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ON THE ADDITIVE THEORY OF PRIME NUMBERS

PATRICK CÉGIELSKI, DENIS RICHARD, AND MAXIM VSEMIRNOV

Abstract. The undecidability of the additive theory of prime numbers (with identity)

as well as the theory Th(N, +, n 7→ pn), where pn denotes the (n+1)-th prime, are open

questions. In a first part, we show the undecidability of Th(N, +, n 7→ nf(n)) where f

is a good approximation of the enumeration n 7→ pn/n. In a second part, as a possible

approach, we extend the former theory by adding some extra function. In this direction we

show the undecidability of the existential part of the theory Th(N, +, n 7→ pn, n 7→ rn),

where rn is the remainder of pn divided by n in the euclidian division.

L’indécidabilité de la théorie additive des nombres premiers ainsi que de la théorie

Th(N, +, n 7→ pn), où pn désigne le (n + 1)-ième premier, sont deux questions ouvertes.

Dans une première partie, nous montrons l’indécidabilité de Th(N, +, n 7→ nf(n)) où f est

une bonne approximation de la fonction n 7→ pn/n des nombres premiers. Dans une sec-

onde partie, nous étendons la première théorie en lui ajoutant une fonction supplémentaire

et nous montrons l’indécidabilité de la théorie Th(N, +, n 7→ pn, n 7→ rn), où rn désigne

le reste de pn dans la division euclidienne de pn par n, et même de sa seule partie exis-

tentielle.

Introduction. The questions of decidability and of arithmetical definability
raised by the multiplicative theories of prime numbers such as Th(N, •, P) and
Th(N, |, P), where P denotes the set of prime numbers, was solved in 1930
by Skolem since P is (•)-definable and (|)-definable. Moreover, the theories
Th(N, •, n 7→ pn) and Th(N, |, n 7→ pn), where pn denotes the n-th prime
number (p0 = 2, p1 = 3, etc.), have been shown to be undecidable in [CMR].
On the other hand the additive theory of prime numbers is a well-developed
theory which enables us to express such well known problems as Goldbach’s
conjecture or Polignac’s conjecture ([RIB], p.250) (the infinity of twin primes
is a special case here), or many other classical questions or results like the
Schnirelman Theorem. From the logical point of view, the additive theory
of prime numbers consists in investigating the first-order structure 〈N, +, P〉.
Some authors provided [BJW, BOF, LM] conditional proofs (through the linear
case in Schinzel’s Hypothesis [SS]) of the undecidability of the additive theory
of primes Th(N, +, P), where P is the set of all primes.

In order to further the study of this theory without assuming any conjecture
such as Schinzel’s Hypothesis, we solve the decision problems for some first-
order theories close in a sense to Th(N, +, P). Instead of studying 〈N, +, P〉
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itself, our investigation concerns Th(N, +, n 7→ pn). This leads us immediately
to the following.

Open problem 1: Is the natural enumeration of prime numbers n 7→ pn

definable in the structure 〈N, +, P〉?

According to the prime numbers theorem (Hadamard-de la Vallée Poussin,
1896) we know pn ∼ n log(n), so that we begin by considering Th(N, +, n 7→
n⌊log(n)⌋) and Th(N, +, n 7→ n⌊log2(n)⌋), where log(n) and log2(x) respec-
tively denote neperian and binary logarithms of x, putting 0. log(0) = 0 and
0. log2(0) = 0.

The first approach is approximation. Another approach consists of extending
the language { +, n 7→ pn} to { +, n 7→ pn, n 7→ rn}, where rn is the remainder
of pn divided by n. The main result of the second part is the following:

Theorem 0.1. Multiplication is existentially 〈N, +, n 7→ pn, n 7→ rn〉-defina-
ble at first-order.

This leads to the following (without use of conjectures) result:

Theorem 0.2. Th∃(N, +, n 7→ pn, n 7→ rn) is undecidable.

The general framework of definability can be found, for instance, in [END] or
is presented in a more detailed way in the survey carried out by the first author
[CEG]. For a structure M , we denote by DEF(M) the set of constants, functions
and relations which are first-order definable within M . Since Th(N, +, •) is
undecidable (Turing, 1936), a method for proving the undecidability of the
theory of a structure M consists in showing DEF(M) = DEF(N, +, •). The
set DEF(N, +, •) is well-known and the inclusion DEF(M) ⊂ DEF(N, +, •)
is very often trivial, which is the case in the present paper. In fact, the only
problem is to know whether the converse inclusion holds.

