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Abstrat

The undeidability of the additive theory of prime numbers is an open ques-

tion. We show the undeidability of Th(N;+; n 7! nf(n)) where f is a good

approximation of the enumeration n 7! p

n

=n and where p

n

is the (n + 1)-th

prime.

Résumé

L'indéidabilité de la théorie additive des nombres premiers est une question ou-

verte. Nous montrons l'indéidabilité de Th(N;+; n 7! nf(n)) où f est une bonne

approximation de la fontion n 7! p

n

=n des nombres premiers et où p

n

est le (n+ 1)-

ième premier.

Introdution - The questions of deidability and of arithmetial de�nability raised by the

multipliative theories of prime numbers suh as Th(N; �;P) and Th(N; j;P) where P denotes

the set of prime numbers, was solved in 1930 by Skolem sine P is (�)-de�nable and (j)-

de�nable. Moreover, the theories Th(N; �; n 7! p

n

) and Th(N; j; n 7! p

n

) where p

n

denotes

the n-th prime number (p

0

= 2, p

1

= 3; et.) have reently been shown to be undeidable

in [CMR℄. On the other hand the additive theory of prime numbers is a well-developed

theory whih enables us to express suh well known problems as Goldbah's onjeture

or Poligna's onjeture [RIB,p.250℄ (the in�nity of twin primes is a speial ase here), or

many other lassial questions or results like the Shnirelman Theorem. From the logial

point of view, the additive theory of prime numbers onsists in investigating the �rst-

order struture hN;+;Pi. Two reent artiles ([BJW℄ and [BOF℄) in the JSL have shown

that the undeidability of the �rst-order theory Th(N;+;P) an be proved under ertain

assumptions as, for instane, the linear ase in Shinzel's Hypothesis. In order to further

the study of this theory without assuming any onjeture suh as Shinzel's Hypothesis,

we solve the deision problems for some �rst-order theories lose in a sense to Th(N;+;P).

Instead of studying hN;+;Pi itself, our investigation onerns Th(N;+; n 7! p

n

). This leads

us immediately to the following.

Open problem :

Is the natural enumeration of prime numbers n 7! p

n

de�nable in the struture hN;+;Pi ?

z
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Aording to the prime numbers theorem (Hadamard-de la Vallée Poussin, 1896) we know

p

n

� n log(n), so that we begin by onsidering Th(N;+; n 7! nblog(n)) and Th(N;+; n 7!

nblog

2

(n)), where log(n) and log

2

(x) respetively denote neperian and binary logarithms

of x, putting 0: log(0) = 0 and 0: log

2

(0) = 0.

The general framework of de�nability an be found, for instane, in [END℄ or is presen-

ted in a more detailed way in the survey arried out by the �rst author [CEG℄. For a

struture M, we denote by DEF(M) the set of onstants, funtions and relations whih

are �rst-order de�nable within M. Sine Th(N;+; �) is undeidable (Turing, 1936) a

method for proving the undeidability of the theory of a struture M onsists in sho-

wing DEF(M) = DEF(N;+; �). The set DEF(N;+; �) is well-known and the inlusion

DEF(M) � DEF(N;+; �) is very often trivial, whih is the ase in the present paper. In

fat, the only problem is to know whether the onverse inlusion holds.

Proposition 1. The equality DEF(N;+;n 7! n:blog

2

(n)) = DEF(N;+; �) holds so that

Th(N;+;n 7! n:blog

2

(n)) is undeidable.

This result is a orollary of Proposition 2 below whih we shall prove after the introdution

of the mappings used.

De�nition 1. For any positive integer k, we de�ne f

k

and exp

k

as mappings respetively

from a �nal segment of N into N whih are suh that

f

k

(n) = n:blog

2

(log

2

(: : : log

2

(n) : : :))

exp

k

(n) = 2

2

:

:

:

2

n

with k ourrenes of log

2

for f

k

and k ourrenes of 2 for exp

k

(n) ; the domain of

f

k

will be fn 2 N=n � n

k

g where n

k

is the smallest integer n satisfying f

k

(n) � 0.

Proposition 2. The equality DEF(N;+; f

k

) = DEF(N;+; �) holds so that Th(N;+; f

k

) is

undeidable for any integer k.

