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Abstract. Various problems lead to the same class of functions from in-
tegers to integers: functions having integral difference ratio, i.e. verifying
f(a)−f(b) ≡ 0 (mod (a− b)) for all a > b. In this paper we characterize
this class of functions from Z to Z via their à la Newton series expansions
on a suitably chosen basis of polynomials (with rational coefficients). We
also exhibit an example of such a function which is not polynomial but
Bessel like.
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1 Introduction

We deal with the following class of functions which appears in Pin & Silva, 2011
(see §4.2 and §5.3 in [10]), as a characterization of a special strong notion of
uniform continuity.

Definition 1. Let X ⊆ Z (where Z denotes the set of integers). A map f : X →

Z has integral difference ratio if
f(i)− f(j)

i− j
∈ Z , for all distinct i, j ∈ X.

Observe the following simple properties about these maps.

Proposition 2. 1. The set of maps f : X → Z having integral difference ratio
is closed under addition and multiplication. In particular, it contains all polyno-
mials with integral coefficients.
2. The set of maps f : X → Z having integral difference ratio is closed under
composition.

Proof. For multiplication, use the identity f(i)g(i) − f(j)g(j) = f(i)(g(i) −
g(j)) + g(j)(f(i)− f(j)). ut

Which non-polynomial maps have integral difference ratio? This is the ques-
tion we deal with.
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In [2] we related the integral difference ratio property to functions f : N→ N
(where N is the set of nonnegative integers) such that any lattice of finite subsets
of N closed under decrement is also closed under inverse image by f (Theorem
4). In §2 we extend this result to functions Z→ Z (Theorem 7).

In our paper [3] we characterized the functions f : N → Z having integral
difference ratio in terms of their Newton expansions over the “binomial polyno-
mials”. In §3 we give a similar characterization for functions f : Z→ Z (Theorem
16). This is the main new result of the paper; unfortunately its (very long) proof
is omitted due to space limitations. Though both characterizations rely on anal-
ogous ideas, the Z case is not reducible to the N case: we have to consider à la
Newton expansions over a different family of polynomials. Even though these
polynomials have rational (non integer) coefficients, they map Z into Z.

The characterization we give (Theorem 16) insures that there are uncount-
ably many non-polynomial functions having integral difference ratio. In [3] we
explicited non polynomial maps f : N → Z having integral difference ratio; the
map g : Z → Z such that g(x) = f(x2) also has integral difference ratio and is
non polynomial. In §5 we exhibit a non-polynomial example related to Bessel
functions which does not so reduce to a map N→ Z.

2 Integral difference ratio functions and lattices

In this section, we extend Theorem 4 of our paper [2] to functions Z→ Z.
A lattice of subsets of a set X is a family of subsets of X such that L ∩M

and L∪M are in L whenever L,M ∈ L. Let f : X → X. A lattice L of subsets of
X is closed under f−1 if f−1(L) ∈ L whenever L ∈ L. Closure under decrement
means closure under Suc−1, where Suc is the successor function.

We let P(X) denote the class of subsets of X. For L ⊆ Z and t ∈ Z we let
L− t = {x− t | x ∈ L}.
Proposition 3. Let X be N or Z or Nα = {x ∈ Z | x ≥ α} with α ∈ Z. For L
a subset of X let LX(L) be the family of sets of the form

⋃
j∈J

⋂
i∈Ij X ∩ (L− i)

where J and the Ij’s are finite non empty subsets of N. Then LX(L) is the
smallest sublattice of P(X)containing L and closed under decrement.

The following characterization is proved in [2]:

Theorem 4. Let f : N −→ N be a non decreasing function. The following
conditions are equivalent:

(1)N For every finite subset L of N, the lattice LN(L) is closed under f−1.
(1)N The function f has integral difference ratio and f(a) ≥ a for all a ∈ N.
(3)N For every regular subset L of N the lattice LN(L) is closed under f−1.

In order to extend Theorem 4 to functions Z → Z, we need the Z-version of
Lemma 3.1 in [2].

