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DESTINIES AND DECIDABILITY

Abstract. Francis N�ezondet has introduced a new tool in Logic, called

destiny, used to study open problems in Number Theory. We give a suf-

�cient condition of computation of destinies of a structure.

Introduction

In his thesis (N�ezondet, 1997), Francis N�ezondet has introduced the

notion of destinies as a general tool of Logic, linked to back and forth of

Roland Fra��ss�e. For the moment, the main application of this tool is as a

way to attack some open problems in Number Theory.

Because the theory of destinies is not well known, we have to recall

part of it in section 1, with a presentation di�erent from the original one.

In section 2, we give a su�cient condition of computation of destinies of

a structure.

1. Theory of destinies

Here our aim is not to present the theory of destinies in the more

general setting. We use a restricted formulation suited to problems of

decidability in Number Theory. Also we change the vocabulary used by

Francis N�ezondet but not concepts.

1.1. Application of destinies.

Let hN; R

1

; R

2

; :::; R

k

i a relational structure whose universe is the set

N of natural integers and whose one of these relations is equality.

For a given integer p, let denote by

Th

p

(N; R

1

; R

2

; :::; R

k

)

the set of �rst order sentences of signature (R

1

; R

2

; :::; R

k

) in prenex form,

with less than p quanti�ers realised in the structure hN; R

1

; R

2

; :::; R

k

i.

We call it the p-theory of hN; R

1

; R

2

; :::; R

k

i.

For a given structure and a given p, the p-theory is a �nite set of

sentences, hence classically it is decidable. In other words, for a given
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structure and a given p, there exists a recursive function from the set of

�rst order sentences of signature (R

1

; R

2

; :::; R

k

) with less than p quanti-

�ers in prenex form into the set B of booleans whose image is true if the

sentence is realized in the structure.

It is not the case from an intuitionist point of view. The problem to

give explicitly such a function is not obvious.

Francis N�ezondet has introduced the notion of p-destinies. For a given

structure and a given p, there exists a �nite set of p-destinies, as we will

see. But explicitly to exhibit its set is a very di�cult problem. Howewer,

the exhibition of this �nite set gives the function we are searching.

1.2. Destinies in a leisurely presentation.

The main idea is to visually present the various possible con�gurations

with p objects of the structure. To simplify our presentation, we consider

that relations R

1

, R

2

, ... , R

k

are unary or binary. To illustrate our

presentation, we choose the traditional example of the structure < N; <

; P >, where < is the natural order relation and P the unary predicate \is

a prime". Let us note that equality relation = is not explicitly mentioned

but we use it.

1.2.1. Primitive forest of height p.

De�nition 1. The primitive forest of height p is constituted of the

in�nite set of (in�nite) k-labelled trees of height p verifying the following

conditions:

� each node is a natural integer;

� for every unary relation R

i

, a node x has coloration c

i

if we have R

i

(x);

� for every binary relation R

j

, an edge (x; y) has coloration c

j

if we have

R

j

(x; y).

We call an element of this primitive forest a primitive tree of height

p.

Example. It is di�cult to represent an in�nite set of in�nite trees. Fig-

ure 1 represent the beginning of the �rst primitive tree of height 2 for

structure hN; <; P i. For instance node 2 has coloration P and edge (0,1)

has coloration <.

Remark. There is only a tree whose root is a given natural integer.

1.2.2. Pruned trees.

To have each possible situation, it is not necessary to keep every

branches of the above trees: we have to keep only one instance of equiv-

alent branches. Hence the notion of pruning is interesting.
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Fig. 1. Primitive tree.

De�nition 2. A branch b

1

= (x

1;1

; :::; x

1;p

) is equivalent to a branch

b

2

= (x

2;1

; :::; x

2;p

) i� the node x

1;i

has the same set of colorations than

the node x

2;i

and if the edge (x

1;i

; x

1;i+1

) has the same set of colorations

than the edge (x

2;i

; x

2;i+1

), for every i.

De�nition 3. The natural order between branches of a tree whose

nodes are natural numbers is de�ned by:

a branch b

1

= (x

1;1

; :::; x

1;p

) is less than a branch b

2

= (x

2;1

; :::; x

2;p

)

if the word ax

1;1

a:::ax

1;p

is less than the word ax

2;1

a:::ax

2;p

in lexico-

graphical order

1

.

De�nition 4. The pruned tree associated to a primitive tree T is the

tree where a branch b is pruned (i.e. removed) if it is equivalent to a lesser

branch

Remark. A pruned tree is a �nite tree.

Example. Figure 2 represent the pruned tree associated to the tree of

the �rst �gure.

1.2.3. Essential forest.

To have an instance of each possible situation, it is not necessary to

keep every pruned tree because many pruned trees are equivalent (i.e.

represent the same situation). Hence the interest of the notion of essential

forest.

1

We need a new symbol, the marker `a', di�erent from digits `0', `1', ... ,`9' if we use

the decimal expansion of natural integers to avoid to have to use the in�nite alphabet

of all natural numbers.
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Fig. 2. Pruned tree.

