nition. For example L. Colson demonstrates that

roughly speaking primitive re
ursive algorithms are not optimal in terms of 
omplexity.

Theme d) is mainly 
on
erned with Nezondet's p-destinies whi
h are a general tool

founded on trees for de
iding 
losed senten
es when applied to theories 
onsisting of a set

of senten
es in a relational language whi
h have a bounded number of quanti�ers. This

a promising new method whi
h, for example gives rise to many interesting questions in

Number Theory (Guillaume, Jelei Yin, Ri
hard).

Theme e) 
ould be 
onsidered to be the future of Weak Arithmeti
s in Informati
s. A


onsiderable proportion of software relies on algorithms whi
h derive from numeri
al anal-

ysis however, due to the unde
idability of the real zero, many of these programs have to be

written within the framework of the standard model Z of integers. This is parti
ularly the


ase in dis
rete geometry, 
omputer imagery and arti�
ial vision where faster 
omputation

with in
reasing pre
ision is 
onstantly demanded. Some stru
ture su
h as the natural in-

tegers with the mappings 
eiling and 
oor is ne
essary to des
ribe digital planes and their

algorithms of 
onne
tivity, or to perform ray tra
ing and so on. Here the blend of Number

Theory, Logi
al Arithmeti
 and Computer S
ien
e (automata and 
hips) whi
h make up

Weak Arithmeti
s has been applied e�e
tively and will be
ome more and more useful.

5



II. - An illustration of a de�nability problem is Weak Arithmeti
s

de�nability: the Woods-Erd

�

os 
onje
ture

The question of whether �rst-order arithmeti
 on the set of nonnegative integers is de�nable

in terms of the su

essor fun
tion S and the 
oprimeness predi
ate ? is a typi
al problem

of Weak Arithmeti
s and perhaps, histori
ally speaking, one of the �rst to be posed in this

modern framework. It was raised in 1949 by Julia Robinson in her thesis, when she inves-

tigated the axiomatizability of di�erent theories of elementary stru
tures on numbers. More

pre
isely, Julia Robinson stated: We might also try to improve the theorem by repla
ing

divisibility by the relation of relative primeness. However I have not been able to determine

whether � is arithmeti
ally de�nable in terms of ? and S or even in terms of ? and +. This

question, and some others of the same nature su
h as the de�nability of all arithmeti
al

relations in terms of addition and 
oprimeness, were negle
ted for de
ades. In the eighties,

Alan Woods, returned to these problems. He was the �rst to realize that the question of

de�nability within mathemati
al logi
 is equivalent to the following 
onje
ture of Number

Theory: there is an integer k su
h that for every pair (x; y) of integers, the equality x = y

holds if and only if x + i and y + i have the same prime divisors for 0 � i � k. This

number-theoreti
al form of Julia Robinson's question is itself very 
losely linked to some

open questions proposed by Paul Erd

�

os and for whi
h he had 
onje
tured a positive answer.

In the book by Ri
hard Guy entilted Unsolved Problems of Number Theory, the question is

attributed to Alan Woods, but due to its 
lose relation with 
onje
tures of Erd

�

os whi
h

were known to A. Woods, this 
onje
ture is known as the Woods-Erd

�

os 
onje
ture, or

WE or WE(k) if it is ne
essary to state the parameter k. Indeed, WE is a weakening

of the following 
onje
ture of P. Erd

�

os: Erd

�

os asks if there are in�nitely many 4-tuples

(m; k; n; l) su
h that (m+1)(m+2) : : : (m+k) and (n+1)(n+2) : : : (n+l) with k � l � 3 
an


ontain the same prime fa
tors. For example 2.3.4.5.6.7.8.9.10 and 14.15.16 or 48.49.50, also

2.3.4.5.6.7.8.9.10.11 and 98.99.100. For k = l � 3 he 
onje
tures that there are only �nitely

many. Erd

�

os' interest is the relationship between prime divisors and 
onse
utive integers is

supported by many other papers. Weak Arithmeti
, 
ombines a Number-Theoreto
 pointof

view with appro
hies based on mathemati
al Logi
 and 
on
ept of de�nability in a fashion

parti
ulary appropriate to the investigation of the WE-
onje
ture.