Lemma 5. Let f : Z→ Z be a nondecreasing function such that f(x)− f(y) ≡
0 mod (x− y) for every x > y ∈ Z. Then, for any set L ⊆ Z, we have f−1(L) =⋃
a∈f−1(L)

⋂
t∈L−a(L− t) .



Proof. Let a ∈ f−1(L). As t ∈ L − a ⇔ a ∈ L − t, we have a ∈
⋂
t∈L−a L − t,

proving inclusion ⊆.
For the other inclusion, let b ∈

⋂
t∈L−a L− t with a ∈ f−1(L). To prove that

f(b) ∈ L, we argue by way of contradiction. Suppose f(b) /∈ L. Since f(a) ∈ L
we have a 6= b. The condition on f insures the existence of k ∈ Z such that
f(b)− f(a) = k(b− a). In fact, k ∈ N since f is nondecreasing.

Suppose first that a < b. Since k ∈ N and f(a) + k(b − a) = f(b) /∈ L
there exists a least r ∈ N such that f(a) + r(b − a) /∈ L. Moreover, r ≥ 1
since f(a) ∈ L. Let t = f(a) − a + (r − 1)(b − a). By minimality of r, we get
t + a = f(a) + (r − 1)(a − b) ∈ L. Now t + a ∈ L implies t + b ∈ L. But
t+ b = f(a) + r(b− a) /∈ L, this contradicts the definition of r.

Suppose next that a > b. Since k ∈ N and f(b) + k(a − b) = f(a) ∈ L
there exists a least r ∈ N such that f(b) + r(a − b) ∈ L. Moreover, r ≥ 1
since f(b) /∈ L. Let t = f(b) − b + (r − 1)(a − b). By minimality of r, we get
t+b = f(b)+(r−1)(a−b) /∈ L. Now t+a ∈ L implies t+b ∈ L, contradiction. ut

We need also recall the notions of recognizable and rational subsets: a subset
L of a monoid X is rational if it can be generated from a finite set by unions,
products and star; L is recognizable if there exists a morphism φ : X −→ M ,
with M a finite monoid, and F a finite subset of M such that L = φ−1(F ). For
N, recognizable and rational subsets coincide and are called regular subsets of
N. For Z, recognizable subsets are finite unions of arithmetic sequences, while
rational subsets are unions of the form F ∪ P ∪ −N , with F finite, and P,N
two regular subsets of N; i.e. a recognizable subset of Z is also rational, but the
converse is false.

Definition 6. 1. A subset L ⊆ N is regular if it is the union of a finite set
with finitely many arithmetic progressions, i.e. L = F ∪ (R + dN) with d ≥ 1,
F,R ⊆ {x | 0 ≤ x < d} (possibly empty).
2. A subset L ⊆ Z is rational if it is of the form L = L+ ∪ (−L−) where L+, L−

are regular subsets of N, i.e. L = −(d+ S + dN)∪ F ∪ (d+R+ dN) with d ≥ 1,
R,S ⊆ {x | 0 ≤ x < d}, F ⊆ {x | −d < x < d} (possibly empty).See [1].
3. A subset L ⊆ Z is recognizable if it is of the form L = (F + dZ) with d ≥ 1,
F ⊆ {x | 0 ≤ x < d}

We can now extend Theorem 4 to functions Z→ Z.

Theorem 7. Let f : Z −→ Z be a non decreasing function. The following con-
ditions are equivalent:

(1)Z For every finite subset L of Z, the lattice LZ(L) is closed under f−1.
(2)Z The function f has integral difference ratio and f(a) ≥ a for all a ∈ Z.
(3)Z For every recognizable subset L of Z the lattice LZ(L) is closed under f−1.

Proof. • (1)Z ⇒ (2)Z. Assume (1)Z holds. We first prove inequality f(x) ≥ x
for all x ∈ Z. Observe that (by Proposition 3) LZ({z}) = {X ∈ P<ω(Z) |
X = ∅ or maxX ≤ z}. In particular, letting z = f(x) and applying (1)Z with
L({f(x)}), we get f−1({f(x}) ∈ LZ({f(x)}) hence x ≤ max(f−1({f(x})) ≤
f(x).