De�nition 5. The pruned trees T1 and T2 are equivalent if they

have the same number of branches [hence we have T1 = (b

1;1

; :::; b

1;q

)

and T2 = (b

2;1

; :::; b

2;q

)] and if branch b

1;i

is equivalent to branch b

2;i

for

every i.

Trees are naturally ordered by values of roots.

De�nition 6. A pruned tree belongs to the essential forest if it is not

equivalent to a lesser pruned tree.

An element of the essential forest is called a destiny, more precisely

a p-destiny if he has heigth p.

We denote by

Dest

p

(N; R

1

; R

2

; :::; R

k

)

the essential forest of height p of the structure hN; R

1

; R

2

; :::; R

k

i.

Example. Figure 3 represents the essential forest of the structure

hN; <; P i of height two.

Remark. The essential forest of height p is �nite.

1.3. Problems concerning computation of essential forests.

For the structure hN; <; P i which illustrates our purpose, it is easy to

compute the essential forests. For other structures, it is not so easy. The

di�culties are of two orders:

� when we try to compute the pruned tree of a given tree, we begin to

remove a certain number of branches but how to know if there exists,

in the in�nite set of other branches, a branch not equivalent to the

(not yet removed) branches?
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Fig. 3. Essential forest.

� when we try to compute the essential forest, we begin to remove a

certain number of pruned trees but how to know if there exists, in the

in�nite set of other pruned trees, a pruned tree not equivalent to the

(not yet removed) pruned trees?

1.4. Forest of con�gurations.

Intuitively, an essential tree represents a con�guration. But some con-

�gurations are not realised in a given structure, i.e. are not equivalent to

a pruned tree of this structure. Hence we have to consider the new notion

of pruned tree associated to a signature and not to the structure itself.

De�nition 7. Let (r

1

; r

2

; :::; r

k

) be a relational signature with r

1

= 2.

The relation R

1

will be interpreted by the equality relation. The forest

of con�gurations of height p is the forest of non equivalent pruned trees

of height p, for any structure of this signature.

The forest of con�gurations of a given height is �nite.
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2. Decidability and essential forest

Classically, theories Th

p

(N; R

1

; R

2

; :::; R

k

) are decidable. Howewer

the map which associates Th

p

(N; R

1

; R

2

; :::; R

k

) to p may be recur-

sive or not recursive. In the same manner, the map which associates

Dest

p

(N; R

1

; R

2

; :::; R

k

) to p may be recursive or not recursive.

De�nition 7. The 
attening map of a structure hN; R

1

; R

2

; :::; R

k

i is

the map

p 7! Th

p

(N; R

1

; R

2

; :::; R

k

):

The destiny map of a structure hN; R

1

; R

2

; :::; R

k

i is the map

p 7! Dest

p

(N; R

1

; R

2

; :::; R

k

):

Remark. Obviously the 
attening map of a structure is recursive i� the

theory Th(N; R

1

; R

2

; :::; R

k

) is decidable. We do not have such a nice

characterization for the destiny map.

Theorem 1. If the relational structure hN; R

1

; R

2

; :::; R

k

i satis�es

� Th(N; R

1

; R

2

; :::; R

k

; (i)

i2N

) is decidable, where each element of N is

considered as a constant;

� every relation R

i

is recursive

then its destiny map is recursive.

Proof. Let us begin with two facts.

Fact 1 For each primitive tree, we may compute the associated pruned

tree.

Because every relation R

i

is recursive, it is easy to know if a branch is

equivalent to a lesser branch. Hence we keep the �rst branch, we compare

the second branch to the �rst one to know if we keep it. And so on, we

compare a branch to the lesser (not removed) branches to know if it is a

new branch to keep it or not.

The problem is to know when we have �nished, i.e. when we are sure

there is no new branch (no equivalent to kept branches) to keep. For a

given signature (r

1

; r

2

; :::; r

k

) and a given p, there is a �nite number of

non equivalent branches, in other words of types of branches. A type of

branches, with root equal to a natural integer a, appears i� a �rst order

sentence is true in Th(N; R

1

; R

2

; :::; R

k

; (i)

i2N

). Because this last theory

is decidable, we may decide if we have to search for such a branch or not.

Fact 2 For each con�guration, we may decide if there is a pruned tree

equivalent to it.
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It is the same idea: there exists a pruned tree equivalent to a given

con�guration i� a �rst order sentence is true in Th(N; R

1

; R

2

; :::; R

k

);

because this last theory is decidable, we may decide whether it is the

case or not.

The proof of the theorem follows from these two facts. We compute the

�rst pruned tree. If an other con�guration appears in the essential forest,

we compute pruned trees until we have this con�guration. We continue

until there is no other con�guration. The procedure �nishes because the

number of con�gurations is �nite. CQFD

Corollary. Destiny map is recursive for structures hN;+i, hN;�i,...

Problem. What is the link between complexities of relations R

i

and

complexity of Th(N; R

1

; R

2

; :::; R

k

) and complexity of destiny map?

Remark. We don't know if destiny map is recursive for hN; S; P i but,

classically, the restriction of destiny map to a �nite number of integers p

is recursive.
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