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NON{MAXIMAL DECIDABLE STRUCTURES

Abstra
t. Given any in�nite stru
ture M with a de
idable �rst-order

theory, we give a suÆ
ient 
ondition in terms of the Gaifman graph of M,

whi
h ensures that M 
an be expanded with some non-de�nable predi
ate

in su
h a way that the �rst-order theory of the expansion is still de
idable.

Dedi
ated to Yu. Matiyasevi
h

on the o

asion of his 60th birthday

1. Introdu
tion

Elgot and Rabin ask in [3℄ whether there exist maximal de
idable stru
-

tures, i.e., stru
tures M with a de
idable elementary theory and su
h that

the elementary theory of any expansion of M by a non-de�nable predi
ate

is unde
idable.

Soprunov proved in [10℄ (using a for
ing argument) that every stru
ture

in whi
h a regular ordering is interpretable is not maximal. A partial

ordering (B;<) is said to be regular if for every a ∈ B there exist distin
t

elements b

1

; b

2

∈ B su
h that b

1

< a, b

2

< a, and no element 
 ∈ B

satis�es both 
 < b

1

and 
 < b

2

. As a 
orollary he also proved that there

is no maximal de
idable stru
ture if we repla
e \elementary theory" by

\weak monadi
 se
ond-order theory"

1

.

In [1℄ we 
onsidered a weakening of the Elgot-Rabin question, namely

the question of whether all stru
tures M whose �rst-order theory is de
id-

able 
an be expanded by some 
onstant in su
h a way that the resulting

stru
ture still has a de
idable theory. We answered this question negatively

by proving that there exists a stru
ture M whose monadi
 se
ond-order

theory is de
idable and su
h that any expansion of M by a 
onstant has

an unde
idable elementary theory.

In this paper we address the initial Elgot{Rabin question, and provide

a 
riterion for non-maximality. More pre
isely, given any stru
ture M with

1

These results, and the Elgot-Rabin question itself, were brought to our attention

by Semenov's paper [8℄.
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a de
idable �rst-order theory, we give in Se
tion 3 a suÆ
ient 
ondition in

terms of the Gaifman graph of M, whi
h ensures that M 
an be expanded

with some non-de�nable predi
ate in su
h a way that the �rst-order theory

of the expansion is still de
idable. The 
ondition is the following: for every

natural number r and every �nite set X of elements of the base set |M|
of M there exists an element x ∈ |M| su
h that the Gaifman distan
e

between x and every element of X is greater than r. This 
ondition holds

e.g. for the stru
ture (N; S), where S denotes the graph of the su

essor

fun
tion, and more generally for any labelled in�nite graph with �nite

degree and whose elementary theory is de
idable, i.e., for any stru
ture

M = (V;E; P

1

; : : : ; P

n

) where V is in�nite, E is a binary relation of �nite

degree, the P

i

's are unary relations, and the elementary theory of M

is de
idable. Unlike Soprunov's 
ondition, our 
ondition expresses some

limitation on the expressive power of the stru
ture M.

In Se
tion 2 we re
all some important de�nitions and results. Se
tion

3 deals with the main theorem. We 
on
lude the paper with related ques-

tions.

2. Preliminaries

In the sequel we 
onsider �rst-order logi
 with equality. We deal only

with relational stru
tures. Given a language L and an L-stru
ture M, we

denote by |M| the base set of M. For every symbol R ∈ L we denote by

R

M
the interpretation of R in M. As usual we shall often 
onfuse symbols

and their interpretation. We denote by FO(M) the �rst-order (
omplete)

theory of M, i.e., the set of �rst-order L-senten
es ' su
h that M |= '.

We say that an n-ary relation R over |M| is elementary de�nable

(shortly: de�nable) in M if there exists an L-formula ' with n free vari-

ables su
h that R = {(a
1

; : : : ; a

n

) : M |= '(a

1

; : : : ; a

n

)}.
We denote by qr(F ) the quanti�er rank of the formula F , de�ned in-

du
tively by qr(F ) = 0 if F is atomi
, qr(¬F ) = qr(F ), qr(F�G) =

max(qr(F ); qr(G)) for � ∈ {∧;∨;→}, and qr(∃xF ) = qr(∀xF ) = qr(F )+

1. We de�ne FO

n

(M) as the set of L−senten
es F su
h that qr(F ) ≤ n

and M |= F .

