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I. - An attempt to de�ne Weak Arithmetis from the

Journ�ees sur les Arithm�etiques Faibles

It is amusing, indeed astonishing, that no-one among a ommunity of about one hundred

omputer sientists, logiians and mathematiians organizing meetings twie a year for al-

most ten years

1

has thought it advisable properly and preisely to de�ne the �eld of researh

one usually allsWeak Arithmetis. In my opinion, everybody, within this group, brought to

it his own interest and wondered at not having to justify the relevane of Weak Arithmetis.

In disussions by ourselves, it appears that this relevane is intuitively founded on a ommon

�eld of mathematial interest, a ommon set of questions and logial methods to investigate

problems, and a general ulture within omputer siene. Basially, a sientist interested

in Weak Arithmetis knows some mathematial logi, likes Peano Arithmeti and the two

G

�

odel Theorems, works or has been working on deision problems, on algorithms and

their omplexities, and uses all kinds of abstrat mahines. Through these mahines Weak

Arithmetis are strongly inuened by the omputer-dominated modern world. The Weak

Arithmetis sientist is not a professional mathematiian who studies numbers (using suh

tools as algebrai methods, omplex analysis and algebrai geometry) but is often (or always

in some areas) in ontat with Number Theory. Therefore it is diÆult to give a preise

de�nition of Weak Arithmetis as a disipline in the same way as - say - Model Theory.

Nevertheless we an nowadays onsider the list of letures and talks given from JAF1 to

JAF17, in order to determine the main diretions and themes provided by the partiipants

at those events. One an distinguish four groups of letures whih the reader an �nd in the

Annex.

Theme 1.- Constrution of Nonstandard Models of �rst-order Arithmetis in order to in-

vestigate:

1) axiomatizations of subtheories of Peano Arithmeti (denoted PA) in whih indution

shemata are restrited to a speial subset of formulas;

2) omplexities of the onsidered subtheories, espeially for developing polynomial time

algorithms.

This theme is losely linked, on the one hand, to the study of indution shemata whih

are respetively alled logarithmi, open, parameter free, �

k

-indution, et., and, on the

other hand, to the Buss Arithmeti. In this theme, logiians try to onstrut (nonstan-

dard) models having spei� properties (for example an ordered �eld without an integer

part (Boughattas)). One tries also to prove (or disprove) some axiomatizability prop-

erties suh as the fat that open-indution in normal rings is not �nitely axiomatisable

(Boughattas). Algorithmi and Complexity theories are also onneted to this theme be-

ause omputability in polynomial time orresponds to some spei� axiomatisations one

an haraterize: for instane P. Pudlak, Takeuti and Krajiek proved the equivalene

between the provability in bounded arithmeti of the ollaps of the strit polynomial time hi-

erarhy and the �nite axiomatizability of the arithmetial theory in the language of addition,

multipliation and x

dlog xe

with indution shemata restrited to �

0

-formulas.

The lively style of the prefae by J.P. Ressayre provides a preise and well-doumented

presentation, the deep links between nonstandard models, axiomatizability and algorithmi

omplexity. So on this matter, we refer to his text.

Another illustration of this theme is bounded arithmetis, whih were introdued by Buss

within a �rst-order logial language whih we denote L(BA). This language ontains the

1

The �rst \Journ�ees sur les Arithm�etiques Faibles" had been held in june 1990 at the \

�

Eole Normale

Sup�erieure de Lyon"
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symbols of suessor, addition, multipliation, 0, b(x=2), length of x, that is to say d(log

2

(x+

1))e, the funtion 2

jxj:jyj

, identity and natural order. In this language, Buss de�nes a speial

indution-shemata on ertain subset of formulas providing a Weak Arithmetial theory S

suh that a subset A of N is P if and only if it is S-provably NP \ (Co � NP ). In so

doing, Buss provides a promising method to prove a set A is P sine, aording to this

result, it is suÆient to prove it is both NP and Co � NP in some expliitly known and

spei� (weak) theory. About this result, P. Cegielski wrote: Pratially, if we know it

is both NP and Co � NP , then the method used to prove this result ertainly is not too

omplex and the demonstration an be formalized in suh a theory. However, up to now,

no set has been shown in P by suh a method. The reason is that bounded arithmetis are

still not widely developed. For instane we do not know whih lassial theorems of Number

Theory are true in these Weak Arithmetis. The length of proof of any lassial theorem

inreases greatly with weakness of the arithmetial theory in whih this proof takes plae. For

instane, a proof of Dirihlet theorem on (in�nity of) primes in arithmetial sequenes in

primitive reursive arithmeti PRA is one hundred pages long. Suh results would help to

apply Buss'(results).