II-1 The Number Theoreti
al approa
h to WE.

The problem of �nding a lo
al 
hara
terization of an integer a by its prime divisors and by

the prime divisors of a � 1 (or a + 1) - whi
h a
tually is a problem of de�nability - was

raised by famous mathemati
ians many years ago. The fundamental result on this question

is due to Zsigmondy and was redis
overed and generalized by Birkhoff and Vandiver

twelve years later. They showed that, ex
ept for 2 and 8, ea
h power u of a prime number

p is 
hara
terized by p and the prime divisors of u+ 1. An analogue of the previous result

dealing with x

n

+ y

n

has been proved by Lu
as and generalized by Carmi
hael.

Another Classi
al result 
losely related to WE is due to C. St�rmer who showed the

following:

Let p

1

; : : : ; p

n

be distin
t prime numbers and K, �

1

; : : : ; �

n

be nonnegative integers. For 1 �

i � n, let us put "

i

= 1 if �

i

is odd, "

i

= 2 if �

i

is even and set

D = K:p

�

1

1

: : : p

�

n

n

.

If x

2

� 1 = K:p

�

1

1

: : :p

�

n

n

then x is the fundamental solution of the Pell-Fermat equation

x

2

�Dy

2

= 1;

If x(x + 1) = K:p

�

1

1

: : :p

�

n

n

then 2x + 1 is the fundamental solution of the Pell-Fermat

equation x

2

� 4Dy

2

= 1.

Now, we de�ne SUPP (n) as the set of the prime divisors of n. From this result, the

following:

(i) If E is a set of n distin
t prime integers, there are at most 2

n

nonnegative integers

satisfying the 
ondition SUPP(x(x + 1)) � E, so that, for any nonnegative integer a, the set

ST(a) of nonnegative integers b su
h that

SUPP (a) = SUPP(b) and SUPP(a + 1) = SUPP(b + 1) is also �nite.

(ii) The nonnegative integers x and y are equal if and only if the following 
onditions are

simultaneously satis�ed:

6



1) SUPP(x - 1) = SUPP(y - 1) and SUPP(x + 1)=SUPP(y + 1);

2) for all prime numbers p in SUPP( x

2

� 1) (or in SUPP(y

2

� 1)) the exponent of p

in the fa
torisation of x + 1 (resp. x - 1) has the same parity as in the fa
torisation of y +

1 (resp. y - 1).

Re
ently, number theoretists su
h as M. Langevin, R. Balasubramanian, T.N. Shorey

and M.Walds
hmidt have investigated bounds and inequalities whi
h permit the lo
ation

of integers in N a

ording to the relationship of their supports. In this dire
tion, Langevin

provides a fundamental result he 
alls the redu
tion lemma. To present it, we introdu
e his

notation:

SUPP(x) = fp 2 N : p is prime and pjxg?

u(n) is the produ
t of the primes in SUPP(n);

P (n) is the greatest prime in SUPP(n);

w(n) is the 
ardinality of SUPP(n);

u(n; k) is the produ
t of all primes in SUPP((n+ 1)(n+ 2) : : : (n+ k));

v(n; k) = P ((n+ 1)(n+ 2) : : : (n+ k)):

Redu
tion Lemma. (Langevin). Let x and y be positive integers. In ea
h group labelled

(i), (ii), (iii), (iv), the 
onditions given are equivalent:

(i) u(y +i ) = u(x + i) for 1 � i � k (
ondition H

1

(k));

u(x,k) = u(y,k) j (y - x) (
ondition H

5

(k)).

(ii) u(y + i) j u(x + i) for 1 � i � k (
ondition H

2

(k));

u(x,k) j (y -x ) (
ondition H

3

(k));

u(y,k) = g
d ((y - x),u(x,k)) (
ondition H

4

(k)).