§1. Approximation theories.

Proposition 1.1. The equality

DEF(N, +, n 7→ n. ⌊log2(n)⌋) = DEF(N, +, •)

holds hence Th(N, +, n 7→ n.⌊log2(n)⌋) is undecidable.

This result is a corollary of Proposition 1.3 below which we shall prove after
the introduction of the mappings used.

Definition 1.2. For any positive integer k, we define fk and expk as mappings
respectively from a final segment of N into N which are such that

fk(n) = n.⌊log2(log2(. . . log2(n) . . . ))⌋

expk(n) = 22
...2n
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with k occurrences of log2 for fk and k occurrences of 2 for expk(n). The domain
of fk will be {n ∈ N / n ≥ nk}, where nk is the smallest integer n satisfying
fk(n) ≥ 0.

Proposition 1.3. The equality DEF(N, +, fk) = DEF(N, +, •) holds,
hence Th(N, +, fk) is undecidable for any integer k.

Proof. For any sufficiently large integer x there exists an integer n such that
expk(n) ≤ x < expk(n + 1), then we have fk(x) = x.n,

fk(x − 1) =

{
(x − 1)(n − 1) if x = expk(n),
(x − 1)n otherwise,

and consequently

fk(x) − fk(x − 1) =

{
n + x − 1 > x if x = expk(n),
n < x otherwise.

Therefore the set Ak = {expk(n) / n ∈ N} is definable within 〈N, +, fk〉 since
x ∈ Ak if and only if [fk(x) − fk(x − 1) > x].

The mapping expk is consequently definable within 〈N, +, fk〉 since y =
expk(x) is equivalent to

[y ∈ Ak ∧ fk(y + 1) − fk(y) = x].

The function n 7→ n2 from Dom(fk) into N is definable within 〈N, +, fk〉
since we have

fk(expk(n) + n) = n.(expk(n) + n) = fk(expk(n)) + n2.

The classical result of Putnam insuring

DEF(N, +, n 7→ n2) = DEF(N, +, •)

allows us to conclude. ⊣

Proposition 1.3 is in a sense an improvement of the result of Bateman-Joc-

kusch-Woods [BJW] expressing the fact DEF(N, +, f) = DEF(N, +, •)
for some polynomial functions f with a degree not smaller than 2. Here we
have a result for functions which increase but remain as close as we want to the
zero function. This proof itself suggests a more general proposition which is our
fundamental lemma and permits us to generalize Proposition 1.3 to other func-
tions approximating more precisely than n 7→ n log n the natural enumeration of
primes. For this purpose, we introduce a class of real functions containing the
usual approximations of n 7→ pn/n.

Definition 1.4. The class C is the set of all (invertible) real functions f :
[a0, +∞[→ R satisfying the following conditions:

1. f is continuous;
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2. f is strictly increasing;
3. limx→+∞ f(x) = +∞;
4. for every x which is positive real, f(x) < x;
5. There exists x0 ∈ (R∗)+ such that for all reals x ≥ x0 the inequality

f(x + 1) < f(x) + 1/2 holds.

Example 1.5. The functions x 7→ log2(x), x 7→ log2(x) + log2(log2 x) − 1,
x 7→ log(x), and x 7→ log(x) + log(log x) − 1 belong to C.

Conditions 1), 2), 3), and 4) are obviously verified and for 5), we have, for
log2 with x0 = 2/ log(2) and 0 < θ < 1, using the Taylor formula:

log2(x + 1) − log2(x) =
log(x + 1) − log(x)

log 2
<

1

(x + θ) log 2
<

1

2
.

Similar arguments work for the three other examples.

The main result of this section is a straightforward corollary of the following

Proposition 1.6. (Fundamental Lemma) For any function f of the class C,
we have DEF(N, +, n 7→ n⌊f(n)⌋) = DEF(N, +, •), hence Th(N, +, n 7→
n⌊f(n)⌋) is undecidable.

Some notations. By definition f̃ = ⌊f⌋ is the function from N into N which
associates to n the greatest integer ⌊f(n)⌋ smaller than f(n).

Let f̃−1 be the function from N into N determined by f̃−1(n) = µ m(f(m +
1)) > n, where µ means as usual “the smallest . . . such that . . . ”.

