
Study of stepwise simulation between ASM

Patrick Cégielski and Julien Cervelle

LACL – Université Paris-Est Créteil
F-94010 Créteil cedex 2 (France)

{patrick.cegielski,julien.cervelle}@u-pec.fr

Abstract. In this paper we study the notion of stepwise simulation
between Abstract State Machines, to explore if some natural change on
the original definition would keep it sound. We prove that we have to
keep the classical notion and give results about the computability of the
simulation itself.

1 Introduction

After one or two centuries of discussion, Richard Dedekind has given a definition
of “function”: A function f from a set A to a set B is a relation R ⊆ A×B such
that if (x, y) and (x, y′) belongs to the relation then y = y′.

From an informal point of view, a function is computable if there exists a
“mechanical” process which, being given an element x of A, provides the (unique)
element y = f(x) of B after some finite “time of computation” (or equivalently
some finite number of “steps”) if f(x) exists, and runs indefinitely otherwise. A
formal definition was given by Alan Turing in 1936, exhibiting a non computable
function.

The definition of Turing is universally accepted but other “models of com-
putation” were and are still exhibited for various reasons.

A model of computation is a set of elements, each of them being called a
machine or a program, the denomination depending of the model. Here, we do
not define a program as a word over some alphabet because such a pattern is
not convenient for ASM. To each machine is associated a finite set of variables,
each variable taking values in a well defined set. Some variables are used for the
input and possibly some variables for the output; the other variables are called
auxiliary variables.

Given a finite list v0, v1, . . ., vn of variables and an associated list D0, D1,
. . ., Dn of sets, called value sets, an element of trace is an assignment for every
variable which gives to vi an assignment in Di. A trace is a finite or infinite
sequence of trace elements over the same variables and value sets.

For a given machine M of a given deterministic model of computation M,
the run of M on a given input is the unique trace whose first element is the initial
assignment of the variables: The input variables are initialized with the input
and the auxiliary and output variables are initialized as specified by the model.

The element following an element e corresponds to the states of the variables
after one step of M starting with the variable values as in the element e.

It is important to note that a run is a trace but the converse is not necessarily
true: Indeed, a trace is not necessarily recursive while a run from a constructive
model is always recursive.

Let v0, v1, · · · , vn be a finite list of variables, v0, v1, · · · , vp be a sublist of
input variables, and D0, D1, · · · , Dn be the associated value sets. For a machine
M of a model of computation M, the runs’ log is the set of runs of M for all
the possible inputs I ∈ D0 × · · · ×Dp.

Remark. A machine is a finite description of a runs’ log, which is an infinite
set.

Problem. Given two models of computation, is a runs’ log in one equal to a runs’
log in the other?

The answer to this problem is in general NO but there exists a model of
computation, ASM, which has the property that each runs’ log of any machine
of any model of computation is the runs’ log of a machine of the ASM model.
Let us make this statement more precise. Yuri Gurevich has given a schema
of languages which is not only a Turing-complete language (a language allowing
to program each computable function), but which also allows to describe step-
by-step the behavior of all algorithms for each computable function (it is an
algorithmically complete language); this schema of languages was first called
dynamic structures, then evolving algebras, and finally ASM (for Abstract State
Machines) [2]. In 2000, he proposed the now-called Gurevich’s thesis “the notion
of algorithm is entirely captured by the model” in [3]. A consequence is

For every runs’ log, there exists an ASM with that exact runs’ log.

ASM is the only known model of computation to have this property. However,
authors have considered some other models of computation which are interesting
candidates to have a weaker variant of the property. For some of them, it depends
on the granularity of a step: Instead of requiring equality of runs, one allows the
run of the model to be a specific subsequence of the simulated run. For instance,
one keeps only an element every k elements, where the integer k is fixed.

This leads us to the notion of k-simulation.

Some authors (see for instance [4]), considering and proving this weaker prop-
erty for their model, insist on the strict regularity: an element every k elements
(for instance 2, 4, 6, . . . for k = 2) and not just allowing to discard at most
k−1 elements (for instance 1, 3, 4, 5, 7, . . .). This implies adding steps which do
nothing (often called “skip” of “nop”) in the programs. But these authors give
no explanation to justify such a strict constraint.

Then a natural question arises on the behavior of models of computation:
Do we need to force the regularity? One way to get enlightenment about the
question is to see if we can build two ASM A and B whose traces are all equal
up to irregular dilatation but in such a way that the set of points to be removed
is, somehow, a non recursive set. This means that the two computations are
equivalent but that one of the ASM computes something more in its trace than
the other one.

