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Abstract

An interval [a; a+ d] of natural numbers veri2es the property of no coprimeness if and only
if every element a + 1; a + 2; : : : ; a + d − 1 has a common prime divisor with extremity a or
a+ d. We show the set of such a and the set of such d are recursive. The computation of the
2rst d leads to rise a lot of open problems.

R	esum	e
Un intervalle [a; a+d] d’entiers naturels v&eri2e la propri&et&e de n’avoir aucun &el&ement premier

avec simultan&ement ses deux bornes si aucun de ses &el&ements, 7a savoir a+1; a+2; : : : ; a+d−1,
n’est premier avec les deux extr&emit&es a et a + d 7a la fois. Nous montrons que l’ensemble
des tels a et l’ensemble des tels d sont r&ecursifs. Le calcul des premiers d conduit 7a poser de
nombreux probl7emes ouverts.
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1. Enunciation of problems

Introduction. Many interesting problems in number theory emerge from the thesis of
Alan Woods [10]. The most famous of them is now known as Erdős-Woods conjecture,
after its publication in the book of Guy [4]. It is
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Erdős-Woods conjecture. There exists an integer k such that integers x and y are
equal if and only if for i= 0 : : : k, integers x + i and y + i have same prime divisors.

This problem is a source of an active domain of research.
In relation with this problem, Alan Woods had conjectured [10, p. 88] that for any

ordered pair 〈a; d〉 of natural numbers, with d¿3, there exists a natural number c such
that a¡c¡a+ d and c is coprime with a and with a+ d. In other words:

∀a; ∀d ¿ 2; ∃c[a ¡ c ¡ a+ d ∧ a ⊥ c ∧ c ⊥ a+ d];

where we denote by ⊥ the coprimality predicate, notation introduced by Julia Robinson.
Also, sometimes, we shall use the most traditional notation (a; c) = 1.

Very quickly, he realized the conjecture is false, 2nding the counterexample 〈2184;
16〉 (published in [2]). In 1987, David Dowe proved in [2] that there exist in2nitely
many such numbers d. We call Erdős-Woods numbers such numbers d.

The main aim of this paper is to prove that the set of Erdős-Woods numbers is
recursive. A second aim is to give the 2rst values of Erdős-Woods numbers and to
show there is a lot of natural open problems concerning these numbers.

Notation. Let us denote by NoCoprimeness(a; d) the property:

∀c[a ¡ c ¡ a+ d→ ¬(a ⊥ c) ∨ ¬(c ⊥ a+ d)]:

Let begin by some remarks.

Remarks. (1) The relation NoCoprimeness(a; d) is recursive: it is easy to write a
program to see whether an ordered pair belongs to it.

(2) The set {〈a; d〉=NoCoprimeness(a; d)} is in>nite.

We know an element 〈2184; 16〉 of this set. It is easy to show that for every k¿0,
the ordered pair〈

2184 + k
∏
p∈P
p616

p; 16

〉

is also an element of this set, where P denotes the set of primes.
(3) The two unary relations, projections of NoCoprimeness(a; d), de>ned by

ExtremNoCoprime(a) i? ∃d NoCoprimeness(a; d);

AmplitudeNoCoprime(d) i? ∃aNoCoprimeness(a; d)

are recursively enumerable: it is easy to write a program to list elements of these sets
(but not in natural order, unfortunately).

Our main aim is to prove these relations are recursive. Before this, let us prove two
properties.
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Proposition 1. If d∈AmplitudeNoCoprime, there exist two primes dividing d− 1.

Proof. Let d be an element of AmplitudeNoCoprime. Let a be an integer such that
NoCoprimeness(a; d). We have a⊥ a+1 hence ¬(a+1⊥ a+d). There exists a prime
p such that p | a+ 1 and p | a+ d, and p divides the diOerence d− 1.

Symmetrically, there exists a prime q dividing a, a+ d− 1, and d− 1. The primes
p and q are diOerent because p does not divide a.

Corollary 1. If d∈AmplitudeNoCoprime, then d¿7.

Corollary 2. N\AmplitudeNoCoprime is in>nite.

Proof. The claim holds because 2n + 1 belongs to this set for any natural number n.
More generally, this is true for pn + 1 for any prime p.

2. Recursivity of ExtremNoCoprime

Recursivity of ExtremNoCoprime is a consequence of the following result.

Proposition 2. For any integers a and d such that NoCoprimeness(a; d), we have

d ¡ a:

Proof. If a6d, there exists a prime number p0 such that

a6
d+ a

2
¡ p0 ¡ a+ d;

using the Bertrand–Chebychev Theorem. Then

a ¡ p0 = a+ (p0 − a) ¡ a+ d:

There exists a prime number q such that
(i) q |p0 and q | a; or
(ii) q |p0 and q | a+ d.