Let f̂−1 be the function from N into N which associates to n the smallest
integer ⌈f−1(x)⌉ greater than f−1(x).

Below, we list some useful facts about the previous mappings.

Fact 1.7. The range of f̃ contains [f̃(0), +∞[ ∩ N.

Proof. Let p0 be the greatest integer p such that ⌊f(p)⌋ = n0. Then ⌊f(p0 +
1)⌋ ≥ n0 +1. But, following Condition 5) of Definition 1.4, f(p0 +1) < f(p0)+ 1

2

so that ⌊f(p0 + 1)⌋ ≤ ⌊f(p0) + 1
2⌋ ≤ n0 + 1 and f̃(p0 + 1) = n0 + 1. ⊣

From Fact 1.7, we can deduce the existence of a function h : N → N such
that h(n) is the greatest integer q satisfying f̃(q) = n. It is easy to prove h is
increasing.

We leave to the reader the proof that h(n + 2) − h(n) > 2n + 1 is true for
each h determined by a functions f we gave as examples above. Consequently
we assume from now onwards:

Condition 6. For every non negative integer n, the inequality h(n + 2) −
h(n) > 2n + 1 holds.
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Fact 1.8. For every positive integer, f̃(n + 1) ≤ f̃(n) + 1.

Proof. It trivially follows from Condition 5) of Definition 1.4. ⊣

Fact 1.9. For every f ∈ C and for all positive reals we have f−1(x + 1) −
f−1(x) ≥ 1.

Proof. Indeed, for y = f−1(x), we have f(y + 1) − f(y) < 1/2 < 1 which
implies f(f−1(x) + 1) < x + 1. Then f−1(f(f−1(x) + 1)) < f−1(x + 1) and
f−1(x) + 1 < f−1(x + 1). ⊣

Fact 1.10. We have f̃(h(n)) = n and h(f̃(n)) ≥ n for every integer n ≥ f̃(0).

Proof. The first equality comes from Fact 1.6 which implies {q ≥ f̃(0) such

that f̃(q) = n} 6= ∅. By definition every member of the former set satisfies

f̃(h(n)) = n. Since h(f̃(n)) is the greatest integer q such that f̃(q) = f̃(n), we
have q ≥ n. ⊣

Proof. (Proposition 1.6)

We begin by showing that the set h(N) belongs to DEF(N, +, n 7→ nf̃(n)).

Indeed, if q0 ∈ h(N), there exists p ∈ N such that f̃(q0) = p and f̃(q0 +1) = p+1

as a consequence of Fact 1.7. Let us put g(n) = nf̃(n), so that g(q0) = q0p and
g(q0 + 1) = (q0 + 1)(p + 1). Therefore g(q0 + 1) − g(p0) = q0 + p + 1 > q0.

Conversely if q0 /∈ h(N), then p satisfies f̃(q0) = p, and also f̃(q0 + 1) = p,
implying g(q0 + 1) − g(q0) = (q0 + 1)p − q0p = p < q0 (by Definition 1.4(4)).
Finally q ∈ h(N) if and only if g(q +1)− g(q) > q, a condition which is obviously

definable in the structure 〈N, +, n 7→ nf̃(n)〉.

Now, the function h itself is definable in the former structure through the
logical equivalence between h(p) = q and p + q + 1 = g(p + 1) − g(p).

The next step in the proof of Proposition 1.6 is to show the 〈N, +, g〉-definabi-

lity of f̃ . For this purpose, firstly we intend to prove that for every n ≥ f̃(0), we

have the inequality f̃−1(n−1) ≤ h(n) < f̂−1(n+1). Since f is increasing we have

f(⌈f−1(n+1)⌉) ≥ f(f−1(n+1)) = n+1, therefore f̃(f̂−1(n+1)) = ⌊f(⌈f−1(n+
1)⌉)⌋ ≥ n+1, since n+1 is an integer. Now, assume by reductio ad absurbum the

inequality h(n) ≥ f̂−1(n+1). We should get from this hypothesis the inequality

f̃(h(n)) ≥ f̃(f̂−1(n + 1)) ≥ n + 1 (since f̃ is increasing), which contradicts

the equality f̃(h(n)) = n (Fact 1.10) and thereby proves the inequality h(n) <

f̂−1(n + 1).