Theme 2.- De�nability and deidability of weak substrutures of the Standard Model of

Peano.

The general framework of de�nability is presented in a detailed way in the survey arried

out by P. Cegielski in the annals of mathematis and artifiial intelligene, vol.

16 n

os

1.4 (1996). For a struture M , we denote by DEF(M) the set of onstants, funtions

and relations whih are �rst-order de�nable within M . Following Churh and Turing's

proof in 1936 that the theory of natural integers equipped with addition and multipliation

and identity is not deidable, we obtain a method for proving the undeidability of the

theory of a struture M whih onsists in showing DEF(M) = DEF(N;+;�;=). The set

DEF(N;+;�;=) is well-known and K. G

�

odel proved it ontains any relation we an de�ne

by reursion (with some partiular set of natural funtions as primitives) so that , if M is a

sub-struture of the standard model, then the inlusion of DEF(M) into DEF(N;+;�;=)

is trivial. One of the most famous questions to have been solved in the framework of

arithmetial de�nability is Hilbert's tenth problem; It asks for an algorithm to determine

whether a given diophantine equation has a solution or, in other words whether there exists

a program suh that given a polynomial P (x

1

; : : : ; x

n

) with integer oeÆients as input, we

an obtain as output the set, possibly empty, of integer solutions of P (x

1

; : : : ; x

n

) = 0. In

1970, I. Matiassevith proved the key-results leading to a negative answer to this prob-

lem: exponentiation is de�nable by a diophantine equation, i.e. by a �

1

-formula within

Peano Arithmeti. Of ourse, this result was obtained after years of researh and ollab-

oration with M. Davis, H. Putnam, J. Robinson who provide many lassial theorems

and onjetures. Due to this ooperation, in the de�nability area we refer to as the MDRP

(for Matiassevith-Davis-Robinson-Putnam) theorem the fat that every �

1

-formula

is equivalent to a Diophantine formula. The key-points of this famous proof of the negative

solution of the tenth-Hilbert problem belong to arithmetial oding and de�nability:

- It is possible to ode the proess of register mahines by the masking relation r + s between

the integers r and s given in their binary expansion; more preisely, we say that s masks r

if and only if when 0 appears as a digit in the binary expansion of s then 0 also appears as

the digit of the same rank in the binary expansion of r;

- (A orollary of Luas' Theorem) the mirale is that r + s if and only if

�

r

s

�

� 1 (mod 2),

whih means that one an ompletelydesribe in the language of �rst-order arithmeti not

only the operation of a register mahine, but also that of a normal omputer as well;

- the desription, via �rst-order arithmetial formulas desribing the operating yles, of a

register mahine, an �nally be rewritten as a onjuntion of diophantine equations; this is

due to arithmetial properties suh as, for instane, the exponential growth of the sequene

of the solutions x

a

(n) and y

a

(n) to the Pell-Fermat equation x

2

�

p

a

2

� 1y

2

= 1.

A by-produt of this is the possibility of �rst-order de�ning the set of prime as the set of

positive value P (N

n

) \ N of a ertain polynomial P due to J.P. Jones and al...

In the present theme, usually we onsider an arithmetial substruture M of the standard

model and we try to prove that either the whole arithmetial standard model is de�nable
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within M , orM is deidable and in this ase we investigate the omplexity of the onsidered

struture. This is not an alternative: there are undeidable weak substruture of Peano

where addition and multipliation are not simulteneously de�nable and whih are undeid-

able. The problem of de�nability whih is the main topi of theme 2 goes bak to Number

Theory questions raised a long time ago, as we shall show in part II below. Arithmetial

de�nability is losely related to Number Theory and, in a sense, sheds new light on its las-

sial results. In part II of the present prefae, we intend to develop on an example having

historial roots going bak a entury before the seond main theme of Weak Arithmetis,

namely the problem of mutual de�nability of arithmetial relations within �rst-order Num-

ber Theory. Undeidability is a orollary of de�nability of addition and multipliation in

the framework of Peano Arithmeti. Weak Arithmetis therefore also inlude arithmeti-

al deision problems suh as deidable extensions of Presburger (additive) arithmeti

and Skolem (multipliative) arithmeti. The deision problem for additive prime number

theory is adressed both within Number Theory and the Theory of Automata. There are