We say that the elementary diagram of a stru
ture M is 
omputable

if there exists an inje
tive map f : |M| → N su
h that the range of f , as

well as the relations

{(f(a
1

); : : : ; f(a

n

)) | a
1

; : : : ; a

n

∈ |M| and M |= R(a

1

; : : : ; a

n

)}

for every relation R of L, are re
ursive (see e.g. [9℄).
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Let us re
all useful de�nitions and results related to the Gaifman graph

of a stru
ture [4℄ (see also [6℄). Let L be a relational language, and M be

an L-stru
ture. The Gaifman graph of M, whi
h we denote by G(M), is

the undire
ted graph whose set of verti
es is |M|, and su
h that for all

x; y ∈ |M|, there is an edge between x and y if and only if either x = y

or there exist some n-ary relational symbol R ∈ L and some n-tuple

~

t of

elements of |M| whi
h 
ontains both x and y and satis�es

~

t ∈ R

M
.

The distan
e d(x; y) between two elements x; y ∈ |M| is de�ned as the

usual distan
e in the sense of the graph G(M). We denote by B

r

(x) the

r-ball with 
enter x, i.e., the set of elements y of |M| su
h that d(x; y) ≤ r.

It should be noted that for every �xed r the binary relation \y ∈ B

r

(x)"

is de�nable in M. For every X ⊆ |M| we de�ne B

r

(X) as B

r

(X) =

⋃

x∈X

B

r

(x).

An r-lo
al formula '(x

1

; : : : ; x

n

) is a formula whose quanti�ers are all

relativized to B

r

({x
1

; : : : ; x

n

}). We shall use the notation '

(r)

to indi
ate

that ' is r-lo
al.

Let us now state Gaifman's theorem about lo
al formulas.

Theorem 1 ([4℄). Let ~x = (x

1

; : : : ; x

n

), and let '(~x) be an L-formula.

From ' one 
an 
ompute e�e
tively a formula whi
h is equivalent to '

and is a boolean 
ombination of formulas of the form:

•  

(r)

(~x)

• ∃x
1

: : : ∃x
s

(

∧

1≤i≤s

�

(r)

(x

i

) ∧
∧

1≤i<j≤s

d(x

i

; x

j

) > 2r)

where s ≤ qr(') + n and r ≤ 7

k

.

Moreover if ' is a senten
e then only senten
es of the se
ond kind o

ur

in the resulting formula.

3. A suffi
ient 
ondition for non-maximality

The aim of this se
tion is to prove the following theorem.

Theorem 2. Let L be a �nite relational language, and M be an in�nite


ountable L-stru
ture whi
h satis�es the following 
onditions:

1. FO(M) is de
idable;

2. every element of |M| is de�nable in M;

3. for every �nite set X ⊆ |M| and every r ∈ N, there exists a ∈ |M|
su
h that d(a;X) > r.

Then there exists a unary predi
ate symbol R 6∈ L and an (L ∪ {R})-
expansion M

′
of M su
h that:
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• FO(M′
) is de
idable;

• the set R

M
′

is not de�nable in M;

• the elementary diagram of M
′
is 
omputable.

Note that in the above Theorem, the 
onstru
tion of M
′
from M 
an be

repeated starting from M
′
. Indeed M

′

learly satis�es 
onditions 1 and 2.

Moreover expanding a stru
ture by unary predi
ates does not modify its

Gaifman graph, therefore we have G(M
′
) = G(M), whi
h implies that


ondition 3 also holds for M
′
.

Let us illustrate Theorem 2 with a few examples.

• The stru
ture M = (N;S), where S denotes the graph of the fun
-

tion x 7→ x+ 1, satis�es all 
onditions of Theorem 2. Indeed Langford

[5℄ proved that FO(M) is de
idable. Moreover 
ondition 2 is easy to

prove, and 
ondition 3 is a straightforward 
onsequen
e of the fa
t that

d(x; y) = |x− y| for all natural numbers x; y.

• The same holds for any stru
ture of the form M = (N;S; P
1

; : : : ; P

n

)

where the P

i

's denote unary predi
ates and FO(M) is de
idable (the

Gaifman graph of any su
h stru
ture is equal to the one of (N;S), see

the remark above).

• More generally Theorem 2 applies to any in�nite labelled graph

with �nite degree, more pre
isely to any stru
ture of the form M =

(V ;E;P

1

; : : : ; P

n

) where V is in�nite, E is a binary relation with �nite

degree, the P

i

's denote unary predi
ates, FO(M) is de
idable, and ev-

ery element of V is de�nable in M. In this 
ase the Gaifman graph of

M has �nite degree, whi
h implies 
ondition 3. Note that Theorem 2

also applies to some stru
tures for whi
h the degree of the Gaifman

graph is in�nite { see the last example.