In both cases, q |p0 hence q=p0.
In case (i), we have p0 = q | a, but a¡p0, which is a contradiction.
In case (ii), we have q |d− (p0 − a), but

p0 − a ¿ a+ d
2

− a =
d− a

2
;

then

p0 = q ¡ d− d− a
2

=
a+ d

2
;

which is a contradiction.
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Corollary. The set ExtremNoCoprime is recursive.

Proof. Corollary results of the fact that, for a given number a, it is suPcient to test
whether we have property NoCoprimeness(a; d) for the 2nite number of d such that
d¡a.

We will see later (Section 5.2) that the 2rst values of ExtremNoCoprime are big
integers. Since it is diPcult for a human being to guess properties of a set of big
integers, we cannot formulate natural questions about the set ExtremNoCoprime. We
will see that the situation is diOerent for AmplitudeNoCoprime.

3. Recursivity of AmplitudeNoCoprime

Notation. For a positive integer n, let denote by ��(n) the product of primes less than
n. For instance, we have: ��(1) = 1, ��(2) = 2, ��(3) = 6, ��(5) = 30.

Proposition 3. If d∈AmplitudeNoCoprime then the smallest a such that

NoCoprimeness(a; d)

veri>es a6��(d− 1).

Proof. Let a be a natural number such that NoCoprimeness(a; d).
Let a′ be the remainder of a modulo ��(d− 1):

a = q:��(d− 1) + a′;

and 06a′¡��(d− 1).
For a natural number c such that:

a ¡ c ¡ a+ d;

let us write c= a+ i, with 0¡i¡d.
Let us prove that:

(a; a+ i) �= 1 iO (a′; a′ + i) �= 1:

If a prime p divides a and a + i then p divides i, hence p¡d − 1. We deduce that
p divides simultaneously a and a+ i iO p divides simultaneously a′ and a′ + i.

We have also:

(a+ i; a+ d) �= 1 iO (a′ + i; a′ + d) �= 1:

Hence NoCoprimeness(a; d) holds iO NoCoprimeness(a′; d) holds.
This proves the proposition.

Corollary. AmplitudeNoCoprime is recursive.
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4. A better algorithm to decide AmplitudeNoCoprime

In the last section we have proved that AmplitudeNoCoprime is recursive. Unfortu-
nately, the algorithm associated to this proposition is not ePcient for two reasons: the
function d �→ ��(d− 1) is too rapidly growing hence complexity (in time) is not good
and a program has to use very long integers. Indeed an approximation of ��(n) is n!,
hence we have to test on n! integers of size n log(n).

In this section we give another algorithm: there is no dramatic improvement of the
complexity but we may implement it with the usual integers of a standard programming
language (we may use the language C, for instance, without having to implement
arbitrary precision integers).

Some attempts for searching Erdős-Woods numbers led to the following combina-
torial characterization of AmplitudeNoCoprime. Let 〈a; d〉 such that NoCoprimeness
(a; d). For every c such that a¡c¡a+ d, we have (a; c) �= 1 or (c; a+ d) �= 1. Hence
there exists a prime p such that p | a and p | c, or p | c and p | a + d. Let us write c
as a+ i, with 16i¡d. Let P be a mapping from [1; d− 1] into P such that P(i) is a
witnessing prime. An integer d is an Erdős-Woods number iO such a mapping exists,
with some extra conditions.

Proposition 4. An integer d belongs to AmplitudeNoCoprime if and only if there
exist a partition of the set P¡d of primes (strictly) less than d in two sets A and B,
and a function P from [1; d− 1] on P¡d such that:
(i) for any integer i, 16i¡d, if P(i)∈A then P(i) | i, if P(i)∈B then P(i) |d− i;
(ii) for 16i¡i + P(i)¡d, we have P(i)∈B i? P(i + P(i))∈B.

Proof. Necessity of condition (i), (ii): Let
• d be an element of AmplitudeNoCoprime;
• a be a natural number such that NoCoprimeness(a; d);
• A0 denote the set of primes dividing a and d;
• C denote the set of integer i, 16i¡d, such that no prime of A0 divides i and there

exists a prime p such that p | a+ d and p | a+ i;
• B denote the set of primes p of P¡d not in A0 such that there exists an i∈C

verifying p | a+ i and p | a+ d (hence p |d− i);
• A be the set of primes less than d− 1 who do not belong to B.

C is not empty because 1∈C. Hence B is not empty.
(i) For any integer i¡d, there exists a prime p such that p | a and p | a+i, or p | a+d

and p | a+ i; by diOerence, p divides i or d− i, hence p6d− 1.