To show that f has integral difference ratio, we reduce to the N case.
For α ∈ Z, let Sucα : Nα → Nα be the successor function on Nα = {z ∈ Z |

z ≥ α}. The structures 〈N,Suc〉 and 〈Nα,Sucα〉 are isomorphic. Since f(x) ≥ x
for all x ∈ Z, the restriction f � Nα maps Nα into Nα. In particular, using
Theorem 4, conditions (1)Nα and (2)Nα (relative to f �Nα) are equivalent.

We show that condition (2)Nα holds. Let L ⊆ Nα be finite. Condition (1)Z
insures that LZ(L) is closed under f−1. In particular, f−1(L) ∈ LZ(L). Using
Proposition 3, we get f−1(L) =

⋃
j∈J

⋂
i∈Ij (L− i) for finite J , Ij ’s included in

N hence (f �Nα)−1(L) = f−1(L)∩Nα =
⋃
j∈J

⋂
i∈Ij (Nα ∩ (L− i)) ∈ LNα(L).

This proves condition (1)Nα . Since (1)Nα ⇒ (2)Nα we see that f �Nα has integral
difference ratio Now, α is arbitrary in Z and the integral difference ratio property
of f �Nα for all α ∈ Z yields the integral difference ratio property for f . Thus,
condition (2)Z holds.

• (2)Z ⇒ (3)Z. Assume (2)Z. It is enough to prove that f−1(L) ∈ LZ(L)
whenever L is recognizable. Let L = (F + dZ) with d ≥ 1, F = {f1, · · · , fn} ⊆
{x | 0 ≤ x < d}. Then f is not constant since f(x) ≥ x for all x ∈ Z. Also, f−1(α)
is finite for all α : let b be such that f(b) = β 6= α, by the integral difference
ratio property the nonzero integer α − β is divided by a − b for all a ∈ f−1(α)
hence f−1(α) is finite. f−1(F ) is thus finite too. Moreover, L− t = F − t+dZ =
L−t−d+dZ = L−t−d = L−t+d+dZ = L−t+d, hence there are only finitely
many L − t ’s. By Lemma 5 we have f−1(L) =

⋃
a∈f−1(F )

⋂
t∈L−a(L − t); as

there are only a finite number of L − t ’s, all union and intersections reduce to
finite unions and intersections and f−1(L) ∈ LZ(L).

• (3)Z ⇒ (1)Z. Every finite subset is recognizable hence the result. ut

Example 8. Theorem 4 (3)N does not extend to rational subsets of Z. Consider
L = (6 + 10N) and f(x) = x2; L is rational and f has integral difference ratio.
However f−1(L) = ({4, 6} + 10N) ∪ −({4, 6} + 10N) does not belong to LZ(L):
f−1(L) contains infinitely many negative numbers, while each L−t for t ∈ f−1(L)
contains only finitely many negative numbers; hence any finite union of finite
intersections of L − t ’s can contain only a finite number of negative numbers
and cannot be equal to f−1(L). ut

3 Newton series expansions of functions having integral
difference ratio

Elementary algebra shows that all polynomials have integral difference ratio.
To obtain non polynomial function having integral difference ratio functions, we
need a precise characterization via Newton series.

3.1 Newton basis for functions N → Z

Definition 9. Let X = N or X = Z. A sequence of one-variable polynomials
(Pk)k∈N with rational coefficients is a Newton basis for maps X → Z if the
following conditions are satisfied:



(1) For every x ∈ X and k ∈ N, Pk(x) is in Z.

(2) For every x ∈ X, the set {k ∈ N | Pk(x) 6= 0} is finite.

(3) The correspondence which associates to a sequence (ak)k∈N ∈ ZN the map
f : X → Z such that

f(x) =
∑
k∈N

ak Pk(x) (1)

is a bijection between sequences in ZN and maps X → Z.
The right side of equation (1) is called the Newton series expansion of f .

The following result (cf. [3]) dates back to Newton.

Proposition 10. The binomial polynomials

(
x

k

)
=

∏k−1
i=0 (x− i)

k!
, k ∈ N (with(

x

0

)
= 1), constitute a Newton basis for maps N→ Z.