Proof : For any su�iently large integer x there exists an integer n suh that

exp

k

(n) � x < exp

k

(n+ 1), then we have f

k

(x) = x:n,

f

k

(x� 1) =

�

(x� 1)(n� 1) if x = exp

k

(n)

(x� 1)n otherwise;

and onsequently

f

k

(x)� f

k

(x� 1) =

�

n+ x� 1 > x if x = exp

k

(n)

n < x otherwise:

Therefore the set A

k

= fexp

k

(n)=n 2 Ng is de�nable within hN;+; f

k

i sine x 2 A

k

if and

only if [f

k

(x)� f

k

(x� 1) > x℄.

The mapping exp

k

is onsequently de�nable within hN;+; f

k

i sine y = exp

k

(x) is

equivalent to

[y 2 A

k

^ f

k

(y + 1)� f

k

(y) = x℄:
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The funtion n 7! n

2

from Dom(f

k

) into N is de�nable within hN;+; f

k

i sine we have

f

k

(exp

k

(n) + n) = n:(exp

k

(n) + n) = f

k

(exp

k

(n)) + n

2

:

The lassial result of Putnam insuring DEF(N;+; n 7! n

2

) = DEF(N;+; �) allows us to

onlude. 2

Proposition 2 is in a sense an improvement of the result of Bateman-Jokush-Woods

[BJW℄ expressing the fat DEF(N;+; f) = DEF(N;+; �) for some polynomial funtions f

with a degree not smaller than 2. Here we have a result for funtions whih inrease but

remain as lose as we want to the zero funtion. This proof itself suggests a more general

proposition whih is our fundamental Lemma and permits us to generalize Proposition 2

to other funtions approximating more preisely than n 7! n logn the natural enumeration

of primes. For this purpose, we introdue a lass of real funtions ontaining the usual

approximations of n 7! p

n

=n.

De�nition 2. The lass C is the set of all (invertible) real funtions f : [a

0

;+1[! R

satisfying the following onditions :

1) f is ontinuous ;

2) f is stritly inreasing ;

3)

lim f(x)

x!+1

= +1 ;

4) for every x whih is positive real, f(x) < x.

5) There exists x

0

2 (R

�

)

+

suh that for all reals x � x

0

the inequality f(x+1) < f(x)+1=2

holds.

Examples : The funtions x 7! log

2

(x), x! log

2

(x)+ log

2

(log

2

x)�1, x 7! log(x) and

x 7! log(x) + log(log x)� 1 belong to C.

Conditions 1), 2), 3) and 4) are obviously veri�ed and for 5), we have, for log

2

with

x

0

= 2= log(2) and 0 < � < 1 using the Taylor formula :

log

2

(x+ 1)� log

2

(x) =

log(x+ 1)� log(x)

log 2

<

1

(x+ �) log 2

<

1

2

:

Similar arguments work for the three other examples.

The main result of this paper is a straightforward orollary of the following

Proposition 3. (Fundamental Lemma). For any funtion f of the lass C (see De�nition

2), we have DEF(N;+;n 7! nbf(n)) = DEF(N;+; �) so that Th(N;+;n 7! nbf(n)) is

undeidable.

Some notations : By de�nition

~

f = bf is the funtion from N into N whih assoiates

to n the greatest integer bf(n) smaller than f(n).

Let

g

f

�1

be the funtion from N into N determined by

g

f

�1

(n) = � m(f(m+1)) > n, where

� means as usual �the smallest : : : suh that : : :�.

Let

d

f

�1

be the funtion from N into N whih assoiates to n the smallest integer df

�1

(x)e

greater than f

�1

(x).

Below, we list some useful fats about the previous mappings.

Fat 1. The range of

~

f ontains [

~

f(0);+1[\N .

Proof : Let p

0

be the greatest integer p suh that bf(p) = n

0

. Then bf(p

0

+1) � n

0

+1.

But, following Condition 5) of De�nition 2, f(p

0

+ 1) < f(p

0

) +

1

2

so that bf(p

0

+ 1) �

bf(p

0

) +

1

2

 � n

0

+ 1 and

~

f(p

0

+ 1) = n

0

+ 1. 2
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From Fat 1, we an dedue the existene of a funtion h : N ! N suh that h(n) is the

greatest integer q satisfying

~

f(q) = n. It is easy to prove h is inreasing.