By definition of the ceil-function, we have f̂−1(n − 1) = ⌈f−1(n − 1)⌉ <
f−1(n−1)+1. But we know (Fact 1.9) that f−1(n−1)+1 ≤ f−1(n), providing
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f̂−1(n−1) ≤ f−1(n). Since f and f−1 are (strictly) increasing and since, for n ≥

f̃(0), we have f̃(h(n)) = n, we get f−1(n) = f−1(f̃(h(n))) ≤ f−1(f(h(n))) =

h(n), proving the desired inequality f̂−1(n − 1) ≤ h(n).

The (N, +, g)-definability of x 7→ x2 uses Condition 6 we have imposed on h.
We can distinguish two cases.

First case. Suppose n ∈ N satisfying h(n + 1) − h(n) > n. In this case,

f̃(h(n) + n) = n + 1 since, by definition of h, the integer h(n) is the greatest q

such that f̃(q) = n, we have on the one hand f̃(h(n) + n) ≥ n + 1. On the other

hand, h(n)+n ≤ h(n+1) implies f̃(h(n)+n) ≤ f̃(h(n+1)) = n+1 by definition

of h(n+1). It follows g(h(n)+n) = (h(n)+n)f̃(h(n)+n) = (h(n)+n)(n+1) =

h(n).n + n2 + h(n) + n. From n = f̃(h(n)), we get g(h(n) + n) = f̃(h(n))h(n) +
n2 + h(n) + n = g(h(n)) + n2 + h(n) + n and finally, n2 = g(h(n)) − h(n) − n
which leads, in the first case, to an easy 〈N, +, g〉-definition of the square.

Second case. Suppose n does not satisfy h(n + 1) − h(n) > n and therefore
verifies h(n + 1) − h(n) ≤ n. Using the former inequality and Condition 6, the
inequality h(n + 2)− h(n + 1) > n + 1 holds, and coming back to Case 1, we can
〈N, +, g〉-define (n + 1)2.

Consequently, both cases lead to a 〈N, +, g〉-definition of the relation m = n2

which is logically equivalent to

{[(h(n + 1) − h(n) > n) ∧ g(h(n) + n) =
g(h(n)) + h(n) + n + m] ∨ (h(n + 1) − h(n) ≤ n) ∧ [g(h(n + 1) + n + 1) =
g(h(n + 1)) + h(n + 1) + n + 1 + m + n + n + 1]}.

⊣

Proposition 1.6 has applications concerning the additive theory of primes.
Indeed the best known approximation of n 7→ pn is the following ([RIB], p.249):

pn = n. log(n) + n.(log(log(n)) − 1) + O

(
n. log(log(n))

log(n)

)
.

This approximation does not seem to be sufficient to prove the undecidability of
Th(N, +, n 7→ pn). However we have:

Proposition 1.11. The equality DEF(N, +, n 7→ n.⌊log(n) + log(log(n)) −
1⌋) = DEF(N, +, •) holds so that Th(N, +, n.⌊log(n) + log(log(n)) − 1)⌋) is
undecidable.

Corollary 1.12. For any of the restrictions to R
∗+ of the real functions

f ∈ {log, log2, log + log(log)−1, log2+log2(log2)−1}, we have DEF(N, +, n 7→
n⌊f(n)⌋) = DEF(N, +, •) and the theory Th(N, +, n 7→ n⌊f(n)⌋) is undecidable.
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Proof. We are going to explicit the proof for f = log + log(log) − 1 and to
show this function belongs to the class C so that we can apply our fundamental
Lemma. It is clear f satisfies Conditions 1), 2), 3), 4), and 5) of Definition 1.4.
We check Condition 6. Since q0 = h(n) = Max{q ∈ N such that ∃αq(0 ≤ αq < 1)
and f(q) = n + αq}, we also get h(n) = Max{q ∈ N such that ∃αq(0 ≤ αq < 1)
and log q + log(log q) − 1 = n + αq} = Max{q ∈ N such that ∃αq(0 ≤ αq < 1)

and en+αq+1 = elog qelog(log q) = q log q}. Similarly q2 = h(n + 2) is equal to
Max{q′ ∈ N such that ∃αq′(0 ≤ αq′ < 1) and en+αq′+3 = q′ log q′}. Therefore

h(n + 2) − h(n) = q2 − q0 =
en+3+αq2

log q2
−

en+1+αq0

log q0

a lower bound of which is

en+1

log q2
(e2+αq2 − eαq0 ) ≥

en+1(e2 − e)

log q2
.