3.2 Characterization of functions N → Z having integral difference
ratio

Definition 11. For k ∈ N, k ≥ 1, lcm(k) is the least common multiple of all
positive integers less than or equal to k. By convention, lcm(0) = 1.

We proved in [3] the following characterization of functions N→ Z having inte-
gral difference ratio:

Theorem 12. Let f : N→ Z be a function with Newton expansion
∑
k∈N ak

(
x

k

)
.

The following conditions are equivalent:

(1) f has integral difference ratio.

(2) lcm(k) divides ak for all k ∈ N.

3.3 A Newton basis for functions Z → Z

The polynomials

(
x

k

)
are not a Newton basis for maps Z → Z since condition

(2) of Definition 9 fails for all negative x and all k ∈ N. We design another
sequence of polynomials tailored for Z→ Z maps.

Definition 13. The Z-Newtonian polynomials are defined as follows:

P0(x) = 1 , P2k(x) =
1

(2k)!

i=k∏
i=−k+1

(x−i) , P2k+1(x) =
1

(2k + 1)!

i=k∏
i=−k

(x−i)



Let us explicit the first polynomials in the above sequence:

P0(x) = 1 P1(x) = x P2(x) =
x (x− 1)

2!
P3(x) =

(x+ 1)x(x− 1)

3!

P4(x) =
(x+ 1)x(x− 1) (x− 2)

4!
P5(x) =

(x+ 2)(x+ 1)x(x− 1)(x− 2)

5!

P6(x) =
(x+ 2)(x+ 1)x(x− 1)(x− 2)(x− 3)

6!
. . .

Proposition 14. The Z-Newtonian polynomials define maps on Z which take
values in Z and satisfy the following equations for k, n ∈ N,

P2k+1(n) =


(
k + n

2k + 1

)
if n > k

0 if 0 ≤ n ≤ k
P2k(n) =


(
k + n− 1

2k

)
if n > k

0 if 0 ≤ n ≤ k
(2)

P2k+1(−n) = −P2k+1(n) P2k(−n) =


(
k + n

2k

)
if n ≥ k

0 if 0 ≤ n < k

(3)

Proof. Observe that, for any a, b, x ∈ Z such that a < 0 ≤ b, we have

1

(b− a+ 1)!

i=b∏
i=a

(x− i) =



(
x− a

b− a+ 1

)
if x > b

0 if a ≤ x ≤ b

(−1)b−a+1

(
|x|+ b

b− a+ 1

)
if x < a

Thus, the Pn’s map Z into Z and satisfy conditions (2) and (3). ut

Proposition 15. The Z-Newtonian polynomials are a Newton basis for maps
Z→ Z.

Proof. Conditions (2), (3) in Proposition 14 insure that equation (1) of Defini-
tion 9 reduces to

f(x) =
∑

n∈{0,...,2|x|+1}

an Pn(x) (4)

which involves a finite sum. Moreover, all terms of this sum are in Z when the
an’s are in Z. Thus, for any sequence (an)n∈N of integers in Z, equation (4)
defines a map f : Z→ Z.

To prove the converse, observe that the instances of equation (4) can be
written

f(0) = a0 f(1) = a0 + a1 f(2) = a0 + 2a1 + a2 + a3 . . .
f(−1) = a0 − a1 + a2 f(−2) = a0 − 2a1 + 3a2 − a3 + a4 . . .



In general, for k ≥ 1, Proposition 14 yields

f(2k) = L2k(a0, ..., a4k−2)+a4k−1 f(2k+1) = L2k+1(a0, ..., a4k)+a4k+1

f(−2k) = L−2k(a0, ..., a4k−1)+a4k f(−2k − 1) = L−2k−1(a0, ..., a4k+1)+a4k+2

where Ln(a0, ..., a2n−2) and L−n(a0, . . . , a2n−1) are linear combinations of the
ai’s with coefficients in Z. This shows that, given any f : Z → Z, there is a
unique sequence of coefficients (an)n∈N making equation (1) of Definition 9 true,
and all these coefficients are in Z. ut

4 Functions Z → Z having integral difference ratio

We can now state the main result of the paper which characterizes the functions
f : Z→ Z having integral difference ratio,

Theorem 16. Let
∑
k∈N akPk(x) be the Z-Newtonian expansion of a function

f : Z→ Z. Then the following conditions are equivalent:

(1) f has integral difference ratio,
(2) lcm(k) divides ak for all k.