• The stru
ture M = (N;<) does not satisfy 
ondition 3 of Theorem 2

sin
e d(x; y) ≤ 1 for all x; y ∈ N. Observe that FO(M) is de
idable

[5℄, and moreover M is not maximal: 
onsider e.g. the stru
ture M
′
=

(N;<;+) where + denotes the graph of addition; FO(M
′
) is de
idable

[7℄, and + is not de�nable in M sin
e in M one 
an only de�ne �nite

or 
o-�nite subsets of N.

One 
an prove a
tually that for every in�nite stru
ture M in whi
h

some linear ordering of elements of |M| is de�nable, 
ondition 3 does not

hold. However the next example shows that Theorem 2 
an be applied to

some stru
tures in whi
h an in�nite linear ordering is interpretable.

• Consider the disjoint union of ! 
opies of (N;<) equipped with a
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su

essor relation between 
opies, i.e., the stru
ture

M = (N × N;<;Su
);

where

− (x; y) < (x

′
; y

′
) if and only if (x = x

′
and y < y

′
);

− Su
((x; y); (x

′
; y

′
)) if and only if x

′
= x+ 1;

then M satis�es the 
onditions of Theorem 2: the �rst 
ondition 
omes

from the fa
t that FO(M) redu
es to FO(N;<) and the two other 
on-

ditions are easy to 
he
k.

Let us explain informally the stru
ture of the proof of Theorem 2. Given

M whi
h ful�lls all 
onditions of Theorem 2, we de�ne R

M
′

by marking

gradually elements of |M|, some in R

M
′

and some in its 
omplement.

More pre
isely we de�ne by indu
tion on n the sequen
e (X

n

)

n∈N with

X

n

= (R

n

; S

n

; T

n

; F

n

), where

• R
n


orresponds to a �nite set of elements of R

M
′

(we will say \marked

positively");

• S
n


orresponds to a �nite set of elements of the 
omplement of R

M
′

(we will say \marked negatively");

• T
n


orresponds to a �nite set of 
enters of balls whose elements (apart

from elements of R

n

) are marked in the 
omplement of R

M
′

;

• F
n

denotes the set of formulas of quanti�er rank ≤ n whi
h will be

true in M
′
.

The set R

M
′

will be de�ned as the union of the sets R

n

. At ea
h

step n, the partial marking X

n

ensures that R

M
′

is not de�nable by any

formula of quanti�er rank n, and also �xes FO

n

(M
′
). The possibility to

�x FO

n

(M
′
) whereas R

M
′

is only partially de�ned, 
omes from Gaifman's

Theorem 1 whi
h redu
es the satisfa
tion of senten
es in M
′
to the one of

senten
es whi
h only speak about a �nite number of r-balls in |M′| (these
are senten
es of the se
ond kind in Theorem 1), and thus 
an be evaluated

as soon as R

M
′

is 
ompletely de�ned in these r-balls.

In the 
onstru
tion we impose some sparsity 
ondition on R

M
′

; this


ondition implies that there are few elements of R

M
′

in ea
h r-ball, whi
h

in turn allows to express with L-senten
es that an r-ball of |M| 
an be

marked 
onveniently, and then use the hypothesis that FO(M) is de
id-

able in order to extend the marking in an e�e
tive way.

Proof of Theorem 2.

Assume that M is an L-stru
ture whi
h satis�es all 
onditions of the

theorem. Let R 6∈ L be a unary predi
ate symbol. For every X ⊆ |M| we
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shall denote by M(X) the (L∪{R})-expansion of M de�ned by interpret-

ing R by X .

Throughout the proof we shall use the following interesting 
onse-

quen
es of 
onditions 1 and 2:

• the elementary diagram of M is 
omputable. Indeed sin
e L is �nite

we 
an enumerate all formulas '(x) with one free variable. Let us denote

by ('

i

(x))

i≥0

su
h an enumeration. Then the appli
ation f : |M| → N

whi
h maps every element e of |M| to the least integer i su
h that

'

i

de�nes e is inje
tive; moreover the range of f , and the relations

{(f(a
1

); : : : ; f(a

n

)) : M |= Q(a

1

; : : : ; a

n

)} for every symbol Q of L, are

re
ursive.