We leave to the reader the proof that h(n+2)�h(n) > 2n+1 is true for eah h determined

by a funtions f we gave as examples above. Consequently we assume from now onwards :

Condition 6. For every non negative integer n, the inequality h(n+ 2)� h(n) > 2n+ 1

holds.

Fat 2. For every positive integer,

~

f(n+ 1) �

~

f(n) + 1.

It trivially follows from Condition 5) of De�nition 2.

Fat 3. For every f 2 C and for all positive reals we have f

�1

(x+ 1)� f

�1

(x) � 1:

Indeed, for y = f

�1

(x), we have f(y+1)� f(y) < 1=2 < 1 whih implies f(f

�1

(x) + 1) <

x+ 1. Then f

�1

(f(f

�1

(x) + 1)) < f

�1

(x+ 1) and f

�1

(x) + 1 < f

�1

(x+ 1).

Fat 4. We have

~

f(h(n)) = n and h(

~

f(n)) � n for every integer n �

~

f(0).

The �rst equality omes from Fat 1 whih implies fq �

~

f(0) suh that

~

f(q) = ng 6= ;.

By de�nition every member of the former set satis�es

~

f(h(n)) = n. Sine h(

~

f(n)) is the

greatest integer q suh that

~

f(q) =

~

f(n), we have q � n.

Proof of Proposition 3. We begin by showing that the set h(N) belongs toDEF(N;+; n 7!

n

~

f(n)). Indeed, if q

0

2 h(N), there exists p 2 N suh that

~

f(q

0

) = p and

~

f(q

0

+ 1) = p+ 1

as a onsequene of Fat 1. Let us put g(n) = n

~

f(n), so that g(q

0

) = q

0

p and g(q

0

+ 1) =

(q

0

+ 1)(p+ 1). Therefore g(q

0

+ 1)� g(p

0

) = q

0

+ p+ 1 > q

0

.

Conversely if q

0

=2 h(N), then p satis�es

~

f(q

0

) = p, and also

~

f(q

0

+ 1) = p, implying

g(q

0

+ 1)� g(q

0

) = (q

0

+ 1)p � q

0

p = p < q

0

(by De�nition 2(4)). Finally q 2 h(N) if and

only if g(q + 1)� g(q) > q, a ondition whih is obviously de�nable in the struture

hN;+; n 7! n

~

f(n)i.

Now, the funtion h itself is de�nable in the former struture through the logial equiva-

lene between h(p) = q and p+ q + 1 = g(p+ 1)� g(p).

The next step in the proof of Proposition 3 is to show the hN;+; gi-de�nability of

~

f . For

this purpose, we intend to prove �rstly that for every n �

~

f(0), the inequality

~

f

�1

(n�1) �

h(n) <

d

f

�1

(n+1). Sine f is inreasing we have f(df

�1

(n+1)e) � f(f

�1

(n+1)) = n+1,

therefore

~

f(

d

f

�1

(n + 1)) = bf(df

�1

(n + 1)e) � n + 1 sine n + 1 is an integer. Now,

assume by redutio ad absurbum the inequality h(n) �

d

f

�1

(n + 1). We should get from

this hypothesis the inequality

~

f(h(n)) �

~

f(

d

f

�1

(n + 1)) � n + 1 (sine

~

f is inreasing)

whih ontradits the equality

~

f(h(n)) = n (Fat 4) and thereby proves the inequality

h(n) <

d

f

�1

(n+ 1).

By de�nition of the eil-funtion, we have

d

f

�1

(n � 1) = df

�1

(n � 1)e < f

�1

(n � 1) + 1.

But we know (Fat 3) that f

�1

(n � 1) + 1 � f

�1

(n) providing

d

f

�1

(n � 1) � f

�1

(n).

Sine f and f

�1

are (stritly) inreasing and sine, for n �

~

f(0), we have

~

f(h(n)) = n,

we get f

�1

(n) = f

�1

(

~

f(h(n))) � f

�1

(f(h(n))) = h(n); proving the desired inequality

d

f

�1

(n� 1) � h(n).

The (N;+; g)-de�nability of x 7! x

2

uses Condition 6 we have imposed on h. We an

distinguish two ases.