onditional results in this �eld (mostly due to A. Woods) under Shinzel's Hypothesis on

primes, and absolute results reently proved by Cegielski, Rihard and Vsmirnov. The

study of the set RUD of rudimentary prediates (Grzegorzyk and Esbelin) is linked

both to Buss Arithmetis, and to algorithmi and Spetra problems whih onern the set

of ardinalities of the �nite models of a given �rst-order formula. It is worth noting that

rudimentary prediates extend to real analysis and to the problem of speeding up software

used in omputer siene and numerial analysis. In our somewhat arbitrary lassi�ation,

we put RUD in a speial theme with the study of the problem of spetra (�nite models),

arithmetisation of graphs and Grzegorzyk hierarhy.

Theme 3.- Abstrat Mahines, Automata and Words.

Any program in a spei�ed language whih we use in a omputer has a orresponding abstrat

mahine, for instane a Turing mahine. Atually, we an formalize any program beause

with addition and multipliation we an de�ne (or simulate) all reursive shemata. Now

if we onsider only some Weak Arithmeti (for instane Presburger Arithmeti) then a

orresponding abstrat mahine omputing funtions and relations de�nable in this theory,

or in a model of this one, is of ourse weaker than a Turing Mahine (for instane it an be

an automat on for Presburger Arithmeti). In this way, it is natural to assoiate abstrat

mahines (Automata, Push Down Automata, Cellular Automata, Beltiukov Mahines,

Alternating Turing Mahines, et) with di�erent weak arithmetial theories and to the

models we investigate. During the JAF, many mahines, algorithms and the objets they

represent were presented. Of ourse, the words - arguments whih these mahines use - with

the di�erent meaning we give to this notion in omputer siene, were studied. To this theme

also belong general oding theory and all problems of weak arithmetial strutures onsisting

of the usual integers with pairing funtions (suh as Cantor pairing polynomial) or odings

of n-tuples (using for example the well-known �-funtion of G

�

odel). Mahines as tools for

solving problems of de�nability or deidability were used by I.Kore

�

, A. B

�

es, V. Bruy

�

ere,

C. Mihaux, J.E. Pin, J. Tomasik, et. Mahines are not only tools but are themselves

the objets of investigation suh as for instane the smallest universal Turing Mahines

(M. Margenstern and Pavlotskaia), or the Matiassevith mahines introdued to

solve problems of trae monoid (A. Musholl, Y. Matiassevith). Results on these

mahines are due to O.Teytaud and A. B

�

es. The problem of determining whether ounting

is possible with a given abstrat mahine is losely onneted to question of omplexity

hierarhies as in the ase of the Grzegorzyk hierarhy. Automata trees and modular

ounting were developed by H.A. Esbelin and R. Espel llima. In the framework of

in�nite games and partiularly on Borelsets, J. Dupar, J.P. Ressayre, O. Finkel refer

to automata but this is onsidered to be on the boundary between Weak Arithmetis and

Set Theory.

We have seen that Weak Arithmetis over two main themes (Axiomatizibility and Com-

plexity in Subtheories of Peano Arithmeti on the one hand, and Arithmetial De�nability

and Deidability on the other). We have also noted that Abstrat Mahines underlie our

investigations and thus beome another theme of studies within the framework of Weak

Arithmetis. Nevertheless these three areas do not exhaust the topis presented by par-
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tiipants of the JAF. We list some reurrent questions and some new onepts in the last

setion of this part.

Other Themes.-

a) Graphs, Spetra and RUD;

b) Elementary proofs of lassial Number Theory results, Arithmetial Proof Theory;

) Funtional Programing and Reursivity;

d) General Logi;

e) Applied Algorithmis.

Theme a) refers to Finite Models and to the Fagin onjeture whih is also linked to

RUD aording to some results of A. Woods. The notion of Graph is entral and its

arithmetisation addresses this question within Weak Arithmetis. In the present issue there

is an arithmetisation of the four-olour problem due to Y. Matiassevith.

Theme b) stems from the work Erd

�

os and Selfridge who were the �rst to ask for what

they alled elementary proofs (i.e. in the framework of real analysis instead of omplex

analysis) of results suh as the Dirihelet Theorem on the in�nity of primes in arith-

metial sequenes. Logiians suh as Takaeuti, Kreisel and Simpson (with his reverse

mathematis) have ontributed to the subjet but in a general way. P. Cegielski and O.