We know log q2 + log(log q2) − 1 = n + 3 + αq2
, hence log q2 ≤ n + 5 and

h(n + 2) − h(n) ≥ en+1

n+5 (e2 − e) > 2n + 1, for all nonnegative integers. ⊣

Remark.- Inspecting the definition of multiplication in the proof of Proposition
1.11, we see the obtained formula of definition is existential (only order appears).

Consequently the Π2-theory of 〈N, +, n 7→ nf̃(n)〉 is undecidable.

§2. Extended theories.

Introduction.- Actually all positive integer constants are existentially {+, P}-
definable in the following manner:

x = 0 ⇔ x + x = x;
x = 1 ⇔ ∃y(y = x + x ∧ y ∈ P);
x = 2 ⇔ ∃y(y = 1 ∧ x = y + y);

...
x = n + 1 ⇔ ∃y∃z(y = n ∧ z = 1 ∧ x = y + z).

Moreover P is existentially definable within the language {+, n 7→ pn}, hence
all positive integer constants are also existentially {+, n 7→ pn}-definable. Note,
that n

⌊
pn

n

⌋
= pn − rn. We intend to define

⌊
pn

n

⌋
from + and n

⌊
pn

n

⌋
. Then the

strategy will be to define multiplication through the function n 7→ cn2 (where c
is a fixed constant), which is to be proved {+,

⌊
pn

n

⌋
, n

⌊
pn

n

⌋
}-definable. Conse-

quently, multiplication will be existentially {+, n 7→ pn, n 7→ rn}-definable at
first-order.

In the first part we have considered continuous real strictly increasing functions
and their inverses. Since we work with integer parts we have to introduce pseudo-
inverses of discrete functions. For such a discrete unbounded function f from N

into N, we define its pseudo-inverse f−1 from N into N by f−1(n) = µm[f(m +
1) > n], where µ means “the smallest . . . such that”. Due to the unboundness
of f such an f−1 is correctly defined.
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2.1. Some preliminary results in Number Theory.

Contrarily to what happens with log, the behavior of
⌊

pn

n

⌋
is a priori irregular

but we shall prove it is not too much chaotic. Namely, we prove:

Proposition 2.1. Let us denote the mapping n 7→
⌊

pn

n

⌋
by f .

1. For m > n, we have f(m) − f(n) ≥ −1;
2. For n ≥ 11, we have f−1(n + 1) − f−1(n) > n.

Proof. 1) We use the following estimates for pn ([RIB], p. 249):

pm ≥ m log m + m log log m − 1.0072629m for m ≥ 2;

pm ≤ m log m + m log log m − 0.9385m for m ≥ 7022. (1)

For m > n ≥ 7022, we have f(m) − f(n) =
⌊

pm

m

⌋
−

⌊
pn

n

⌋

≥ pm

m − pn

n − 1 ≥ log(m
n ) − log( logm

logn ) − 0.9385 + 1.0072629− 1.

Hence f(m)− f(n) ≥ −1 because the sum of the two first terms is positive as
is the sum of terms three and four.

If n < 7022, one may check the desired inequality by a direct computation.

2) Let m be f−1(n). By the very definition of f−1, the equality m = f−1(n)
is equivalent to the conjunction of the two following conditions:





⌊
pm+1

m + 1

⌋
≥ n + 1;

∀k ≤ m
⌊pk

k

⌋
≤ n.

(2)

For k ≤ 7022, the maximum of pk

k is attained for k = 7012 and equal to p7012

7012 <

10.102824 < 11. Consequently, we see that m = f−1(n) ≥ f−1(11) ≥ 7022 and
this is the reason why in the hypothesis of Proposition 2.1, item 2) we assume
n ≥ 11.

To prove the inequality, it is sufficient to prove that for k = m + n we have⌊
pk

k

⌋
≤ n + 1, or in other words,

pk

k
< n + 2. (3)

Note that for m ≥ 7022, we have by (2):

n + 1 ≤

⌊
pm+1

m + 1

⌋
+ 1 ≤

pm+1

m + 1
+ 1 ≤ log(m + 1) + log log(m + 1) − 0.07 < m.

Consequently it is sufficient – and actually more convenient – to prove a somehow
stronger result, namely the same inequality (3) but for m ≥ 7022 and m + 1 ≤
k ≤ 2m.