• if  (x) is a formula with one free variable and M |= ∃x (x) then

one 
an �nd in an e�e
tive way the �rst integer i whi
h belongs to the

range of f and su
h that M |= ∃x('
i

(x) ∧  (x)). That is, one 
an �nd

e�e
tively some element x ∈ |M| for whi
h  (x) holds in M.

• every �nite or 
o-�nite subset A ⊆ |M| is de�nable in M. This will

allow to use short
uts su
h as \x ∈ A" when we write formulas in the

language L.

We now de�ne by indu
tion on n ∈ N the sequen
e X

n

=

(R

n

; S

n

; T

n

; F

n

) su
h that:

1. R

n

; S

n

; T

n

are �nite subsets of |M|;
2. F

n

is a set of (L ∪ {R})−senten
es with quanti�er rank ≤ n;

3. R

n

∩ S
n

= ∅;

4. R

n−1

⊆ R

n

and S

n−1

⊆ S

n

for every n ≥ 1;

5. R

n

∩ ((S

n−1

∪
⋃

i≤n−1

B

7

i(T

i

)) \R
n−1

) = ∅ for every n ≥ 1;

6. S

n

∩R
n−1

= ∅ for every n ≥ 1;

7. d(x; y) ≥ 7

n

for every pair of distin
t elements of R

n

\ R
n−1

(for

n ≥ 1);

8. d(R

n

\R
n−1

; R

n−1

) ≥ 7

n

(for n ≥ 1);

9. for every R

′ ⊆ |M| su
h that R

n

⊆ R

′
and

R

′ ∩

(

(S

n

∪
⋃

i≤n

B

7

i
(T

i

)) \R
n

)

= ∅;

R

′
is not de�nable in M by any L-formula of quanti�er rank ≤ n;

10. For every R

′ ⊆ |M| su
h that R

n

⊆ R

′
,

R

′ ∩

(

(S

n

∪
⋃

i≤n

B

7

i
(T

i

)) \R
n

)

= ∅;
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d(R

′
; R

′ \R
n

) ≥ 7

n+1

;

and d(x; y) ≥ 7

n+1

whenever x; y are distin
t elements of R

′ \ R
n

, we

have

FO

n

(M(R

′
)) = F

n

:

Conditions 4, 5 and 6 express that the marking asso
iated with X

n

extends the one asso
iated with X

n−1

, and 7 and 8 spe
ify that elements

of R

n

\ R
n−1

(i.e., new elements marked positively) are far away from

ea
h other and also from elements of R

n−1

. Conditions 9 and 10 ensure

that for any set R

′ ⊆ |M| whi
h extends R

n

\sparsely" (this will hold in

parti
ular for the sets R

n+1

; R

n+2

; : : : and eventually for R

M
′

), R

′
is not

de�nable in M by any L-formula of quanti�er rank ≤ n, and moreover

FO

n

(M(R

′
)) = F

n

, i.e., the partial marking X

n

�xes FO

n

(M(R

′
)).

We now de�ne the sequen
e (X

n

)

n∈N.

Indu
tion hypothesis: assume that (X

i

)

i<n

is de�ned and satis�es

the required 
onditions.

Let us de�ne X

n

. The de�nition 
onsists in two main steps: during

the �rst step we extend the marking in order to get 
ondition 9, i.e.,

to ensure that R

M
′

will not be de�nable in M with any L-formula with

quanti�er rank n; this is the easiest step, and it involves 
ondition 3 of the

Theorem. During the se
ond step, we extend again the marking in order

to get 
ondition 9, i.e., to �x FO

n

(M
′
).

We set r = 7

n

.

First step: during this step we mark a �nite number of elements in

order to ensure that R

M
′

will not be de�nable by any L-formula with

quanti�er rank n.

Sin
e we deal with a �nite relational language, there exist up to equiva-

len
e �nitely many formulas with quanti�er rank n. From L one 
an 
om-

pute an integer k

n

and a �nite set of L-formulas {�
n;i

(x) : 1 ≤ i ≤ k

n

}
su
h that every L-formula with quanti�er rank n is equivalent to a dis-

jun
tion of some of the �

n;i

's, and moreover su
h that the formulas �

n;i

are in
ompatible. For i = 1; : : : ; k

n

, let us denote by E

n;i

the subset of

|M| de�ned by �

n;i

(x). By 
onstru
tion the sequen
e (E

n;1

; : : : ; E

n;k

n

)

is a partition of |M|, and every subset of |M| de�nable by a formula of

quanti�er rank n is a �nite union of some of the subsets E

n;i

.