The main result of this paper proves that we have built such a pair of ASM
and furthermore that these two ASM are such that one simulates the other but
for an again weaker notion: removing at most one point to each trace is sufficient
to get the simulation. The result states that the point is not computable given
the input.

The paper is organized as follows. The next section gives insight about what
is a trace of the execution in the case of a general model of computation and
introduces formally ASM and their traces. Section 3 analyzes some possible
definitions of equivalent traces and how they are related to computability. It
also includes the proofs of announced results.

2 Definitions

2.1 Traces in a general setting of model of computation

LetM be a (discrete time) model of computation and M an instance ofM. We
suppose thatM is such that the “state” of M at some time is entirely described
by values stored in a finite number of variables. Let v0, . . . , vn be these variables.
For all i, the variable vi takes its values from the set Di (in a more general setting,
it is sufficient for Di to be just a class).

Definition 1. A element of trace for M is an element of D0 × · · · ×Dn.
A trace is a sequence of elements of trace indexed by N or by a finite interval

Ik = {0, . . . , k} of N. In case of a finite interval Ik, we call k the length of the
trace.

For a given M , some variables are distinguished and called input variables.
Without loss of generality, we suppose that v0, . . . , vk for some k ≤ n (i.e. the
first k+ 1 ones) are the input variables. An input for M is an element of D0 ×
· · · ×Dk.

A run on input ı for machine M is the trace (ti)i∈I where

– The trace element t0 is initialized with ı i.e. the input variables are set as in
ı and the remaining variables are set depending on the definition of M (see
Remark 1).

– For all i ∈ I, applying one step of M to ti leads to ti+1 unless M halts and
in this case the interval I is {0, . . . , i}.

Remark 1. We suppose that the values of variables vi for k < i ≤ n in t0 are
either fixed by the definition of M or can take any values and in this case, they
must have no incidence on the computation of M .

2.2 Definition of ASM

We first introduce ASM, making precise our point of view on ASM, because
several definitions exist.

ASM were defined formally in [2]. For this paper, we choose to use only
ASM in some normal form (see [1]). We refer the reader to the aforementioned
references for the general ASM definition; we just give the formal definition of
ASM we use, a variant which is simpler though more verbose and equivalent in
power.

Syntax

Definition 2. An ASM vocabulary, or signature, is a first-order signature L
with a finite number of static function symbols, a finite number of dynamic func-
tion symbols, a finite number of predicate symbols (among which the two boolean
constant symbols true and false), and an additional symbol, of arity 0, (de-
noted by undef), logical connectives (¬, ∧, and ∨), and the equality predicate
denoted by =.

Terms of L are defined by:

– if c is a nullary function symbol (a constant, dynamic or static) of L, then c
is a term,

– if t1, . . . , tn are terms and f is an n-ary function symbol (dynamic or static)
of L then f(t1, . . . , tn) is a term.

Definition 3. Boolean terms of L are defined inductively by:

– if p is an n-ary predicate and t1, . . . , tn are terms of L then p(t1, . . . , tn) is
a boolean term;

– if t and t′ are terms of L, then t = t′ is a boolean term;
– if F, F ′ are boolean terms of L, then ¬F , F ∧ F ′, F ∨ F ′ are boolean terms.

Definition 4. Let L be an ASM signature. ASM rules are defined inductively
as follows:

– An update is an expression of the form f(t1, . . . , tn) := t0, where f is a n-
ary dynamic functional symbol and t0, t1, . . . , tn are terms of L (Recall that
constants are allowed but variables are disallowed).

– If R1, . . . , Rk are updates of signature L, where k ≥ 1, then the expression
R1|| · · · ||Rk is called a block and means parallel execution of the updates.

– Finally, if R is a block and ϕ is a boolean term, the ordered pair 〈ϕ,R〉 is
called a conditional rule which must be seen as the instruction if ϕ then R.
In this paper, we call ϕ the guard and R the block of the conditional rule.

Definition 5. Let L be an ASM signature. A program on signature L, or L-
program, is a finite set of conditional rules of that signature.

We can now define ASM.

Definition 6. An ASM A is a tuple 〈L, P 〉 where L is an ASM signature and
P is an L-program. We denote by AD the set of dynamic symbols of A.

Semantics

Definition 7. Let L be an ASM signature. An ASM abstract state, or more
precisely an L-state, is a synonym for a first-order structure A of signature L
(an L-structure). We denote by t

A
the value of the term t in the structure A.