The next two subsections are devoted to sketching the proof of Theorem 16.

4.1 Some properties involving the unary least common multiple
function lcm and binomial coefficients

The unary function lcm (cf. Definition 11) has many interesting properties and
recently regained interest, cf. [12,9,5,6,4]. We state four lemmas used in the proof
of Theorem 16. They link the lcm function and binomial coefficients. Lemma 17
already appears in [3]. Lemma 19 is a variation tailored for the Z case of results
in [3]. Lemma 18 is a crucial specific result with a very long proof. For lack of
space proofs are not included; they can be found in ArXiv.

Lemma 17. If 0 ≤ n− k < p ≤ n then p divides lcm(k)

(
n

k

)
.

Lemma 18. If p ≥ 0 then 2(p+ k) divides lcm(2k)

(
p+ 2k − 1

2k − 1

)
.

Lemma 19. If n, k, b ∈ N and b ≥ k then n divides Ank,b = lcm(k)

((
b+ n

k

)
−
(
b

k

))
.

Lemma 20. Let B(n, k, i) =

(
n+ k − 1

2k

)
−
(
i+ k

2k

)
and C(n, k, i) =

(
n+ k

2k + 1

)
+(

i+ k

2k + 1

)
.

For all n ≥ 2, and 1 ≤ i ≤ n− 1, the following hold

n+ i divides lcm(2k)B(n, k, i) for 1 ≤ k ≤ i (5)

n+ i divides lcm(2k + 1)C(n, k, i) for 0 ≤ k ≤ i (6)



4.2 Proof of implication (1) ⇒ (2) in Theorem 16

In this subsection we assume that f : Z → Z has integral difference ratio and
that f(x) =

∑
k∈N akPk(x) is its Z-Newtonian expansion. To prove that lcm(n)

divides an we have to prove that i divides an for all i ≤ n. To give the flavor of
the proof, we look at the first values of n. We have:

f(0) = a0
f(1) = a0+a1 f(−1) = a0−a1+a2,
f(2) = a0+2a1+ a2+a3 f(−2) = a0−2a1+ 3a2− a3+a4
f(3) = a0+3a1+3a2+4a3+a4+a5 f(−3) = a0 − 3a1+6a2 − 4a3+5a4 − a5+a6

Applying the integral difference ratio property, we see that

2 divides f(1)− f(−1) = 2a1 − a2 hence 2 divides a2
2 divides f(2)− f(0) = 2a1 + a2 + a3 hence 2 divides a3
3 divides f(2)− f(−1) = 3a1 + a3 hence 3 divides a3
2 divides f(−2)− f(0) = −2a1 + 3a2 − a3 + a4 hence 2 divides a4
3 divides f(−2)− f(1) = −3a1 + 3a2 − a3 + a4 hence 3 divides a4
4 divides f(2)− f(−1) = 4a1 − 2a2 + 2a3 − a4 hence 4 divides a4

By induction on n ≥ 1, we prove the property
I(n): lcm(2n− 1) divides a2n−1 and lcm(2n) divides a2n.

The cases n = 1, 2 have just been done. The inductive step is split in four cases.
Assuming I(j) for all j < n, we can prove that (i), (ii), (iii) and (iv) below hold

(i) Middle number n n divides a2n−1 and n divides a2n
(ii) Below the middle If 2 ≤ i < n then i divides a2n−1 and a2n.
(iii) Above the middle, case a2n−1 If 1 ≤ i ≤ n− 1 then n+ i divides a2n−1
(iv) Above the middle, case a2n If 1 ≤ i ≤ n then n+ i divides a2n

(i) to (iv), together with the base cases complete the proof of Theorem 16
(1)⇒ (2).