We shall mark elements in order that for some i, the subset E

n;i


on-

tains at least an element marked positively and another element marked

negatively. This will ensure that 
ondition 9 is satis�ed. More pre
isely,

for i = 1; : : : ; k

n

, we mark positively (respe
tively, negatively) at most one
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new element of E

n;i

. We de�ne the sets R

′
n;i

(resp., S

′
n;i

) su
h that R

′
n;i


ontains the set of new elements to mark positively (resp., negatively)

in E

n;i

(ea
h of the sets R

′
n;i

and S

′
n;i

is either empty or redu
ed to a

singleton). We pro
eed as follows:

• if there exists some element of E

n;i

whi
h is not marked yet, and

moreover all marked elements of E

n;i

are marked positively, then we

mark negatively the �rst unmarked element of E

n;i

.

Formally, assume that the sets R

′
n;j

and S

′
n;j

have been de�ned for

every j < i, and let

Z

n;i

= R

n−1

∪
⋃

j<i

R

′
n;j

∪ S
n−1

∪
⋃

j<i

S

′
n;j

∪
⋃

i<n

B

7

i(T

i

):

If

M |= ∃x(�
n;i

(x) ∧ x 6∈ Z

n;i

)

and moreover

M |= (E

n;i

∩ Z
n;i

) ⊆ (R

n−1

∪
⋃

j<i

R

′
n;j

)

(this property is expressible with an L-senten
e), then we set S

′
n;i

as the

singleton set 
onsisting of the �rst element x su
h that

M |= ∃x(�
n;i

(x) ∧ x 6∈ Z

n;i

):

Otherwise we set S

′
n;i

= ∅.

• Then, if all 
urrently marked elements of E

n;i

are marked negatively,

and moreover there exists some unmarked element x of E

n;i

at distan
e

≥ 7

n+1

from already marked elements, then we mark positively the �rst

su
h element x.

Formally, let

Z

′
n;i

= Z

n;i

∪ S′
n;i

:

If

M |= (E

n;i

∩ (R

n−1

∪
⋃

j<i

R

′
n;j

)) = ∅

and moreover

M |= ∃x(�
n;i

(x) ∧ d(x; Z ′
n;i

) ≥ 7

n+1

)

then let R

′
n;i

be the singleton set 
onsisting of the �rst su
h x. Otherwise

we set R

′
n;i

= ∅.
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Note that the above 
onstru
tion is e�e
tive (see the remarks at the

beginning of the proof).

Se
ond step: during this step we extend the marking in order to �x

FO

n

(M
′
).

Up to equivalen
e, there exist �nitely many (L∪{R})-senten
es F su
h

that qr(F ) = n. By Theorem 1, every su
h senten
e F is equivalent to a

boolean 
ombination of senten
es of the form

∃x
1

: : : ∃x
s

(

∧

1≤i≤s

�

(r)

(x

i

) ∧
∧

1≤i<j≤s

d(x

i

; x

j

) > 2r

)

:

Consider an enumeration G

n;1

; : : : ; G

n;m

n

of all senten
es of the previ-

ous form whi
h arise when we apply Theorem 1 to formulas F su
h that

qr(F ) = n.

During this step we shall �x whi
h senten
es G

n;j

will be true in M
′
,

whi
h will suÆ
e (using again Theorem 1 to �x whi
h senten
es F with

quanti�er rank n will be true in M
′
).

The �rst idea is to 
he
k, for every j, whether there exists R

′ ⊆ |M|
whi
h extends in a 
onvenient way the 
urrent marking and su
h that

M(R

′
) |= G

n;j

. If the answer is positive, then we shall extend our marking

just enough to ensure that any extension of the marking will be su
h that

M
′ |= G

n;j

. If the answer is negative, then we do not extend the marking,

and then every extension of the marking will be su
h that M
′ |= ¬G

n;j

.

We de�ne by indu
tion on j ≤ m

n

the sets R

′′
n;j

and T

′
n;j

, su
h that R

′′
n;j


ontains new elements to mark positively, and T

′
n;j


ontains the 
enters

of new r-balls whose elements are marked negatively.

We pro
eed as follows. Fix j, and assume that the sets R

′′
n;i

and T

′
n;i

have been de�ned for every i < j. We have

G

n;j

: ∃x
1

: : : ∃x
s

(

∧

1≤i≤s

�

(r)

n;j

(x

i

) ∧
∧

1≤i<j≤s

d(x

i

; x

j

) > 2r

)

for some r-lo
al formula �

(r)

n;j

(formally s depend on n and j, but we omit

the subs
ripts for the sake of readability).