The universe of A, denoted by A⊥, consists of the elements of the data set A
and a special value ⊥ (supposedly not in A). The interpretation of the symbol
undef in A⊥ is always ⊥.

Definition 8. Let L be an ASM signature and A a nonempty set. A set of
modifications (more precisely an (L, A)-modification set) is any finite set of
triples (f, a, a), where f is an n-ary function symbol of L, a = (a1, . . . , an) is an
n-tuple of A⊥, and a is an element of A⊥.

Definition 9. Let L be an ASM signature, let A be an L-state and let Π be an
L-program. Let ∆Π(A) denote the set defined by as follows:

1. If u is the update rule f(t1, . . . , tn) := t0 then, denoting t0
A

by a0 , . . . , tn
A

by an, then:
∆u(A) = {(f, (a1, . . . , an), a0)} .

2. If B is the block R1|| · · · ||Rk then:

∆B(A) = {∆R1(A), . . . ,∆Rn(A)} .

3. If T is the conditional rule 〈ϕ,R〉, we first have to evaluate the expression
t = ϕA. We define:

∆T (A) =

{
∅ if t is false,

∆R(A) otherwise.

4. Finally, if Π is a program consisting in rules T1, . . . , Tn, then we define:

∆Π(A) =

n⋃
i=1

∆Ti
(A) .

We defined ∆Π(A) as an (Π,L, A)-set of modifications.

Definition 10. A set of modifications is incoherent if it contains two elements
(f, a, a) and (f, a, b) with a 6= b. It is coherent otherwise.

Definition 11. Let L be an ASM signature, Π an L-program, and A an L-state.
The machine’s definition must ensure ∆Π(A) is coherent (otherwise, the

machine’s definition is invalid). The transform τΠ(A) of A by Π is the L-
structure B defined by:

– the base set of B is the base set A of A;
– for any n-ary element f of L and any element a = (a1, . . . , an) of An:

• If there exists some (unique) a such that (f, a, a) ∈ ∆Π(A), then: [f]B(a) =
a.

• Otherwise: [f]B(a) = [f]A(a).

Definition 12. Let L be an ASM signature, Π an L-program, and A an L-state.
The computation is the sequence of L-states (An)

n∈N defined by:

– A0 = A (called the initial algebra of the computation);
– An+1 = τΠ(An) for n ∈ N.

For ASM, a computation halts if there exists a fixed point An+1 = An. In
this case, this fixed point An is the result of the computation.

Definition 13. The formal semantics is the partial class function which trans-
forms 〈Π,A〉, where Π is an ASM program and A a state, in the fixed point
An obtained by iterating τΠ starting from τΠ(A) until a fixed point is reached if
such a fixed point exists, otherwise it is undefined.

Finally, though it is not directly mentioned in the original paper defining
ASM, as we need to deal with simulation, we need a formal definition of how
input is treated.

For some ASM signature L, some of the dynamic symbols will be used for
the input. We call them input symbols. To construct the initial algebra I(e) of
an ASM computation on input e, we use the following:

– Some set E to use E⊥ as universe for the algebra.
– For all static variables of arity n of L, we assign a function from (E⊥)n → E.
– The input is stored in input symbols (so input can be some values of E⊥ or

functional).
– The rest of the dynamic symbols are set to the constant function equals to
⊥.

– The set E is called the data set of the ASM.
– We say that an ASM is m-ary when it has only one input symbol of arity m.

2.3 Trace

We restate here the definition of trace introduced in Section 2.1 in the special
case of ASM.

Definition 14. For some ASM, a trace element is the values of all the dynamic
symbols (input or not).

The trace of some ASM A on input e is the sequence of elements of trace
(ti)i∈I where I is either N or {0, . . . , `} for some ` where ti is the restriction of
Ai to dynamic symbols if (An)

n∈N is the computation of the ASM starting from

I(e). Moreover, if the computation does not halt, then I = N, and otherwise,
I = {0, . . . , `} when ` is the number of steps before halting (that is the smallest
with τΠ(A`) = A`). We denote I by dom(t).

If y is a trace element and A is a subset of the dynamic symbols, y � A is
the trace element which assign values to dynamic symbols of A as in y. If t is a
trace, t � A is the trace ((ti � A)i)i∈dom(t).