From the second estimate of (1) we have, since k ≥ m ≥ 7022, the following
inequalities:

pk

k < log k + log log k − 0.9385
≤ log 2m + log log 2m− 0.9385

= log m + log log m + log 2 + log(1 + log 2
log m ) − 0.9385;
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using the first estimate of (1) and log 2
log m ≤ log 2

log 7022 , we have:

log m + log log m − 1.0072629 ≤
pm

m
;

consequently:

pk

k
≤

pm

m
+ 0.07 + log 2 + log(1 +

log 2

log 7022
) ≤

pm

m
+ 1

by an easy computation and finally, due to (2), we obtain pk

k < n + 2. ⊣

Item 1) of previous proposition emphasizes on the fact that f : n 7→
⌊

pn

n

⌋
is

“almost” increasing and item 2) shows that the difference f−1(n + 1) − f−1(n)
is big enough with respect to n. This suggests to introduce a new class of
functions, containing f , for which we prove that the existential part of the theory
Th(N, +, n 7→ nf(n)) is undecidable.

2.2. The class C(k, d, n0). Let k ≥ 0 be a fixed nonnegative integer. We
shall say f is k-almost increasing if and only if

∀y ≥ x[f(y) − f(x) ≥ −k]. (4)

In this sense 0-almost increasing means increasing (not necessarily strictly)
and n 7→

⌊
pn

n

⌋
is 1-almost increasing (due to Proposition 2.1).

Still looking at n 7→
⌊

pn

n

⌋
, we intend to consider functions whose pseudo-

inverse is defined and asymptotically increases quickly enough with respect to
its argument. Let us say that f−1 has at least (1/d)-linear difference, if

∃n0 ∈ N∀n ≥ n0[f
−1(n + 1) − f−1(n) >

n

d
]. (5)

In fact, for
⌊

pn

n

⌋
, the constant d is 1 and n0 = 11, but results and proofs hold

for an arbitrary (fixed) d.

Now let us definite the class C(k, d, n0) as the set of functions from N into
N satisfying conditions (4) of being k-almost increasing and (5) of having its
pseudo-inverse with an at least (1/d)-linear difference.

In order to prove the above fundamental lemma, whose Theorem 0.1 is a
corollary, we show some properties of the class C(k, d, n0). Firstly, in section 2.3
we present in three lemmas these properties and comment them. Afterwards, in
section 2.4, we prove them.

2.3. Properties of C(k, d, n0).

Lemma 2.2. For any function f ∈ C(k, d, n0) the following items hold:

(i) For any n ≥ n0, we have f−1(n + d) − f−1(n) > n;

(ii) For any n ≥ n0 + 1, the set {x ∈ N | f(x) = n} is nonempty;

(iii) For any n ≥ n0 + 1, the equality f(x) = n implies

x >
1

2d
[(n − 1)(n − 2) − n0(n0 − 1)].
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Lemma 2.3. If f ∈ C(k, d, n0) and f(x) = n ≥ n0, then for any c such that
1 ≤ c ≤ n, we have:

−k ≤ f(x + c) − f(x) ≤ k + d. (6)

Lemma 2.4. For any f ∈ C(k, d, n0), let x0 = f−1(2 + 4d + n2
0 + k). Consider

f̃ : [x0 + 1, +∞[ ∩ N → N with f̃(x) = f(x). Then f̃ is existentially definable
at first-order within 〈N, +, 1, x 7→ xf(x)〉.

Remarks 1) Item (i) of Lemma 2.2 provides a linear lower bound of values of
f−1 when difference of arguments is the parameter d of the considered class.

Item (ii) of the same lemma insures that f is asymptotically onto, and item
(iii) gives a quadradic lower bound for solutions of the equation f(x) = n.

2) Actually, as the reader will see within the proof, Lemma 2.2 does not use
condition (4) of being k-almost increasing.

3) Lemma 2.3 provides asymptotical bounds for the difference of two values
of f with arguments taken in a short interval with respect to the values of
these arguments. Refering to the previous Lemma 2.2 we see that n is at most√

2dx + n2
0 + 2.

4) Lemma 2.4 generalizes the situation of the main result of the first part when
⌊log n⌋ was “extracted”, i.e. defined, from + and n ⌊log n⌋.