First ase. Suppose n 2 N satis�es h(n+1)�h(n) > n. In this ase,

~

f(h(n)+n) = n+1

sine, by de�nition of h the integer h(n) is the greatest q suh that

~

f(q) = n, we have
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on the one hand

~

f(h(n) + n) � n + 1. On the other hand, h(n) + n � h(n + 1) implies

~

f(h(n) + n) �

~

f(h(n+ 1)) = n+ 1 by de�nition of h(n+ 1). It follows

g(h(n) + n) = (h(n) + n)

~

f(h(n) + n) = (h(n) + n)(n+1) = h(n):n+ n

2

+ h(n) + n. From

n =

~

f(h(n)), we get g(h(n)+n) =

~

f(h(n))h(n)+n

2

+h(n)+n = g(h(n))+n

2

+h(n)+n and

�nally, n

2

= g(h(n))�h(n)�n whih leads, in the �rst ase, to an easy hN;+; gi-de�nition

of the square.

Seond ase. Suppose n does not satisfy h(n + 1) � h(n) > n and therefore veri�es

h(n + 1) � h(n) � n. Using the former inequality and Condition 6, the inequality h(n +

2)� h(n+ 1) > n+ 1 holds, and oming bak to Case 1, we an hN;+; gi-de�ne (n+ 1)

2

.

Consequently, both ases lead to a hN;+; gi-de�nition of the relation m = n

2

whih is

logially equivalent to

f[(h(n + 1)� h(n) > n) ^ g(h(n) + n) =

g(h(n)) + h(n) + n+m℄ _ (h(n+ 1)� h(n) � n) ^ [g(h(n + 1) + n+ 1) =

g(h(n + 1)) + h(n+ 1) + n+ 1 +m+ n+ n+ 1℄g: 2

Proposition 3 has appliations onerning the additive theory of primes. Indeed the best

known approximation of n 7! p

n

is the following ([RIB℄ p.249) :

p

n

= n: log(n) + n:(log(log(n))� 1) +O

�

n: log(log(n))

log(n)

�

:

This approximation does not seem to be su�ient to prove the undeidability of Th(N ;+; n 7!

p

n

). However we have :

Proposition 4. The equality DEF(N;+; n 7! n:blog(n)+log(log(n))�1) = DEF(N;+; �)

holds so that Th(N;+;n:blog(n) + log(log(n))� 1)) is undeidable.

Corollary For any of the restritions to R

�+

of the real funtions f 2 flog; log

2

; log + log(log)�

1 ; log

2

+ log

2

(log

2

)� 1g, we have DEF(N;+;n 7! nbf(n)) = DEF(N;+; �) and the theory

Th(N;+;n 7! nbf(n)) is undeidable.

Proof : We are going to expliit the proof for f = log+ log(log) � 1 and to show this

funtion belongs to the lass C so that we an apply our fundamental Lemma. It is lear

f satis�es Conditions 1), 2), 3), 4) and 5) of De�nition 2. We hek Condition 6. Sine

q

0

= h(n) = Maxfq 2 N suh that 9�

q

(0 � �

q

< 1) and f(q) = n+�

q

g, we also get h(n) =

Maxfq 2 N suh that 9�

q

(0 � �

q

< 1) and log q + log(log q)� 1 = n+ �

q

g = Maxfq 2 N

suh that 9�

q

(0 � �

q

< 1) and e

n+�

q

+1

= e

log q

e

log(log q)

= q log qg. Similarly q

2

= h(n+2)

is equal to Maxfq

0

2 N suh that 9�

q

0

(0 � �

q

0

< 1) and e

n+�

q

0

+3

= q

0

log q

0

g. Therefore

h(n+ 2)� h(n) = q

2

� q

0

=

e

n+3+�

q

2

log q

2

�

e

n+1+�

q

0

log q

0

a lower bound of whih is

e

n+1

log q

2

(e

2+�

q

2

� e

�

q

0

) �

e

n+1

(e

2

� e)

log q

2

:

We know log q

2

+ log(log q

2

)� 1 = n+3+�

q

2

, hene log q

2

� n+5 and h(n+2)� h(n) �

e

n+1

n+5

(e

2

� e) > 2n+ 1, for all nonnegative integers. 2

5



Remark - Inspeting the de�nition of multipliation in the proof of Proposition 3, we see

the obtained formula of de�nition is existential (only order appears). Consequently the

Pi

2

-theory of hN;+; n 7! n

~

f(n)i is undeidable.
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