Suda have onstruted proofs for spei� lassial theorems (suh as the Prime Number

Theorem of De La Vall

�

ee Poussin). They have also onstruted some �rst order denu-

merable strutures modelling a version of Peano Analysis to provide proofs within Peano

Arithmeti models or even within the standard model of weaker arithmetial theories (e.g.

PRA, the Primitive Reursive Arithmeti). It is lear that this work should be ontinued

in order to strengthen the tools developed by Buss.

Theme ) is learly within the sope of Weak Arithmetis wherein one attempts to reon-

strut a missing indution or reursive shemata. In Funtional Programming also attempts

to avoid reursion and reursive de�nition. For example L. Colson demonstrates that

roughly speaking primitive reursive algorithms are not optimal in terms of omplexity.

Theme d) is mainly onerned with Nezondet's p-destinies whih are a general tool

founded on trees for deiding losed sentenes when applied to theories onsisting of a set

of sentenes in a relational language whih have a bounded number of quanti�ers. This

a promising new method whih, for example gives rise to many interesting questions in

Number Theory (Guillaume, Jelei Yin, Rihard).

Theme e) ould be onsidered to be the future of Weak Arithmetis in Informatis. A

onsiderable proportion of software relies on algorithms whih derive from numerial anal-

ysis however, due to the undeidability of the real zero, many of these programs have to be

written within the framework of the standard model Z of integers. This is partiularly the

ase in disrete geometry, omputer imagery and arti�ial vision where faster omputation

with inreasing preision is onstantly demanded. Some struture suh as the natural in-

tegers with the mappings eiling and oor is neessary to desribe digital planes and their

algorithms of onnetivity, or to perform ray traing and so on. Here the blend of Number

Theory, Logial Arithmeti and Computer Siene (automata and hips) whih make up

Weak Arithmetis has been applied e�etively and will beome more and more useful.
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II. - An illustration of a de�nability problem is Weak Arithmetis

de�nability: the Woods-Erd

�

os onjeture

The question of whether �rst-order arithmeti on the set of nonnegative integers is de�nable

in terms of the suessor funtion S and the oprimeness prediate ? is a typial problem

of Weak Arithmetis and perhaps, historially speaking, one of the �rst to be posed in this

modern framework. It was raised in 1949 by Julia Robinson in her thesis, when she inves-

tigated the axiomatizability of di�erent theories of elementary strutures on numbers. More

preisely, Julia Robinson stated: We might also try to improve the theorem by replaing

divisibility by the relation of relative primeness. However I have not been able to determine

whether � is arithmetially de�nable in terms of ? and S or even in terms of ? and +. This

question, and some others of the same nature suh as the de�nability of all arithmetial

relations in terms of addition and oprimeness, were negleted for deades. In the eighties,

Alan Woods, returned to these problems. He was the �rst to realize that the question of

de�nability within mathematial logi is equivalent to the following onjeture of Number

Theory: there is an integer k suh that for every pair (x; y) of integers, the equality x = y

holds if and only if x + i and y + i have the same prime divisors for 0 � i � k. This

number-theoretial form of Julia Robinson's question is itself very losely linked to some

open questions proposed by Paul Erd

�

os and for whih he had onjetured a positive answer.

In the book by Rihard Guy entilted Unsolved Problems of Number Theory, the question is

attributed to Alan Woods, but due to its lose relation with onjetures of Erd

�

os whih

were known to A. Woods, this onjeture is known as the Woods-Erd

�

os onjeture, or

WE or WE(k) if it is neessary to state the parameter k. Indeed, WE is a weakening

of the following onjeture of P. Erd

�

os: Erd

�

os asks if there are in�nitely many 4-tuples

(m; k; n; l) suh that (m+1)(m+2) : : : (m+k) and (n+1)(n+2) : : : (n+l) with k � l � 3 an

ontain the same prime fators. For example 2.3.4.5.6.7.8.9.10 and 14.15.16 or 48.49.50, also

2.3.4.5.6.7.8.9.10.11 and 98.99.100. For k = l � 3 he onjetures that there are only �nitely

many. Erd

�

os' interest is the relationship between prime divisors and onseutive integers is

supported by many other papers. Weak Arithmeti, ombines a Number-Theoreto pointof

view with approhies based on mathematial Logi and onept of de�nability in a fashion

partiulary appropriate to the investigation of the WE-onjeture.

II-1 The Number Theoretial approah to WE.