2.4. Proofs of the three Lemmas.

Proof. (Lemma 2.2) (i) By condition (5):

f−1(n + d) − f−1(n) = [f−1(n + d) − f−1(n + d − 1)]
+[f−1(n + d − 1) − f−1(n + d − 2)]
+ . . .
+[f−1(n + 1) − f−1(n)]

> n+d−1
d + n+d−2

d + . . . + n
d

> n.

(ii) If there was no x such that f(x) = n, we would have f−1(n) = f−1(n−1).
But f−1(n) > f−1(n − 1) according to condition (5).

(iii) By definition of f−1, we have: x > f−1(n − 1).
As in (i), we have:

f−1(n − 1) − f−1(n0) = [f−1(n − 1) − f−1(n − 2)]
+ . . .
+[f−1(n0 + 1) − f−1(n0)]

> n−2
d + n0

d + . . . + n
d

= (n−2)(n−1)−n0(n0+1)
2d .

and the result. ⊣
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Proof. (Lemma 2.3) The left-hand side of the inequality is an immediate
consequence of the very definition of a k-almost increasing function. For proving
the right-hand side, note that, using k-almost increasing property of f together
with f(x) = n, we obtain:

max
y≤x

f(y) ≤ f(x) + k = n + k,

so that f−1(n + k) ≥ x, by the definition of f−1. By previous Lemma 2.2, item
(i) and the latter inequality, we have:

f−1(n + k + d) > f−1(n + k) + n + k ≥ x + n + k ≥ x + n ≥ x + c

since 1 ≤ c ≤ n. Using again the definition of f−1, we see that f(x + c) ≤
n + k + d = f(x) + k + d and we are done. ⊣

Proof. (Lemma 2.4) To define f̃ within the structure 〈N, +, x 7→ xf(x)〉
we shall make use of the inequality:

0 ≤ f(x) < x

together with the remainder of f(x) modulo x + 1, which we must define in the
considered structure.

Fact 2.5. f(x) < x.

Proof. By the definition of f−1, we have f(x0 +1) > k + 2+ 4d +n2
0 and by

the k-almost increasing property we deduce, for x ≥ x0 + 1,

n = f(x) ≥ f(x0 + 1) − k > 2 + 4d + n2
0. (7)

Hence n−2
2d > 2.

From (7), we obtain n > n0 + 1 so that by Lemma 2.2, item (iii), we have:

x >
1

2d
[(n − 1)(n − 2) − n0(n0 − 1)],

hence:

x > 2(n − 1) −
n0(n0 − 1)

2d
> 2(n − 1) − n2

0 = n + (n − 2 − n2
0) > n = f(x).

⊣

Fact 2.6. We have:

f(x) ≡ (x + 1)f(x + 1) − xf(x) (mod x + 1). (8)

Proof. It is sufficient to note that (x + 1)f(x + 1) − xf(x) = f(x) + (x +
1)[f(x + 1) − f(x)]. ⊣
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We are still unable to define general congruences. Fortunately here the differ-
ence |f(x + 1) − f(x)| is bounded, namely,

|f(x + 1) − f(x)| ≤ k + d, (9)

due to Lemme 2.3, with c = 1. This suggests to introduce the notion of a
restricted congruence, namely, for a, b, m in N and some fixed integer c, we
define a ≡c b(mod m) by:

c∨

h=0

{[a = b + m + · · · + m︸ ︷︷ ︸
h times

] ∨ [b = a + m + · · · + m︸ ︷︷ ︸
h times

]}.

Obviously, the first-order latter formula is expressible within the structure
〈N, +〉, since c is fixed. The congruence (8) and inequality (9) provide together
the following restricted congruence:

f(x) ≡k+d (x + 1)f(x + 1) − xf(x)(mod x + 1),

which is a definition of f(x) within 〈N, +, 1, x 7→ xf(x)〉 since 1 ≤ f(x) < x.
Finally, we provide explicitely an existential first-order definition of f , namely:

[x > x0 ∧ y = f(x)] ↔

{x > x0 ∧ y ≤ x ∧
k+d∨

h=0

[(y + xf(x) = (x + 1)f(x + 1) + (x + 1) + · · · + (x + 1)︸ ︷︷ ︸
h times

)

∨((x + 1)f(x + 1) = y + xf(x) + (x + 1) + · · · + (x + 1)︸ ︷︷ ︸
h times

)]}.