4.3 Proof of implication (2) ⇒ (1) in Theorem 16

We assume that the Z-Newton expansion
∑
n∈N ak Pk(x) of f : Z → Z is such

that lcm(n) divides an for all n. We want to prove that f has integral difference
ratio. As for given i, j ∈ Z, f(i)−f(j) is a sum of finitely many anPn(i)−anPn(j),
it suffices to prove that each function x 7→ lcm(n)Pn(x) has integral difference
ratio. Let j < i, i, j ∈ Z. To prove that i− j divides lcm(n)(Pn(i)− Pn(j)), we
argue by disjunction of cases on the parity of n and the signs of i, j, i.e. relative
to the positions of i, j with respect to the intervals ]−∞,−k], [−k, k], [k,+∞[
for k = bn/2c. We rely on conditions 2, 3 in Proposition 14.

1. Case n = 2k and i, j ∈] − ∞,−k]. Then P2k(i) − P2k(j) =

(
k + |i|

2k

)
−(

k + |j|
2k

)
and Lemma 19 applied with b = k+ |i| ≥ 2k, n = |j|− |i| insures that

|j| − |i| = i− j divides lcm(2k)(P2k(j)− P2k(i)).



2. Case n = 2k and j ∈] − ∞,−k] and i ∈] − k, k]. Then P2k(i) − P2k(j) =

−
(
k + |j|

2k

)
. Let n′ = k + |j|, k′ = 2k and p′ = i − j = i + |j|. Then 0 ≤

n′ − k′ < p′ ≤ n′, and Lemma 17 insures that i − j divides lcm(k′)
(
n′

k′

)
=

lcm(2k)(P2k(j)− P2k(i)).
3. Case n = 2k and j ∈] − ∞,−k] and i ∈]k,+∞[. Then P2k(i) − P2k(j) =(
k + i− 1

2k

)
−
(
k + |j|

2k

)
.

– subcase |j| ≤ i − 1 Let n′ = i and i′ = |j|. As i′ ≤ n′ − 1 Lemma 20 (5)
applies and insures that n′ + i′ = i + |j| = i − j divides lcm(2k)B(n′, k, i′) =
lcm(2k)(P2k(i)− P2k(j)).
– subcase |j| ≥ i Let n′ = |j| + 1 and i′ = i − 1. Again by Lemma 20 (5),
n′ + i′ = i+ |j| = i− j divides lcm(2k)B(n′, k, i′) = lcm(2k)(P2k(j)− P2k(i)).
4. Case n = 2k and i, j ∈]− k,−k]. Clear as P2k(i) = P2k(j) = 0.
5. Case n = 2k and j ∈] − k,−k] and i ∈]k,+∞[. Then P2k(i) − P2k(j) =(
k + i

2k

)
. Let n′ = k + i, k′ = 2k and p′ = i− j. We have 0 ≤ n′ − k′ < p′ ≤ n′,

hence by Lemma 17, p′ = i− j divides lcm(2k)
(
k+i
2k

)
.

6. Case n = 2k and i, j ∈]k,+∞[. Then P2k(i) − P2k(j) =

(
k + i− 1

2k

)
−(

k + j − 1

2k

)
with 2k ≤ k + j − 1, we can thus conclude using Lemma 19.

7. Case n = 2k+1 and i, j ∈]−∞,−k[. Then P2k+1(i)−P2k+1(j) = −
(
k + |i|
2k + 1

)
+(

k + |j|
2k + 1

)
: applying Lemma 19 with b = |i|, n = |j|−|i| we conclude that n = i−j

divides lcm(2k + 1)
(
P2k+1(i)− P2k+1(j)

)
.

8. Case n = 2k+1 and j ∈]−∞,−k[ and i ∈ [−k, k]. Then P2k+1(i)−P2k+1(j) =(
k + |j|
2k + 1

)
. We conclude as in case 2. above, with Lemma 17.

9. Case n = 2k+1 and j ∈]−∞,−k[ and i ∈]k,+∞[. Then P2k+1(i)−P2k+1(j) =(
k + i

2k + 1

)
+

(
k + |j|
2k + 1

)
. – subcase |j| ≤ i − 1 : let n′ = i , i′ = |j| and apply

Lemma 20 (6).
– subcase i ≤ |j| − 1 : let n′ = |j| , i′ = i and apply Lemma 20 (6).