Let R

+

n;j

be the set of elements 
urrently marked positively, i.e.,

R

+

n;j

= R

n−1

∪
⋃

i<k

n

R

′
n;i

∪
⋃

i<j

R

′′
n;i

;
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and let R

−
n;j

be the set of elements 
urrently marked negatively, that is

R

−
n;j

=

(

S

n−1

∪
⋃

i<k

n

S

′
n;i

∪
⋃

i<n

B

7

i
(T

i

) ∪
⋃

i<j

B

7

n

(T

′
n;i

)

)

\R+

n;j

:

We want to 
he
k whether there exists R

′ ⊆ |M| su
h that

1. M(R

′
) |= G

n;j

;

2. R

+

n;j

⊆ R

′
and R

−
n;j

∩R′
= 0 (i.e., R

′
extends the 
urrent marking);

3. d(R

+

n;j

; R

′ \R+

n;j

) ≥ 7

n+1

;

4. d(x; y) ≥ 7

n+1

for every pair of distin
t elements of R

′ \R+

n;j

.

Let us denote by (∗) the 
onjun
tion of these four 
onditions. Let us

prove that one 
an express (∗) with an L-senten
e.

Assume �rst that there exists R

′
whi
h satis�es (∗). Let x

1

; : : : ; x

s

∈
|M| be su
h that

M(R

′
) |=

(

∧

1≤i≤s

�

(r)

n;j

(x

i

) ∧
∧

1≤i<j≤s

d(x

i

; x

j

) > 2r

)

:

Conditions 3 and 4 of (∗) imply that ea
h ball B

r

(x

i

) 
ontains at most

one element of R

′ \ R+

n;j

, and moreover that if su
h an element exists, it

is the unique element of R

′
in B

r

(x

i

). Thus we 
an assume without loss

of generality that there exist t ≤ s and y

1

; : : : ; y

t

∈ |M| su
h that

B

r

(x

i

) ∩ (R

′ \R+

n;j

) = {y
i

}

for every i ≤ t, and

B

r

(x

i

) ∩ (R

′ \R+

n;j

) = ∅

for every i > t. Condition 3 yields d(R

+

n;j

; y

i

) ≥ 7

n+1

for every i, and


ondition 4 yields d(y

i

; y

j

) ≥ 7

n+1

for all distin
t integers i; j.

Let us 
onsider �rst the r-balls B

r

(x

i

) for i ≤ t. By de�nition of x

i

we

have M(R

′
) |= �

(r)

n;j

(x

i

). Now y

i

is the unique element of R

′ ∩B
r

(x

i

) thus

we have M |= �

′
n;j

(x

i

; y

i

) where �

′
n;j

(x

i

; y

i

) is obtained from �

(r)

n;j

(x

i

) by

repla
ing every atomi
 formula of the form R(z) by (z = y

i

).

Now 
onsider the r-balls B

r

(x

i

) for i > t. By de�nition we have

M(R

′
) |= �

(r)

n;j

(x

i

), and B

r

(x

i

) 
ontains no element of R

′ \ R+

n;j

. Thus

we have M |= 


(r)

n;j

(x

i

) where 


(r)

n;j

(x

i

) is obtained from �

(r)

n;j

(x

i

) by repla
-

ing every atomi
 formula of the form R(z) by (z ∈ B

r

(x

i

) ∩R+

n;j

).
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The previous arguments show that M |= G

′
n;j

where G

′
n;j

is the L-

senten
e G

′
n;j

de�ned as follows:

G

′
n;j

:

∨

t≤s

H

n;j;t

;

where

H

n;j;t

: ∃x
1

: : : ∃x
s

∃y
1

: : :∃y
t

(

∧

1≤i<j≤s

d(x

i

; x

j

)>2r∧

∧
∧

1≤i<j≤t

d(y

i

; y

j

)>7r∧

∧
∧

1≤i≤t

d(y

i

; R

+

n;j

) > 7r ∧
∧

1≤i≤t

�

(r)

n;j

(x

i

; y

i

) ∧
∧

t<i≤s




(r)

n;j

(x

i

)

)

with

�

(r)

n;j

(x

i

; y

i

) : y

i

∈B
r

(x

i

) ∧ y
i

6∈ (R

+

n;j

∪R−
n;j

) ∧B
r

(x

i

) ∩R+

n;j

= ∅∧

∧�′(r)

n;j

(x

i

; y

i

):

Conversely, assume that M |= G

′
n;j

. Let t, x

1

; : : : ; x

s

, and y

1

; : : : ; y

t

be

su
h that H

n;j;t

holds in M. Then if we set R

′
= R

+

n;j

∪ {y
1

; : : : ; y

t

}, one


he
ks easily that R

′
satis�es (∗)

Therefore we have shown that the question whether there exists R

′

whi
h satis�es (∗) is equivalent to the question whether M |= G

′
n;j

for

some L-senten
e whi
h 
an be 
onstru
ted e�e
tively from G

n;j

.