The problem of �nding a loal haraterization of an integer a by its prime divisors and by

the prime divisors of a � 1 (or a + 1) - whih atually is a problem of de�nability - was

raised by famous mathematiians many years ago. The fundamental result on this question

is due to Zsigmondy and was redisovered and generalized by Birkhoff and Vandiver

twelve years later. They showed that, exept for 2 and 8, eah power u of a prime number

p is haraterized by p and the prime divisors of u+ 1. An analogue of the previous result

dealing with x

n

+ y

n

has been proved by Luas and generalized by Carmihael.

Another Classial result losely related to WE is due to C. St�rmer who showed the

following:

Let p

1

; : : : ; p

n

be distint prime numbers and K, �

1

; : : : ; �

n

be nonnegative integers. For 1 �

i � n, let us put "

i

= 1 if �

i

is odd, "

i

= 2 if �

i

is even and set

D = K:p

�

1

1

: : : p

�

n

n

.

If x

2

� 1 = K:p

�

1

1

: : :p

�

n

n

then x is the fundamental solution of the Pell-Fermat equation

x

2

�Dy

2

= 1;

If x(x + 1) = K:p

�

1

1

: : :p

�

n

n

then 2x + 1 is the fundamental solution of the Pell-Fermat

equation x

2

� 4Dy

2

= 1.

Now, we de�ne SUPP (n) as the set of the prime divisors of n. From this result, the

following:

(i) If E is a set of n distint prime integers, there are at most 2

n

nonnegative integers

satisfying the ondition SUPP(x(x + 1)) � E, so that, for any nonnegative integer a, the set

ST(a) of nonnegative integers b suh that

SUPP (a) = SUPP(b) and SUPP(a + 1) = SUPP(b + 1) is also �nite.

(ii) The nonnegative integers x and y are equal if and only if the following onditions are

simultaneously satis�ed:
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1) SUPP(x - 1) = SUPP(y - 1) and SUPP(x + 1)=SUPP(y + 1);

2) for all prime numbers p in SUPP( x

2

� 1) (or in SUPP(y

2

� 1)) the exponent of p

in the fatorisation of x + 1 (resp. x - 1) has the same parity as in the fatorisation of y +

1 (resp. y - 1).

Reently, number theoretists suh as M. Langevin, R. Balasubramanian, T.N. Shorey

and M.Waldshmidt have investigated bounds and inequalities whih permit the loation

of integers in N aording to the relationship of their supports. In this diretion, Langevin

provides a fundamental result he alls the redution lemma. To present it, we introdue his

notation:

SUPP(x) = fp 2 N : p is prime and pjxg?

u(n) is the produt of the primes in SUPP(n);

P (n) is the greatest prime in SUPP(n);

w(n) is the ardinality of SUPP(n);

u(n; k) is the produt of all primes in SUPP((n+ 1)(n+ 2) : : : (n+ k));

v(n; k) = P ((n+ 1)(n+ 2) : : : (n+ k)):

Redution Lemma. (Langevin). Let x and y be positive integers. In eah group labelled

(i), (ii), (iii), (iv), the onditions given are equivalent:

(i) u(y +i ) = u(x + i) for 1 � i � k (ondition H

1

(k));

u(x,k) = u(y,k) j (y - x) (ondition H

5

(k)).

(ii) u(y + i) j u(x + i) for 1 � i � k (ondition H

2

(k));

u(x,k) j (y -x ) (ondition H

3

(k));

u(y,k) = gd ((y - x),u(x,k)) (ondition H

4

(k)).

(iii) P (y + i) j (x + i) for 1 � i � k (ondition H

6

(k));

v(y,k) j (y - x) (ondition H

7

(k)).

(iv) P (y + i) = P (x + i) for 1 � i � k (ondition H

8

(k));

v(y,k) = v(x,k) j (y - x) (ondition H

9

(k)).

We note that ondition H

1

(k) is the very hypothesis of WE. These onditions show how

lose the links are between the languages of suessor and oprimeness on one hand and

suessor and divisibility on the other hand.

Beginning with the results on inequalities, we �rst mention a fundamental result of M.

Langevin who proved that for 0 < x < y, if SUPP(x) = SUPP(y) then jy� xj > [log(x + y)℄

1=6

:

This inequality was improved upon by R. Balasubramanian, T.N. Shorey and M.Wald-

shmidt who proved that for x, y, k being nonnegative integers satisfying 0<x<y and k �

1 and H

1

(k) of the previous redution lemma:

1) There exists an e�etively omputable absolute positive onstant C suh that:

y-x > (k log log y )

C:k(log log y)(log log log y)

for y> 27;

2) There exists an e�etively omputable absolute positive onstant D suh that:

log x > D(log (k))

2

(log(log (k))) for k> 3.