(iii) P (y + i) j (x + i) for 1 � i � k (
ondition H

6

(k));

v(y,k) j (y - x) (
ondition H

7

(k)).

(iv) P (y + i) = P (x + i) for 1 � i � k (
ondition H

8

(k));

v(y,k) = v(x,k) j (y - x) (
ondition H

9

(k)).

We note that 
ondition H

1

(k) is the very hypothesis of WE. These 
onditions show how


lose the links are between the languages of su

essor and 
oprimeness on one hand and

su

essor and divisibility on the other hand.

Beginning with the results on inequalities, we �rst mention a fundamental result of M.

Langevin who proved that for 0 < x < y, if SUPP(x) = SUPP(y) then jy� xj > [log(x + y)℄

1=6

:

This inequality was improved upon by R. Balasubramanian, T.N. Shorey and M.Wald-

s
hmidt who proved that for x, y, k being nonnegative integers satisfying 0<x<y and k �

1 and H

1

(k) of the previous redu
tion lemma:

1) There exists an e�e
tively 
omputable absolute positive 
onstant C su
h that:

y-x > (k log log y )

C:k(log log y)(log log log y)

for y> 27;

2) There exists an e�e
tively 
omputable absolute positive 
onstant D su
h that:

log x > D(log (k))

2

(log(log (k))) for k> 3.

3) There exists an e�e
tively 
omputable absolute positive 
onstant E su
h that:

y-x > exp (E.k (log(k))

2

(log(log(k))

�1

for k> 3.

Importan
e of the Woods-Erd�os 
onje
ture

Beyond its intrinsi
 interest both to Mathemati
al Logi
 (more pre
isely for arithmeti
al

de�nability and axiomatizability) and Number Theory, the attempt to prove or disprove the

7



questions of J. Robinson, A. Woods and P. Erd

�

os, gains in importan
e if we realize how

strong the links are between WE and other 
lassi
al 
onje
tures of Number Theory. In the

same paper by Langevin, the following results were proved:

Let k be the parameter appearing in the Woods-Erd

�

os 
onje
ture WE(k).

1) If there is an absolute 
onstant C su
h that for any pair (x,y) of positive integers the


ondition x

3

6= y

2

implies:

jx

3

� y

2

j > [max(x

3

; y

2

)℄

C

(Hall's 
onje
ture).

then the answer to WE is positive.

2) Moreover, under the same hypothesis x

3

6= y

2

above, if we 
an prove

jx

3

� y

2

j > [max(x

3

; y

2

)℄

1=6

;

then the answer to WE(k) is positive with k � 16 modulo a �nite set of ex
eptions.

3) If for every positive real ", there exists a 
onstant D su
h that for any pair (a,b) of

positive integers we have;

u(a + b)ab>D(a + b)=(g
d(a,b)

1�"

((a-b-
)-
onje
ture),

then the answer to WE(k) is positive with k � 3 modulo a �nite set of ex
eptions.

We note that as a result of 
on
lusions 2) and 3) the above theorem is a negative answer to

WE would refute both Hall 's 
onje
ture, and the so-
alledOesterl

�

e-Masser's 
onje
ture

(also 
alled the a-b-
-
onje
ture).

There are still other relationships of WE to questions re
ently answered by Capi Corrales

Rodrig

�

anez and Ren�e S
hoof about the 
hara
terization of x by supports of x

n

� 1, for

in�nitely many positive n this was also a question posed by Erd

�

os. Maxim Vsmirnov

(unpublished) has a proof of the 
hara
terization of integers by �nitely many supports. Ten

years ago, we asked whether SUPP (x

2

n

� 1) = SUPP (y

2

n

� 1) for all n 2 N implies x = y

and we gave a proof due to A. S
hinzel of the fa
t that the (a-b-
)-
onje
ture implies a

positive answer to our question. In the se
tion devoted to the logi
al approa
h to WE, we

present an analogue of these results within the frame-work of de�nability, when we prove

that DEF(N ;=;+;�) = DEF(N ; S;?;POW).