If i∈C, let P(i) be the smallest prime p such that p | a+ d and p | a+ i. If P(i) | i
then P(i) | a and P(i) |d, hence P(i)∈A0, absurd. Hence P(i)∈B.

If i =∈C, then:
(a) ∃q∈A0 such that q | i; or
(b) (a+ i; a+ d) = 1.
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In case (a), let P(i) the smallest p∈A0 such that p | i. Hence P(i)∈A.
In case (b), we have (a; a + i) �= 1, by de2nition of NoCoprimeness. Hence there

exists a prime p such that p | a and p | a + i. If p∈B, there exists i0 ∈C such that
p | a+ i0 and p | a+d, hence p |d and p | a; we have p∈A0, contrary to de2nition of
B. Hence p∈A.

Let P(i) the smallest such prime.
(ii) If P(i)∈B then P(i) =∈A0, P(i) | a + i, and P(i) | a + d. Hence P(i) | a + i + P(i)

and P(i) | a+ d, hence i+ P(i)∈C. We have P(i+ P(i)) =P(i) because we have
chosen the smaller prime verifying a certain condition.

The sets A and B are nonempty by Proposition 1.

Su@ciency of condition (i), (ii): Consider the set of conditions:
a≡ 0 [p] for p∈A,
a+ i≡ 0 [p] for p∈B and every corresponding integer i.
We use the theorem of Chinese remainders to 2nd an integer a which is suitable:

for a given p, we have many integers i such that a + i≡ 0 [p] but the condition of
compatibility (ii) shows it is not important.

5. Computations, applications, and open problems

The main part of our paper (Sections 2 and 3) consists of proofs that the sets
ExtremNoCoprime and AmplitudeNoCoprime are recursive. In this section we report
on the computation of the 2rst elements of AmplitudeNoCoprime, which leads to
interesting remarks.

The cited results (with personal communication label) are not published. Dates given
here are important for priority reasons. The reference to the Erdős-Woods sequence in
The On-Line Encyclopedia of Integer Sequences:
http://www.research.att.com/ njas/sequences/

is a good location to follow works in progress.

5.1. First elements of AmplitudeNoCoprime

Proposition 4 allows to implement an algorithm (in language C) to compute 2rst
elements of AmplitudeNoCoprime. The algorithm is not very ePcient, but it allows to
test quickly the 2rst six hundred integers. We obtain the beginning of the set Ampli-
tudeNoCoprime:

{16; 22; 34; 36; 46; 56; 64; 66; 70; 76; 78; 86; 88; 92; 94; 96; 100; 106;

112; 116; 118; 120; 124; 130; 134; 142; 144; 146; 154; 160; 162; 186;

190; 196; 204; 210; 216; 218; 220; 222; 232; 238; 246; 248; 250; 256;

260; 262; 268; 276; 280; 286; 288; 292; 296; 298; 300; 302; 306; 310;

316; 320; 324; 326; 328; 330; 336; 340; 342; 346; 356; 366; 372; 378;

http://www.research.att.com/~njas/sequences/
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382; 394; 396; 400; 404; 406; 408; 414; 416; 424; 426; 428; 430; 438;

446; 454; 456; 466; 470; 472; 474; 476; 484; 486; 490; 494; 498; 512;

516; 518; 520; 526; 528; 532; 534; 536; 538; 540; 546; 550; 552; 554;

556; 560; 574; 576; 580; 582; 584; 590; 604; 606; 612; 616 : : :}:

5.2. About some patterns in AmplitudeNoCoprime

Immediately we remark some patterns in AmplitudeNoCoprime, more exactly in the
beginning of this set. We ask about the appearance of these patterns in the full set.
Here we report on the state of art at our knowledge, without proofs: counterexamples
are not found by a simple application of the above algorithm, its complexity does not
allow it.

On odd elements of AmplitudeNoCoprime: Dowe [2] has found an in2nite subset
of AmplitudeNoCoprime, every element being even. He conjectures every element of
AmplitudeNoCoprime is even. Marcin Bienkowski, Mirek Korzeniowski, and Krysztof
Lorys, from Wroclaw University (Poland), have found the counterexamples d= 903
and 2545 by computation [1], then a general method to generate many other examples
[5]: 4533, 5067, 8759, 9071, 9269, 10353, 11035, 11625, 11865, 13629, 15395, : : : Nik
Lygeros, from Lyon 1 University (France), independently has found the counterexample
d= 903, making precise [6] the related extremity:

a= 9 522 262 666 954 293 438 213 814 248 428 848 908 865 242 615 359

435 357 454 655 023 337 655 961 661 185 909 720 220 963 272 377 170

658 485 583 462 437 556 704 487 000 825 482 523 721 777 298 113 684

783 645 994 814 078 222 557 560 883 686 154 164 437 824 554 543 412

509 895 747 350 810 845 757 048 244 101 596 740 520 097 753 981 676

715 670 944 384 183 107 626 409 084 843 313 577 681 531 093 717 028

660 116 797 728 892 253 375 798 305 738 503 033 846 246 769 704 747

450 128 124 100 053 617:

He found other ones (d= 907 and 909), proving that the suPcient condition of [5]
is not necessary. Also he discovers that the solution d= 903 is an old result from
Erdős and Seldfridge [3].