– subcase i = |j| : then P2k+1(i) − P2k+1(j) = 2

(
k + i

2k + 1

)
; Lemma 17, applied

with n′ = k+ i, k′ = 2k+ 1 and p′ = i ( 0 ≤ n′−k′ < p′ ≤ n′ hold), implies that
i divides lcm(2k + 1)

(
k+i
2k+1

)
, hence 2i = i − |j| divides lcm(2k + 1)

(
P2k+1(i) −

P2k+1(j)
)
.

10. Case n = 2k+1 and i, j ∈ [−k,−k]. Trivial since then P2k+1(i) = P2k+1(j) =
0.
11. Case n = 2k+1 and j ∈ [−k, k] and i ∈]k,+∞[. Then P2k+1(i)−P2k+1(j) =(
k + i

2k + 1

)
. Let n′ = k+ i, k′ = 2k+ 1, and p′ = i− j: as 0 ≤ n′ − k′ = i− k− 1,



as |j| ≤ k and i > k, i − k − 1 < p′ = i − j ≤ n′, the hypothesis of Lemma 17
hold and Lemma 17 yields i− j divides lcm(2k + 1)

(
P2k+1(i)− P2k+1(j)

)
.

12. Case n = 2k + 1 and i, j ∈]k,+∞[. Similar to Case 7. ut

5 Non polynomial functions having integral difference
ratio

Let us mention a straightforward consequence of Theorem 16.

Corollary 21. There are non polynomial functions Z → Z having integral dif-
ference ratio.

Proof. In fact there are uncountably many such functions: let an be any element
of lcm(n)N, n ∈ N, then

∑
n∈N anPn(x) has integral difference ratio. ut

We now explicit some non polynomial functions having integral difference
ratio. We first briefly recall such examples N→ Z (Theorem 23) obtained in [3]
and then explicit a function Z→ Z (Theorem 26).

Lemma 22. For all k, we have lcm(k) divides
(2k)!

k!
.

Proof. We have lcm(2k) =
∏
p prime p

N(p) with N(p) = sup{i | pi ≤ 2k}. For

p prime, let M(p) be the largest integer divided by pN(p) and ≤ 2k. Then
2M(p) > 2k hence M(p) > k. In particular, M(p) hence pN(p) divides (2k)!/k!.
As a product of pairwise coprime integers, lcm(2k) =

∏
p prime p

N(p) also divides
(2k)!/k!. ut

Theorem 23. Let e be the Neper constant. The following functions N→ Z have
integral difference ratio:

f : x 7→
{

1 if x = 0
be x!c if x ∈ N \ {0} fh : x 7→

{
bsinh(1) x!c if x odd
bcosh(1) x!c if x even

Remark 24. Function be x!c does not have integral difference ratio (cf. [3]).

Proof. Recall Taylor-Lagrange formula applied to the real function t 7→ et: for
all t ∈ R,

et =

(
1

0!
+

t

1!
+
t2

2!
+ · · ·+ tk−1

(k − 1)!
+
tk

k!

)
+ eθ t

tk+1

(k + 1)!
(7)

for some 0 < θ < 1 depending on k and t.
Let f : N → Z be the function associated with the Newton series f(x) =∑
n∈N n!

(
x

n

)
. Theorem 12 insures that f has integral difference ratio. By (7)



above, there exists θ, with 0 < θ < 1 such that

f(x) =
∑
n∈N

n!

(
x

n

)
=

x∑
n=0

x!

(x− n)!
= x!

(
1

x!
+

1

(x− 1)!
+ · · ·+ 1

1!
+

1

0!

)
= x!

(
e− eθ 1

(x+ 1)!

)

Thus, ex! = fa(x) +
eθ

(x+ 1)
For x ∈ N, x ≥ 2, we have 0 < eθ/(x+ 1) < e/3 < 1

and the last equality yields f(x) = be x!c. Also, f(0) = 1 < 2 = be 0!c, f1(1) =
2 = be 1!c.