II-2 Logi
al approa
h to WE.

To pla
e the logi
al approa
h to WE in a more general and histori
al setting, it is worth

pointing out that arithmeti
al de�nability goes ba
k to Kurt G

�

odel who proved that the

stru
ture hN ;=;+;�i is 
losed under primitive re
ursion. In order to appre
iate the power

of this result, 
onsider the e�ort required to obtain a dire
t �rst-order de�nition of expo-

nentiation, or of the natural enumeration of prime integers, from equality, addition and

multipli
ation. Another interesting aspe
t of G

�

odel's result is that there exist arithmeti
al

stru
tures whi
h are not 
losed under primitive re
ursion:

- addition does not belong to DEF(N ;=; S) as shown by Langford in 1926;

- multipli
ation does not belong to DEF(N ;=;+) as shown by Presburger in 1929.

De�ning addition and multipli
ation from some a priori weaker languages of arithmeti


is not always easy but is sometimes possible. A 
lassi
al example is the language fS;�g

whi
h de�nes all arithmeti
al relations. A. Tarski provided a �rst-order hS;�i-de�nition

of addition from the following equivalen
e:

(xz + 1)(yz + 1) = [z

2

(xy + 1)℄ + 1 if and only if (x = y = z = 0 or x+ y = z):

Julia ROBINSON's results

In a sense, folling the G

�

odel's works and the above relation due to Tarski, the �rst

important and really diÆ
ult result was the 
hara
terization of de�nability within a Weak

Arithmeti
 stru
ture and was obtained by J. Robinson:

Addition and multipli
ation are de�nable in the stru
ture hN ; S; ji.

In the same paper, J. Robinson showed that the set N of nonnegative integers is de�nable

in terms of addition and multipli
ation within the �eld Q of rationals. This result is 
entral

to the investigation of de
idable and unde
idable theories.
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In order to �nd other natural axiomatisations of arithmeti
, J. Robinson asked whether

DEF(N ;+;?) = DEF(N ;+;�):

There was �rst an unpublished positive solution by J. Robinson, then a se
ond solution

by A. Woods proving that the (+;?)-de�nability of multipli
ation is a 
orollary of the

S
hnirelmann Theorem (stating that every integer is the sum of a �nite bounded number

of primes). Finally we obtained a proof using 
oding devi
es.

It is worth observing that J. Robinson attempt to propose a natural axiomatization of

�rst-order Peano arithmeti
 in terms of S and j, was in part 
ompletely realized by P.

Cegielski in his thesis. Indeed Cegielski has given a �rst-order natural axiomatization of

�rst-order Peano Arithmeti
 in the language f=; 0; 1; S; jg. To obtain this axiomatization,

he used the so-
alled ZBV-method of 
oding whi
h we des
ribe below.

Alan WOODS' results.

Con
erning the language f<;?g, the �rst result is due to A. Woods who also proved that

DEF(N ; <;?) = DEF(N ;+;�). In the sequel we 
all this question the Robinson problem

(namely: is there an equality between DEF(N ;=; S;?) and DEF(N ;=;+;�)). A. Woods

has linked the Robinson problem to the Woods-Erd

�

os 
onje
ture by proving that the

answer to the Robinson problem is positive if and only if the WE 
onje
ture is true. More

pre
isely, Alan Woods proved that the following assertions are all equivalent:

(i) The answer to the Robinson problem is positive, namely one 
an de�ne addition

and multipli
ation in terms of equality, 
oprimeness predi
ate and su

essor fun
tion; (and

vi
e-versa)

(i') One 
an de�ne natural order, or addition, or multipli
ation in terms of equality,


oprimeness predi
ate and su

essor fun
tion;

(ii) One 
an de�ne equality, addition and multipli
ation in terms of 
oprimeness predi
ate

and su

essor fun
tion;

(ii') One 
an de�ne natural order, or addition, or multipli
ation in terms of 
oprimeness

predi
ate and su

essor fun
tion;

(iii) One 
an de�ne equality in terms of 
oprimeness predi
ate and su

essor

fun
tion;

(iv) The answer to the Woods-Erd

�

os 
onje
ture is positive, namely, there is an integer

k su
h that for every pair (x; y) of integers, the equality x = y holds if and only if x+ i and

y + i have the same prime divisors for 0 � i � k.