3) There exists an e�etively omputable absolute positive onstant E suh that:

y-x > exp (E.k (log(k))

2

(log(log(k))

�1

for k> 3.

Importane of the Woods-Erd�os onjeture

Beyond its intrinsi interest both to Mathematial Logi (more preisely for arithmetial

de�nability and axiomatizability) and Number Theory, the attempt to prove or disprove the

7



questions of J. Robinson, A. Woods and P. Erd

�

os, gains in importane if we realize how

strong the links are between WE and other lassial onjetures of Number Theory. In the

same paper by Langevin, the following results were proved:

Let k be the parameter appearing in the Woods-Erd

�

os onjeture WE(k).

1) If there is an absolute onstant C suh that for any pair (x,y) of positive integers the

ondition x

3

6= y

2

implies:

jx

3

� y

2

j > [max(x

3

; y

2

)℄

C

(Hall's onjeture).

then the answer to WE is positive.

2) Moreover, under the same hypothesis x

3

6= y

2

above, if we an prove

jx

3

� y

2

j > [max(x

3

; y

2

)℄

1=6

;

then the answer to WE(k) is positive with k � 16 modulo a �nite set of exeptions.

3) If for every positive real ", there exists a onstant D suh that for any pair (a,b) of

positive integers we have;

u(a + b)ab>D(a + b)=(gd(a,b)

1�"

((a-b-)-onjeture),

then the answer to WE(k) is positive with k � 3 modulo a �nite set of exeptions.

We note that as a result of onlusions 2) and 3) the above theorem is a negative answer to

WE would refute both Hall 's onjeture, and the so-alledOesterl

�

e-Masser's onjeture

(also alled the a-b--onjeture).

There are still other relationships of WE to questions reently answered by Capi Corrales

Rodrig

�

anez and Ren�e Shoof about the haraterization of x by supports of x

n

� 1, for

in�nitely many positive n this was also a question posed by Erd

�

os. Maxim Vsmirnov

(unpublished) has a proof of the haraterization of integers by �nitely many supports. Ten

years ago, we asked whether SUPP (x

2

n

� 1) = SUPP (y

2

n

� 1) for all n 2 N implies x = y

and we gave a proof due to A. Shinzel of the fat that the (a-b-)-onjeture implies a

positive answer to our question. In the setion devoted to the logial approah to WE, we

present an analogue of these results within the frame-work of de�nability, when we prove

that DEF(N ;=;+;�) = DEF(N ; S;?;POW).

II-2 Logial approah to WE.

To plae the logial approah to WE in a more general and historial setting, it is worth

pointing out that arithmetial de�nability goes bak to Kurt G

�

odel who proved that the

struture hN ;=;+;�i is losed under primitive reursion. In order to appreiate the power

of this result, onsider the e�ort required to obtain a diret �rst-order de�nition of expo-

nentiation, or of the natural enumeration of prime integers, from equality, addition and

multipliation. Another interesting aspet of G

�

odel's result is that there exist arithmetial

strutures whih are not losed under primitive reursion:

- addition does not belong to DEF(N ;=; S) as shown by Langford in 1926;

- multipliation does not belong to DEF(N ;=;+) as shown by Presburger in 1929.

De�ning addition and multipliation from some a priori weaker languages of arithmeti

is not always easy but is sometimes possible. A lassial example is the language fS;�g

whih de�nes all arithmetial relations. A. Tarski provided a �rst-order hS;�i-de�nition

of addition from the following equivalene:

(xz + 1)(yz + 1) = [z

2

(xy + 1)℄ + 1 if and only if (x = y = z = 0 or x+ y = z):

Julia ROBINSON's results

In a sense, folling the G

�

odel's works and the above relation due to Tarski, the �rst

important and really diÆult result was the haraterization of de�nability within a Weak

Arithmeti struture and was obtained by J. Robinson:

Addition and multipliation are de�nable in the struture hN ; S; ji.

In the same paper, J. Robinson showed that the set N of nonnegative integers is de�nable

in terms of addition and multipliation within the �eld Q of rationals. This result is entral

to the investigation of deidable and undeidable theories.