2.4 Self-detection of a halting ASM

It is possible (well-known result of the folklore) in any ASM to write a boolean
expression (subsequently called HasHalted) which evaluates true when it is in a
state which is a fixed point. The idea is to test if all assignments do not change
the assigned value, checking also if the set of modifications is coherent.

3 Analysis

We first introduce a preliminary notion of subtrace.

Definition 15. Let t1 and t2 be two traces. We say that t2 is a subtrace of t1
if there exists a strictly increasing function s : dom(t1)→ dom(t2) such that:

1. ∀i ∈ dom(t1), t1(i) = t2(s(i)),
2. s(0) = 0
3. dom(t1) is finite if and only if dom(t2) is finite
4. if dom(t1) is finite, then s(max dom(t1)) = max dom(t2)

The function s and condition 1. ensure that t1 is extracted from the elements
of t2 keeping the order. The next conditions state that the two traces have the
same start (2.), both have an end or both are infinite (3.) and in the finite case,
have the same end (4.).

We define the notion of k-weak regular subtracing which is a more constrained
notion of subsequence.

Definition 16 (Weak regular subtrace). Let t1 and t2 be two traces and k
some positive integer. We say that t2 is a k-weak regular subtrace of t1 if t2 is
a subtrace of t1 and furthermore if ∀i ∈ dom(t1), k ≥ s1(i+ 1)− s1(i) > 0.

The last condition ensures that to build the subtrace of t2, one cannot skip
more than k− 1 elements: two consecutive terms taken from t2 always belong to
some windows of length k.

We say that s is a guide of the k-weak regular subtracing of t1 by t2.
Finally, we say that the set w = dom(t2) r {s(i) | i ∈ dom(t1)} is a witness

of the k-weak regular subtracing of t1 by t2.

Remark 2. Witnesses and guides are not unique : if the same trace element x
occurs twice in t2 (t2(a) = t2(b) = x) and corresponds to only one trace element
in t1 (t1(c) = x), the function s can possibly choose either (s(c) = a or s(c) = b)
provided both choices comply to the weak regular subtracing condition.

Remark 3. Note that guides and witnesses are linked and uniquely defined and
computable one from another. Indeed, the guide is the increasing enumeration
of the complement of the witness.

For instance, consider the trace t1 = [x = 0], [x = 2], [x = 4], . . . (x is
incremented by 2 at each step) and the trace t2 = [x = 0], [x = 1], [x = 2], . . .
A (x is incremented by 1 at each step). The only guide of the 2-weak regular
subtracing of t1 by t2 is s : t 7→ 2t. The only witness is {2k + 1 | k ∈ N}.

We now define the stronger notion of k-regular subtrace.

Definition 17 (Regular subtrace). Let t1 and t2 be two traces (finite or in-
finite) and k be some integer. We say that t2 is a k-regular subtrace of t1 if t2
is a subtrace of t1 and furthermore if ∀i ∈ dom(t1), s(i) = ki.

For regular subtracing, the chosen elements are picked up one every exactly
k elements.

Remark 4. If t2 is a k-regular subtrace of t1, it is also a k-weak regular subtrace
of t1.

Notation. For A an ASM and e some input, we denote by tAe the run of A on
initial algebra I(e).

When the ASM is denoted Ai, we denote by tie the run tAi
e .

Definition 18 (Weak simulation). Some ASM B k-weakly simulates some
other A if AD ⊆ BD and for all input e, the run tAe is a k-weak regular subtrace
of tBe � A. We denote by We

k(A,B) the set of witnesses for this weak regular
subtracing and by Gek(A,B) the set of guides.

Definition 19. An ASM A is arithmetic if its data set is N and all the static
functions are Turing computable.

Theorem 1. Let A and B be two arithmetic ASM such that B k-weakly simu-
lates A. Then, given any computable input e on this input, there is a computable
element in Gek(A,B).

Proof. If both traces are finite, the guides of Gek(A,B) are all finite and therefore
computable. Without loss of generality, we may assume in the sequel that both
traces are infinite.

Firstly, note that one can simulate the execution of A and B on input e.
This can be done since the modifications of the dynamic values only concern
a finite number of elements of the domains which are integers. More precisely,

for all dynamic symbols f of domain D (D is N`
where ` is the arity of f),

the simulator saves a table Tf from P(D × N). The simulator evaluates the
program’s guard with a call by value scheme: when the simulator is computing
the value f(x) for some x in D, the simulator first checks if there exists y
such that 〈x, y〉 ∈ Tf . In this case, the result is y. Otherwise, the result is
taken from e for input symbols and ⊥ for other dynamic symbols. When f(x) is
assigned a value v, the simulator adds 〈x, v〉 in Tf possibly removing an ancient
value associated to x in the table. With this way of representing the state of
an arithmetic ASM, it is decidable whether two trace elements corresponding to
the same ASM are equal. We denote by [q] the minimal representation of the
state q using such tables (minimal meaning removing entries 〈x,⊥〉 for dynamic
symbols and entries 〈x, y〉 where y is the same value as in e from input symbols).