If M |= ¬G′
n;j

(whi
h 
an be 
he
ked e�e
tively sin
e by our hypotheses

FO(M) is de
idable), then we set

R

′′
n;j

= T

′
n;j

= F

′
n;j

= ∅:

Now if M |= G

′
n;j

one 
an �nd e�e
tively the least value of t su
h that

M |= H

n;j;t

, and then x

1

; : : : ; x

s

and y

1

; : : : ; y

t

for whi
h the formula

holds. We set

R

′′
n;j

= {y
1

; : : : ; y

t

}; T ′
n;j

= {x
1

; : : : ; x

s

}; and F

′
n;j

= {G
n;j

}:
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Note that the above de�nition of T

′
n;j

means that all elements whi
h were

not marked yet and belong to some r-ball B

r

(x

i

) are now marked nega-

tively.

This 
ompletes the se
ond step of the 
onstru
tion of X

n

.

We 
an now de�ne X

n

as follows: for n ≥ 1 we set

R

n

= R

n−1

∪
⋃

i≤k
n

R

′
n;i

∪
⋃

j≤m
n

R

′′
n;j

;

S

n

= S

n−1

∪
⋃

i≤k
n

S

′
n;i

and

T

n

=

⋃

j≤m
n

T

′
n;j

:

For n = 0, the de�nitions are the same but we omit the set R

n−1

(respe
-

tively S

n−1

) in the de�nition of R

n

(respe
tively S

n

).

In order to de�ne F

n

, 
onsider a senten
e F with quanti�er rank n. By

Theorem 1, F is equivalent to a formula F

′
whi
h is a boolean 
ombination

of senten
e of the form G

n;j

. Consider the truth value of F

′
determined by

setting \true" all senten
es G

n;j

∈ F

′
n;j

, and \false" senten
es G

n;j

6∈ F

′
n;j

.

Then we de�ne F

n

as the union of F

n−1

and of all senten
es F for whi
h

F

′
is true.

We have de�ned X

n

. There remains to show that X

n

satis�es all 
on-

ditions required in the de�nition.

• Conditions 1 to 8 are easy 
onsequen
es of the 
onstru
tion of X

n

(and

the indu
tion hypotheses).

• Let us 
onsider 
ondition 9. Let R

′ ⊆ |M| be su
h that R

n

⊆ R

′
and

R

′ ∩
(

(S

n

∪
⋃

i≤n

B

7

i
(T

i

)) \R
n

)

= ∅:

Let us prove that R

′
is not de�nable by any L-formula of quanti�er

rank ≤ n. Sin
e every subset of |M| de�nable by a L-formula with

quanti�er rank n is the union of some of the sets E

n;i

, it suÆ
es to

prove that R

′
and its 
omplement interse
t some E

n;i

.

By 
onstru
tion, the set X = R

n

∪S
n

∪
⋃

i≤n

T

i

is �nite. Now by hypoth-

esis M satis�es 
ondition 3 of Theorem 2, thus there exists x ∈ |M| su
h
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that d(X; x) > 7

n

. The element x belongs to some set E

n;i

. Let us prove

that R

′
and its 
omplement interse
t E

n;i

.

Consider the step of the 
onstru
tion of X

n

during whi
h we marked el-

ements of E

n;i

. Re
all that just before this step the set of marked elements

was

Z

n;i

= R

n−1

∪
⋃

j<i

R

′
n;j

∪ S
n−1

∪
⋃

j<i

S

′
n;j

∪
⋃

i<n

B

7

i(T

i

):

Sin
e x ∈ E

n;i

and d(X; x) > 7

n

, the set E

n;i

\ Z
n;i

is non-empty. Thus

either E

n;i

already 
ontained an element marked negatively (and in this


ase S

′
n;i

= ∅), or we marked one (from E

n;i

\ Z
n;i

) and put it in S

′
n;i

.

Therefore the 
omplement of R

′
interse
ts E

n;i

.