8



In order to �nd other natural axiomatisations of arithmeti, J. Robinson asked whether

DEF(N ;+;?) = DEF(N ;+;�):

There was �rst an unpublished positive solution by J. Robinson, then a seond solution

by A. Woods proving that the (+;?)-de�nability of multipliation is a orollary of the

Shnirelmann Theorem (stating that every integer is the sum of a �nite bounded number

of primes). Finally we obtained a proof using oding devies.

It is worth observing that J. Robinson attempt to propose a natural axiomatization of

�rst-order Peano arithmeti in terms of S and j, was in part ompletely realized by P.

Cegielski in his thesis. Indeed Cegielski has given a �rst-order natural axiomatization of

�rst-order Peano Arithmeti in the language f=; 0; 1; S; jg. To obtain this axiomatization,

he used the so-alled ZBV-method of oding whih we desribe below.

Alan WOODS' results.

Conerning the language f<;?g, the �rst result is due to A. Woods who also proved that

DEF(N ; <;?) = DEF(N ;+;�). In the sequel we all this question the Robinson problem

(namely: is there an equality between DEF(N ;=; S;?) and DEF(N ;=;+;�)). A. Woods

has linked the Robinson problem to the Woods-Erd

�

os onjeture by proving that the

answer to the Robinson problem is positive if and only if the WE onjeture is true. More

preisely, Alan Woods proved that the following assertions are all equivalent:

(i) The answer to the Robinson problem is positive, namely one an de�ne addition

and multipliation in terms of equality, oprimeness prediate and suessor funtion; (and

vie-versa)

(i') One an de�ne natural order, or addition, or multipliation in terms of equality,

oprimeness prediate and suessor funtion;

(ii) One an de�ne equality, addition and multipliation in terms of oprimeness prediate

and suessor funtion;

(ii') One an de�ne natural order, or addition, or multipliation in terms of oprimeness

prediate and suessor funtion;

(iii) One an de�ne equality in terms of oprimeness prediate and suessor

funtion;

(iv) The answer to the Woods-Erd

�

os onjeture is positive, namely, there is an integer

k suh that for every pair (x; y) of integers, the equality x = y holds if and only if x+ i and

y + i have the same prime divisors for 0 � i � k.

Remark. It is worth pointing out the status of equality: if we onsider suessor and oprime-

ness without equality, then to de�ne equality is equivalent to a positive answer to WE; on

the other hand, if we onsider equality, suessor and oprimeness together, then a suess

at de�nition equality order (resp. addition or multipliation) is still equivalent to a positive

answer to WE.

At this step in the investigation of the Robinson problem, farther results are obtained via

the so alled ZBV-Method (for Zsigmondy-Birkhoff-Vandiver) whih we have intro-

dued. This method allows are to prove all the results already mentioned this setion as

well as providing new results.

ZBV-method of oding.

The ZBV-method onsists in onsidering integers of the form x

m

� y

m

or x

m

+ y

m

(where x

and y are oprime) to be oded by their respetive support or their respetive set of primitive

or harateristi divisors. This method is most e�etive when x is a �xed prime p and y is

1, 2 or 3. By this method, one redues arithmetial questions to an investigation of �nite

sets of primes and their boolean ombinatoris.

Moreover, every �nite set of primes (or every funtion of �nite domain mapping primes to

primes) is itself odable in in�nitely many ways by a single prime integer using a ombination
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of the Chineese Remainder Theorem and the Dirihlet Theorem. A prime whih is a ode

plays the role of a memory in whih we store a �nite set of primes. One an interpret the

struture hN ;?i as a set theory on the supports of nonnegative integers. Any �nite part A

of the set of primes is oded by the set of integers x having A as its support.

New (S;?)-de�nable relations and undeidability of Th(N ; S;?) via the ZBV-

method.

It an be proved that an integer u is a power of a prime (we say also primary) if and only if

the support of u is inluded in the support of any integer not oprime to u. As a onsequene,

the following relations are (S;?)-de�nable:

- the set PP of powers of primes;

- the set PP(a) of powers of the same prime a;

- every �nite relation on N ;

- the equality =

PP

restrited to PP;

- the suessor funtion and the predeessor funtion restrited to PP;

every integer whih is a onstant (this is not obvious but is a orollary of the previous point).

A fundamental result derived from the ZBV-method is the possibility of de�ning the set

P of primes within the struture hN ; S;?i. This result an be extended to the struture

hN ; pred;?i where Pred denotes the predeessor funtion on N . They are in both strutures

hN ; S;?i and hN ; pred;?i, we have all set theoretial ombinatoris exist on the supports.