We conclude that the functions t1 and t2 defined as t1(i) = [tAe (i)] and
t2(i) = [tBe � AD(i)] are computable. Moreover, by definition of an ASM, the
state of an ASM after one step only depends on the current state. Therefore,
there is a computable function a such that t1(i+ 1) = a(t1(i)).

We now construct an enumerable rooted DAG (directed acyclic graph) D
whose nodes are labeled by integers. The DAG D is built such that, for all paths
from the root p, the sequence (xi)i∈N, where xi is the integer labelling pi, is a

guide of Gek(A,B).

The DAG D is built inductively. We firstly label the root by 0. For each
node n labeled by i, we look consider the possibly empty set Si = {i′ | 1 ≤ i′ ≤
k ∧ t2(i′) = a(t2(i))}. For all i′ ∈ Si, we add as a child to n labeled by i′. If two
nodes have the same label, they are merged. Since the label is only increasing,
at some point, the algorithm performing the construction knows that all the
ancestors of a given node have been produced.

Let us prove by induction that paths from the root are labeled by guides. The
initialization comes from the fact that tAe (0) = tBe � AD(0). For the induction
step, consider the first n elements of a path of D: x0, . . . , xn−1 and such that
∀i < n, tAe (i) = tBe � AD(xi). For any child xn of xn+1, one has [tAe (n)] = t1(n) =
a(t1(n − 1)) = a(t2(xn−1)) = t2(xn) = [tBe � AD(xn)]. Therefore, tAe (n) = tBe �
AD(xn).

In order to end the proof, we need to show that D has a computable infinite
path. Firstly, we consider D′, subgraph of D, which is a tree, keeping, for each
node, only the edge to its smaller labeled ancestor. By construction of D, each
path of D′, labeled by x, is such that ∀i, |xi+1 − xi| ≤ k.

Let us show, by contradiction, that there are at most k infinite paths. Suppose
that there are k + 1 infinite paths labeled by x(0), . . . , x(k). Let n be such that
the paths have no common node labeled by an integer greater then n. Since ∀i, j,
|x(j)i+1−x

(j)
i | ≤ k, it means that the set {n+1, . . . , n+k} of cardinality k intersects

the k+1 sequences x(0), . . . , x(k) which contradicts the definition of n. Hence, D′

is a computable tree with at most k infinite paths. Then the sequence of labels
of each of these paths are computable. Indeed, to enumerate them increasingly:
the programs knows the (finite) beginning of the path up to the first node q

labeled by an integer greater than n. From node q, the tree has only one infinite
branch. Then to enumerate the successor of some node r, the program starts in
parallel searches in D′ from all the children of r. All of the children but one, r′,
belong to finite subtrees. Once they are all found (i.e. all searches have halted
but one), the program output r′ and continues the enumeration from r′.

Proposition 1. There exist 0-ary ASM A and B such that B 2-simulates A
and such that no element of W∅2 (A,B) is recursive.

Proof. Let A be the ASM, with the successor function as static symbol and
dynamic 0-ary symbols m and n with program:

if (n = undef)

m := 0

n := 1

if (n 6= undef)

n := n+1

This ASM simply keeps m=0 and increments n from 1 to infinity.
Let f be the characteristic function of a non-recursive set (that is a total

function from N to {0, 1} such that f−1(1) is non-recursive). Let B be the ASM,
with f , the division by 2, parity test, and the integer successor as static symbols
and dynamic 0-ary symbols m and n, with program:

if (n = undef)

m := 0

n := 1

if (n is even ∧ f(n/2) = 1)
m := 1

if (n is odd ∨ m = 1)

m := 0

n := n+1

This ASM does what A does but delays the incrementation of n when
f(n/2) = 1. The ASM B 2-weakly simulates A by simply omitting the steps
where f(n/2) = 1. These steps occurs at time t where ∃k 6= 0, such that f(k) = 1

and t =
∑k
i=1 2+ δf(i)1 (where δ is the Kronecker delta). Hence the only witness

for B 2-weak simulating A is W = {
∑k
i=1 2 + δf(i)1 | k ∈ N r {0} ∧ f(k) = 1}.