⊣

2.5. Fundamental Lemma and the proof of the Main Theorem. In
order to prove the undecidability of Th(N, n 7→ pn, n 7→ rn), we prove a more
general result, namely:

Lemma 2.7. (Fundamental Lemma) For any f ∈ C(k, d, n0), multiplication
is existentially {+, 1, x 7→ xf(x)}-definable at first-order.

As shown by Y. Matiyasevich, the existential true theory of numbers is
exactly the set of arithmetical relations, which are definable by diophantine
equations. Therefore the negative solution of the 10-th Hilbert’s problem [MY]
implies the following corollary.

Corollary 2.8. The existential theory Th∃(N, +, 1, x 7→ xf(x)) is unde-
cidable.
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Proof. (Lemma 2.7) It suffices to show that for some constants c and n1

the function n 7→ cn2 from [n1, +∞[ ∩ N into N is {+, 1, x 7→ xf(x)}-
definable. More precisely, we shall take c = 5d and n1 = 2 + 5d + n2

0. Consider
n ≥ n1. Since n1 > n0 + 1, we can apply Lemma 2.2, item (ii), proving there
exists x such that f(x) = 5dn. Let x0 be the same as in Lemma 2.4, namely
x0 = f−1(2 + 4d + n2

0 + k). Let us show x > x0. Otherwise x ≤ x0, so that by
the k-almost increasing property f(x) ≤ f(x0) − k, implying, by the definitions
of f−1 and x0,

f(x) ≤ 2 + 4d + n2
0 + k − k < n1 < 5dn1 ≤ 5dn = f(x),

which is impossible.
Note that 5dn is {+}-definable as the sum of 5d terms equal to n (d is a

fixed constant). Now thanks to Lemma 2.4, an x such that f(x) = 5dn is
{+, 1, x 7→ xf(x)}-definable.

On the other hand:

(x + n)f(x + n) − xf(x) = (x + n)[f(x + n) − f(x)] + nf(x)

= (x + n)[f(x + n) − f(x)] + 5dn2.

By Lemma 2.3 applied to c = n, we have |f(x + n) − f(x)| ≤ k + d, so that:

5dn2 ≡k+d (x + n)f(x + n) − xf(x)(mod x + n). (10)

According to Lemma 2.2, item (iii), since f(x) = 5dn and 5dn > n1 > n0 + 1
the inequalities n ≥ n1 > n2

0 and:

x + n >
(5dn − 1)(5dn − 2)

2d
−

n0(n0 − 1)

2d
+ n

>
25d2n2 − 15nd

2d
> 5dn2 (11)

hold.
Using (10) and (11), a similar argument as in Lemma 2.4 shows that the

function n 7→ 5dn2 = cn2 with domain [n1, +∞[ ∩ N is existentially { +, 1, x 7→
xf(x)}-definable. By a routine argument, multiplication is clearly existentially
{ +, 1, x 7→ xf(x)}-definable. ⊣

Proof. (Main-Theorem) We remind the reader that 1 was existentially
{+, P} and { +, n 7→ pn}-defined in the introduction.

We also noted that n
⌊

pn

n

⌋
= pn − rn and n 7→ n

⌊
pn

n

⌋
belongs to C(1, 1, 11),

the latter due to Proposition 2.1. Then Fundamental Lemma can be applied and
multiplication is existentially {+, n 7→ pn, n 7→ rn}-definable. ⊣

2.6. Conclusion. Our main result is absolute in the sense that does not
depend on any conjecture. In order to shed more light on the considered theories
Th∃(N, +, P) and Th∃(N, n 7→ pn, n 7→ rn), we recall a conditional result of
A. Woods. Let us recall that Dickson’s conjecture [DL] claims that if
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a1, a2, . . . an, b1, b2, . . . bn are integers with all ai > 0 and

∀y 6= 1∃x[y 6 |
∏

1≤i≤n

(aix + bi)]

then there exist infinitely many x such that aix + bi are primes for all i. Let us
call DC this conjecture, then A. Woods proved [WA]:

If DC is true then the existential theory Th∃(N, +, P) is decidable.

Now, the question is to know whether there is a gap between Th∃(N, +, n 7→
pn, n 7→ rn) and this one or whether they are exactly the same. In the case
of equality between these two theories, DC is false (and hence Schinzel’s hy-

pothesis on primes, whose DC is the linear case, is also false).

Open problem 2: Is Th∃(N, +, P) equal to Th∃(N, +, n 7→ pn, n 7→ rn)?
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