For every pair (p; q) of distint primes the notation q

ord(q;p)

is by de�nition the only power

u of q suh that p is a primitive divisor of u�1. The ruial fat is that the ternary relation

f(p; q; u) 2 P � P � PP suh that u = q

ord(q;p)

g

is de�nable in both strutures hN ; S;?i and hN ; pred;?i.

>From this relation, one an provide a natural and intrinsi de�nability within PP by su-

essor and oprimeness, and also shed some new light on why the elementary theory of

hN ; S;?i is undeidable. Let us begin by putting NewAdd(x; y; z) (resp. NewMult(x; y; z)

if and only if 5

z

= 5

x+y

(resp. 5

z

= 5

xy

) and denoting =

PP

the restrition of equality to

PP: One an show that:

(i) The funtion x ! 5

x

transforms the struture hN ;=;+;�i into a new struture

h5

PN

;=

PP

, NewAdd, NewMulti whih is de�nable in hN ; S;?i;

(ii) onsequently, the theory Th(N ; S;?) is undeidable;

(iii) moreover, DEF(5

PN

;=

PP

, NewAdd, NewMult) = DEF(N ;=;+;�):

What may be added to suessor and oprimeness in order to de�ne all arith-

metial relations?

At this step the logial approah onsists in �nding out what are the relations we an add

to suessor and oprimeness to obtain the de�nability of all arithmetial relations. With

this in mind, we onsider the binary relations of exponentiation and power of the form

EXP = f(x; y) 2 N � N suh that there exists a whih satis�es y = a

x

g;

and

POW(x; y) = f(x; y) 2 N � N : 9n[(n 6= 0) ^ (y = x

n

)℄g:

From the previous result, it an be shown (see [RD,1985-4℄ and [GSRD,1989℄) that

(i) Every relation or funtion whih is �rst-order de�nable in hN ;+;�;=i is atually

�rst-order de�nable in hN ; S;?;EXPi.

(ii) Every relation or funtion de�nable by a �rst-order formula of f+;�;=g is also de-

�nable in the struture hN ; S;?;POWi by a �rst-order formula of the assoiated language

fS;?;POWg:

It now follows that the struture hN ;?; <

PP

i where <

PP

denotes the natural order on N

restrited to primaries, allows the �rst-order de�nition all arithmetial relations on PP,

and veri�es that DEF(N ;= +;�)

�

6=

DEF(N ;?; <

PP

).
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The last result we would like to mention, is due to Franis Nezondet who showed the

importane of equality and, the di�erene between relational and funtional languages, to the

investigation of arithmetial de�nability in terms of suessor and exprimeness. Atually,

there is a struture hM;+

f

;�

f

; 0; 1;?iwhih is elementarily equivalent to the standard model

hN ;+

f

;�

f

;?; 0; 1i and in whih the identity relation is not de�nable. More preisely:

Let +

f

, �

f

be respetively the funtional symbols of addition and multipliation. There exists

an arithmetial model

M = hM;=;+;�;?; 0; 1i of Th(N ;+

f

;�

f

;?; 0; 1)

and of the relational theory with equality of the �nite arithmeti and within whih there is

no (+

f

;�

f

;?; 0; 1)-formula de�ning equality, thus refuting WE.

Here +

f

, �

f

are respetively the funtional symbols of addition and multipliation, will be

interpreted in the usual way on N . The oprimeness prediate ? on N and on the domain

M is the interpreted as a �rst-order formula F (x; y) meaning (x and y are oprime) on N .

By �nite arithmeti, we denote the (=;+;�)-axioms whih haraterize an ordered semi-

ring. Of ourse, our �nite arithmeti (namely the RR system of Raphael Robinson) is

a purely relational theory whih ontains a symbol of equality and does not ontain any

shema of indution. The proof of this result, onsists in �rst building a model of the �nite

arithmeti RR and of ThhN ;+

f

;�

f

;?; 0; 1i and then demonstration, that equality is not

(+

f

;�

f

;?)-de�nable. We emphasise that here addition and multipliation are funtions

and not relations. Finally, the theory of the standard model with the funtions of addition

and multipliation, the oprimeness relation and the onstants 0 and 1, does not deide the

Woods-Erd

�

os onjeture.

Conlusion: Due to the new tools, the omputers, and the new objets of our investigation,

the abstrats mahines modelizing fragments of the human reasoning, weak arithmetis

have appeared. Perhaps weak arithmetis preede weak real analysis whih we an observe

showing up against the mist of the omplexity theory of reals.
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