Remark. It is worth pointing out the status of equality: if we 
onsider su

essor and 
oprime-

ness without equality, then to de�ne equality is equivalent to a positive answer to WE; on

the other hand, if we 
onsider equality, su

essor and 
oprimeness together, then a su

ess

at de�nition equality order (resp. addition or multipli
ation) is still equivalent to a positive

answer to WE.

At this step in the investigation of the Robinson problem, farther results are obtained via

the so 
alled ZBV-Method (for Zsigmondy-Birkhoff-Vandiver) whi
h we have intro-

du
ed. This method allows are to prove all the results already mentioned this se
tion as

well as providing new results.

ZBV-method of 
oding.

The ZBV-method 
onsists in 
onsidering integers of the form x

m

� y

m

or x

m

+ y

m

(where x

and y are 
oprime) to be 
oded by their respe
tive support or their respe
tive set of primitive

or 
hara
teristi
 divisors. This method is most e�e
tive when x is a �xed prime p and y is

1, 2 or 3. By this method, one redu
es arithmeti
al questions to an investigation of �nite

sets of primes and their boolean 
ombinatori
s.

Moreover, every �nite set of primes (or every fun
tion of �nite domain mapping primes to

primes) is itself 
odable in in�nitely many ways by a single prime integer using a 
ombination
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of the Chineese Remainder Theorem and the Diri
hlet Theorem. A prime whi
h is a 
ode

plays the role of a memory in whi
h we store a �nite set of primes. One 
an interpret the

stru
ture hN ;?i as a set theory on the supports of nonnegative integers. Any �nite part A

of the set of primes is 
oded by the set of integers x having A as its support.

New (S;?)-de�nable relations and unde
idability of Th(N ; S;?) via the ZBV-

method.

It 
an be proved that an integer u is a power of a prime (we say also primary) if and only if

the support of u is in
luded in the support of any integer not 
oprime to u. As a 
onsequen
e,

the following relations are (S;?)-de�nable:

- the set PP of powers of primes;

- the set PP(a) of powers of the same prime a;

- every �nite relation on N ;

- the equality =

PP

restri
ted to PP;

- the su

essor fun
tion and the prede
essor fun
tion restri
ted to PP;

every integer whi
h is a 
onstant (this is not obvious but is a 
orollary of the previous point).

A fundamental result derived from the ZBV-method is the possibility of de�ning the set

P of primes within the stru
ture hN ; S;?i. This result 
an be extended to the stru
ture

hN ; pred;?i where Pred denotes the prede
essor fun
tion on N . They are in both stru
tures

hN ; S;?i and hN ; pred;?i, we have all set theoreti
al 
ombinatori
s exist on the supports.

For every pair (p; q) of distin
t primes the notation q

ord(q;p)

is by de�nition the only power

u of q su
h that p is a primitive divisor of u�1. The 
ru
ial fa
t is that the ternary relation

f(p; q; u) 2 P � P � PP su
h that u = q

ord(q;p)

g

is de�nable in both stru
tures hN ; S;?i and hN ; pred;?i.

>From this relation, one 
an provide a natural and intrinsi
 de�nability within PP by su
-


essor and 
oprimeness, and also shed some new light on why the elementary theory of

hN ; S;?i is unde
idable. Let us begin by putting NewAdd(x; y; z) (resp. NewMult(x; y; z)

if and only if 5

z

= 5

x+y

(resp. 5

z

= 5

xy

) and denoting =

PP

the restri
tion of equality to

PP: One 
an show that:

(i) The fun
tion x ! 5

x

transforms the stru
ture hN ;=;+;�i into a new stru
ture

h5

PN

;=

PP

, NewAdd, NewMulti whi
h is de�nable in hN ; S;?i;

(ii) 
onsequently, the theory Th(N ; S;?) is unde
idable;

(iii) moreover, DEF(5

PN

;=

PP

, NewAdd, NewMult) = DEF(N ;=;+;�):

What may be added to su

essor and 
oprimeness in order to de�ne all arith-

meti
al relations?