Just after this step, then either E

n;i

already 
ontained some element

marked positively, or by de�nition of x there existed an element y of

E

n;i

at distan
e ≥ 7

n

from 
urrently marked elements, and thus we 
ould

mark positively the �rst su
h element y. In both 
ases this ensures that

R

′
interse
ts E

n;i

.

• Let us prove now that X

n

satis�es 
ondition 10. Let R

′ ⊆ |M| be su
h
that R

n

⊆ R

′
,

R

′ ∩

(

(S

n

∪
⋃

i≤n

B

7

i(T

i

)) \R
n

)

= ∅;

d(R

′
; R \R

n

) ≥ 7

n+1

and d(x; y) ≥ 7

n+1

whenever x; y are distin
t elements of R

′ \R
n

. Let

us prove that FO

n

(M(R

′
)) = F

n

. The 
ase of formulas with quanti�er

rank< n follows from our indu
tion hypotheses. Consider now formulas

with quanti�er rank n. Their truth values are 
ompletely determined by

the truth values of senten
es G

n;j

. Thus it is suÆ
ient to prove that for

every j we have M(R

′
) |= G

n;j

if and only if F

′
n;j

= {G
n;j

}. Fix j, and

onsider the step of the 
onstru
tion of X

n

during whi
h we dealt with

the senten
e G

n;j

. If M |= G

′
n;j

then in this 
ase F

′
n;j

= {G
n;j

}, and

the de�nition of R

′′
n;j

and T

′
n;j

imply that the senten
e G

n;j

holds for

every R

′
whi
h extends (in a 
onvenient way) the marking (R

n

; S

n

; T

n

),

thus we have M(R

′
) |= G

n;j

. On the other hand if M 6|= G

′
n;j

, then the

property (∗) 
annot be satis�ed, and we have set F
n;j

= ∅. In parti
ular

R

′
does not satisfy (∗). Now the hypotheses on R

′
yield that R

′
satis�es

the three last 
onditions of (∗), thus the �rst 
ondition is not satis�ed,

that is M(R

′
) 6|= G

n;j

.



36 A. B

�

ES AND P. C

�

EGIELSKI

This 
on
ludes the proof that there exists a sequen
e (X

n

)

n≥0

whi
h

satis�es all 
onditions required in the de�nition.

Now let M
′
be the (L ∪ {R})−expansion of M de�ned by

R

M
′

=

⋃

n≥0

R

n

:

Let us prove that M
′
satis�es the properties required in Theorem 2.

The de�nition of R

M
′

implies that for every n, R

M
′

is not de�nable by

any L-senten
e with quanti�er rank n, and moreover that FO

n

(M
′
) = F

n

.

Therefore R

M
′

is not de�nable in M, and FO(M
′
) is de
idable.

Let us prove that the elementary diagram of M
′
is 
omputable. Con-

sider the fun
tion f used for the elementary diagram of M; it is suÆ
ient

to prove that {f(a) | M
′ |= R(a) ; a ∈ |M|} is re
ursive. Sin
e every

element e of |M| is de�nable, there exists n; i su
h that E

n;i

= {e}. Dur-
ing the 
onstru
tion of X

n

, and more pre
isely just before the marking of

E

n;i

, then either e had already been marked, or e is marked during this

step. Thus eventually every element of |M| is marked in R

M
′

or in its 
om-

plement. Moreover the whole 
onstru
tion is e�e
tive. This implies that

both {f(a) | M
′ |= R(a) ; a ∈ |M|} and {f(a) | M

′ 6|= R(a) ; a ∈ |M|}
are re
ursively enumerable, from whi
h the result follows.

This 
on
ludes the proof of Theorem 2.

4. Con
lusion

We gave a suÆ
ient 
ondition in terms of the Gaifman graph of the

stru
ture M whi
h ensures that M is not maximal. A natural problem is

to extend Theorem 2 to stru
tures M whi
h do not satisfy 
ondition 3.

In parti
ular one 
an 
onsider the 
ase of labelled linear orderings, i.e.,

in�nite stru
tures (A;<;P

1

; : : : ; P

n

) where < is a linear ordering over A

and the P

i

's denote unary predi
ates; the Gaifman distan
e is trivial for

these stru
tures. Another related general problem is to �nd a way to re�ne

the notion of Gaifman distan
e; for some re
ent progress see [2℄.

Finally, it would also be interesting to study the 
omplexity gap be-

tween the de
ision pro
edure for the theory of M and the one for the

stru
ture M
′

onstru
ted in the proof of Theorem 2.
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