On even squares of AmplitudeNoCoprime: We see, in scanning the above list, that
every even square but 4 appears at the beginning. However 676 = 26× 26, 1156 = 34
× 34 [7] and 1024 = 32× 32 [9] are not Erdős-Woods numbers.

On prime elements of AmplitudeNoCoprime: An Erdős-Woods number may be a prime
number as 15 493 and 18 637 show it [8].
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5.3. Open problems

The above list of 2rst elements of AmplitudeNoCoprime suggests a great number
of open problems, curiously similar to problems for the set of primes.

We may implement a program to compute, for an Erdős-Woods number d, the
smallest associated extremity a. Numerical experiments suggest that 2 | a+1 whenever
the amplitude d is even, hence 2 divides a. Is it a general property?

The solution 〈a; 903〉, with the a found by Nik Lygeros, shows it is not the case for
d odd.

Open problem 1 (Even extremity for even amplitude). For an even d, is every element
a such that

NoCoprimeness(a; d)

even?

We may note we have a great number of twin Erdős-Woods numbers among the
2rst elements of AmplitudeNoCoprime: 34 and 36, 64 and 66, 76 and 78, 86 and 88,
92 and 94; : : :

Open problem 2 (In2nity of twin Erdős-Woods numbers). There exists an in>nity of
integers d such that d, d+ 2 belongs to AmplitudeNoCoprime.

Indeed we also have a sequence of three consecutive even Erdős-Woods numbers
(as 92, 94, 96), even four consecutive ones (as 216, 218, 220, 222).

Open problem 3 (Polignac’s conjecture for Erdős-Woods numbers). For any integer
k, there exists an even integer d such that d; d + 2; d + 4; : : : ; d + 2:k belong to
AmplitudeNoCoprime.

Nik Lygeros is searching segments of consecutive natural numbers which are not
Erdős-Woods numbers. He has found long such segments.

Open problem 4. There exists segments of any length without elements of Amplitu-
deNoCoprime:

∀k; ∃e[e; e + 1; : : : ; e + k =∈ AmpitudeNoCoprime]:

Passing from patterns in AmplitudeNoCoprime to complexity, we may remark the
algorithm we have given to decide whether an integer belongs to AmplitudeNoCoprime
is worst than exponential. It is interesting to improve it if it is possible.

Open problem 5 (Complexity of AmplitudeNoCoprime). To which complexity classes
does AmplitudeNoCoprime belong?

Open problem 6. Find a lower bound for AmplitudeNoCoprime.
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Let denote by d(n) the nth number of AmplitudeNoCoprime: d(0) = 16, d(1) = 22,
d(2) = 34; : : :

Open problem 7. What is the (Kolmogorov) complexity of the sequence n �→d(n)?

Also we may ask for questions $a la Vall&ee-Poussin–Hadamard.

Open problem 8. Find a (simple) function f such that

d(n) ∼ f(n):

Passing from the complexity to the density of the set AmplitudeNoCoprime, let
denote by �(n) the cardinality of the set {d6n |AmplitudeNoCoprime(d)}.

Open problem 9. Is the density of AmplitudeNoCoprime linear? More precisely

�(n) = O(n)?

The last open problems we propose concern Logic, more precisely Weak Arith-
metics. Problems of de2nability and decidability are important: Presburger’s proof of
decidability for the elementary theory of 〈N;+〉 implies that a set X ⊂ N is de2nable
in 〈N;+〉 iO X is ultimately periodic; the negative solution given by Matiyasevich to
Hilbert’s Tenth Problem relies on the fact that exponentiation function is existentially
de2nable in 〈N;+; •〉. In the same way, the following problems deserve consideration.

Open problem 10. Is the theory Th(N;NoCoprimeness; R) decidable? where R is some
relation or function to specify (the addition + is an interesting candidate).

At the opposite, we may search for undecidability.

Open problem 11. Is the theory Th(N;+;AmplitudeNoCoprime) def-complete (i.e. is
multiplication de>nable in the underlying structure)?
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