Similarly, Lemma 22 and Theorem 12 insure that fh(x) =
∑
n∈N(2n)!

(
x

2n

)
has integral difference ratio and a similar computation yields

fh(x) =
∑
k∈N

(2k)!

(
x

2k

)
=

bx/2c∑
k=0

x!

(x− 2k)!
=

x!
∑ x−1

2

k=0

1

(2k + 1)!
if x odd

x!
∑ x

2

k=0
1

(2k)! if x even

Applying Taylor–Lagrange formula, we get θo, θe in ]0, 1[ such that fh(x) =

x!

(
sinh(1)− sinh(θo)

(x+ 1)!

)
if x is odd and fh(x) = x!

(
cosh(1)− sinh(θe)

(x+1)!

)
if x is

even. Whence the result as in the previous case. ut

It is easy to lift the integral difference ratio property from functions N→ Z
to functions Z→ Z.

Proposition 25. Suppose f : N → Z has integral difference ratio and let g :
Z → Z be such that g(x) = f(x2). Then g has integral difference ratio. In
particular, there is a function g : Z → Z having integral difference ratio and
such that g(x) ∈ {be (x2)!c, be (x2)!c − 1}.

Proof. Since a2 − b2 = divides f(a2)− f(b2) = g(a)− g(b) so does a− b. ut

Here is an example of a non polynomial function Z → Z having integral
difference ratio and which is not relevant to Proposition 25.

Theorem 26. The function defined by n 7→
√
e

π
× Γ (1/2)

2× 4n × n!

∫∞
1
e−t/2(t2 −

1)ndt for n ≥ 0 and by f(n) = −f(|n| − 1) for n < 0 maps Z into Z and has
integral difference ratio.

Proof. Let f : Z → Z have Z-Newton expansion f(x) =
∑
k∈N

2k!

k!
P2k(x), i.e.

a2k = (2k)!/k! and a2k+1 = 0. It is clearly nonpolynomial and, by Theorem 16,
it has integral difference ratio.

For n ≥ 0 we have, by [8], page 2, formula 0.126, and page 917 formulas 8.432
1 & 3,



f(n) =

n∑
k=0

2k!

k!

(n+ k)(n+ k − 1) · · · (n− k + 2)(n− k + 1)

(2k)!
=

n∑
k=0

(n+ k)!

k! (n− k)!

=

√
e

π
×Kn+ 1

2

(
1

2

)
=

√
e

π
×

Γ ( 1
2 )

2× 4n × n!

∫ ∞
1

e−
t
2 (t2 − 1)ndt

f(−n) =

n∑
k=0

2k!

k!

(−n+ k)(−n+ k − 1) · · · (−n− k + 2)(−n− k + 1)

(2k)!

=

n∑
k=0

(−1)2k
(n+ k − 1) · · · (n− k)

k!
=

n∑
k=0

(n+ k − 1)!

k! (n− k − 1)!
= f(n− 1)

where Kν(x) =
∫∞
0
e−x cosh t cosh(νt)dt is associated with the Bessel function of

the third kind. ut

6 Conclusion

We here studied functions having the integral difference ratio property; these
functions appeared in two ways at least:

(i) as the functions such that lattices of regular subsets of N are closed under
f−1 (see [2]), and

(ii) as the functions uniformly continuous in a variety of finite groups (see
[10]).

We characterized the class of integral difference ratio functions from Z (resp.
N) to Z via their Newton series expansions on bases of polynomials with rational
coefficients. This enabled us to exhibit non polynomial such functions.

Integral difference ratio functions can be seen as the solution for algebra Z
of a general problem: which functions preserve a family of congruences on a
given structure? Functions preserving all congruences on an algebra have been
studied in universal algebra; it was known [11] that there exist such functions
from Z to Z which are polynomials with non-integer coefficients. Our contribution
to the study of congruence preserving functions on Z is (i) to characterize the
congruence preserving functions from Z to Z as the integral difference ratio
functions and (ii) to give an example of a non polynomial Bessel like congruence
preserving function.
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