Since f−1(1) is a non-recursive set and can be computed from W , we conclude
that W is non-recursive.

Theorem 2. There exist some arithmetic ASM A and B such that:

– The ASM B 2-weakly simulates A and the set W2(A,B) contains only finite
sets.

– The set W2(A,B) is non-recursive.

Proof. Let E ⊂ N be a recursively enumerable, non-recursive set. Let f be a
recursive function such that E = {x | f(x) halts}. Let F be an arithmetic ASM
computing f . Without loss of generality, assume that the input for F is in the
variable x.

We design two ASM A and B as follows.

– The ASM A and B have all the symbols of F .
– We add to A and B the new variables s, c, d, and m, all initialized to 0. The

purpose of these variables is as follows:
• s is used to have an initial step which copies x into c.
• c is a counter which, after the initial step, decreases from x to 0 and

afterwards remains equal to 0.
• d is a counter which increases from 0 after c has reached 0. It increases

while the simulation of A has not halted.
• m is turned to 1 for one step at the beginning and at the end of the

simulation of F but only in B. Otherwise it remains equal to 0. It is also
the case during the whole run in A.

– To allow the expected behavior of A and B, all rules 〈g,R〉 of A are put into
A and B as 〈g ∧ s = 1 ∧ c = 0, R〉.

– In A, we add the three following rules:
if (s = undef)

c := x

s := 1

if(s = 1 ∧ c > 0)

c := c-1

if(c = 0 ∧ ¬HasHalted)
d := d+1

– In B, we do almost the same but, using the variable m, we add differences in
the execution of the ASM (HasHalted is the halt time detection expression
for ASM F):

if(s = undef)

c := x

s := 1

if(s = 1 ∧ c > 0)

c := c-1

if(s = 1 ∧ c = 0 ∧ m = undef)

m := 1

if(s = 1 ∧ c = 0 ∧ m = 1)

m := undef

if (c = 0 ∧ ¬HasHalted)
d := d+1

if (HasHalted)

m := 1

The runs for A and B on input x start with:

ı+ [s = ⊥, x = x, c = ⊥, m = ⊥], (ı+ [m = ⊥, s = 1, x = x, c = i])i from x to 0

where ı contains the initial values of all other variables.
Then, the next element of the run for B, is

ı+ [m = 1, s = 1, x = x, c = 0]

Afterwards, the elements of the runs for A and B are again identical and
contain the computation of f(x) by F .

If the computation of f(x) does not halt, the only witness of Wx
2 (A,B) is

the singleton {x}.
If the computation of f(x) halts, the run of A ends after the computation as

does the run of B which has one more element, of index rx, equal to + [m = 1]
where is the state of both A and B at the previous step. In this case, the only
witness of Wx

2 (A,B) is {x, rx}.
We conclude thatW = {We

k(A,B) | e input} = {{x} | f(x) does not halts}∪
{{x, rx} | f(x) halts}. If one can enumerate W , one can enumerate N r E
and therefore, being enumerable, E is computable which is a contradiction. We
conclude that W is not enumerable and consequently non-recursive.

Conclusion

In this paper, we studied the simulation of computation models by ASM where
one step of simulation is executed by several steps of the ASM. We showed
that the correct simulation must ensure that each simulated step corresponds to
the same number of steps of the ASM. Indeed, if the number can be variable,
the simulated model could be computing more information, not directly in its
variables but looking at which steps the content of some variables is modified.

References

1. Cégielski, Patrick and Guessarian, Irène, Normalization of Some Extended Abstract
State Machines, Fields of Logic and Computation, Blass, Andreas and Dershowitz,
Nachum and Reisig, Wolfgang, eds, 165–180, Springer-Verlag, 2010

2. Gurevich, Yuri, Reconsidering Turing’s Thesis: Toward More Realistic Semantics
of Programs, University of Michigan, Technical Report CRL–TR–38–84, EECS De-
partment (1984)

3. Gurevich, Yuri, A New Thesis, Abstracts, American Mathematical Society, p. 317
(August 1985)

4. Marquer, Yoann and Valarcher, Pierre, An Imperative Language Characterizing
PTIME Algorithms, Studies in Weak Arithmetics 3, Patrick Cégielski, Ali Enayat
and Roman Kossak, eds., Lecture Note 217, CSLI Publications, Stanford, 2016.