At this step the logi
al approa
h 
onsists in �nding out what are the relations we 
an add

to su

essor and 
oprimeness to obtain the de�nability of all arithmeti
al relations. With

this in mind, we 
onsider the binary relations of exponentiation and power of the form

EXP = f(x; y) 2 N � N su
h that there exists a whi
h satis�es y = a

x

g;

and

POW(x; y) = f(x; y) 2 N � N : 9n[(n 6= 0) ^ (y = x

n

)℄g:

From the previous result, it 
an be shown (see [RD,1985-4℄ and [GSRD,1989℄) that

(i) Every relation or fun
tion whi
h is �rst-order de�nable in hN ;+;�;=i is a
tually

�rst-order de�nable in hN ; S;?;EXPi.

(ii) Every relation or fun
tion de�nable by a �rst-order formula of f+;�;=g is also de-

�nable in the stru
ture hN ; S;?;POWi by a �rst-order formula of the asso
iated language

fS;?;POWg:

It now follows that the stru
ture hN ;?; <

PP

i where <

PP

denotes the natural order on N

restri
ted to primaries, allows the �rst-order de�nition all arithmeti
al relations on PP,

and veri�es that DEF(N ;= +;�)

�

6=

DEF(N ;?; <

PP

).
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The last result we would like to mention, is due to Fran
is Nezondet who showed the

importan
e of equality and, the di�eren
e between relational and fun
tional languages, to the

investigation of arithmeti
al de�nability in terms of su

essor and exprimeness. A
tually,

there is a stru
ture hM;+

f

;�

f

; 0; 1;?iwhi
h is elementarily equivalent to the standard model

hN ;+

f

;�

f

;?; 0; 1i and in whi
h the identity relation is not de�nable. More pre
isely:

Let +

f

, �

f

be respe
tively the fun
tional symbols of addition and multipli
ation. There exists

an arithmeti
al model

M = hM;=;+;�;?; 0; 1i of Th(N ;+

f

;�

f

;?; 0; 1)

and of the relational theory with equality of the �nite arithmeti
 and within whi
h there is

no (+

f

;�

f

;?; 0; 1)-formula de�ning equality, thus refuting WE.

Here +

f

, �

f

are respe
tively the fun
tional symbols of addition and multipli
ation, will be

interpreted in the usual way on N . The 
oprimeness predi
ate ? on N and on the domain

M is the interpreted as a �rst-order formula F (x; y) meaning (x and y are 
oprime) on N .

By �nite arithmeti
, we denote the (=;+;�)-axioms whi
h 
hara
terize an ordered semi-

ring. Of 
ourse, our �nite arithmeti
 (namely the RR system of Raphael Robinson) is

a purely relational theory whi
h 
ontains a symbol of equality and does not 
ontain any

s
hema of indu
tion. The proof of this result, 
onsists in �rst building a model of the �nite

arithmeti
 RR and of ThhN ;+

f

;�

f

;?; 0; 1i and then demonstration, that equality is not

(+

f

;�

f

;?)-de�nable. We emphasise that here addition and multipli
ation are fun
tions

and not relations. Finally, the theory of the standard model with the fun
tions of addition

and multipli
ation, the 
oprimeness relation and the 
onstants 0 and 1, does not de
ide the

Woods-Erd

�

os 
onje
ture.

Con
lusion: Due to the new tools, the 
omputers, and the new obje
ts of our investigation,

the abstra
ts ma
hines modelizing fragments of the human reasoning, weak arithmeti
s

have appeared. Perhaps weak arithmeti
s pre
ede weak real analysis whi
h we 
an observe

showing up against the mist of the 
omplexity theory of reals.
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