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NON-MAXIMAL DECIDABLE STRUCTURES

ABSTRACT. Given any infinite structure 9t with a decidable first-order
theory, we give a sufficient condition in terms of the Gaifman graph of 91,
which ensures that 9t can be expanded with some non-definable predicate
in such a way that the first-order theory of the expansion is still decidable.
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1. INTRODUCTION

Elgot and Rabin ask in [3] whether there exist maximal decidable struc-
tures, i.e., structures 91 with a decidable elementary theory and such that
the elementary theory of any expansion of 9t by a non-definable predicate
is undecidable.

Soprunov proved in [10] (using a forcing argument) that every structure
in which a regular ordering is interpretable is not maximal. A partial
ordering (B, <) is said to be regular if for every a € B there exist distinct
elements by,bs € B such that by < a, by < a, and no element ¢ € B
satisfies both ¢ < by and ¢ < bs. As a corollary he also proved that there
is no maximal decidable structure if we replace “elementary theory” by
“weak monadic second-order theory”!.

In [1] we considered a weakening of the Elgot-Rabin question, namely
the question of whether all structures 93T whose first-order theory is decid-
able can be expanded by some constant in such a way that the resulting
structure still has a decidable theory. We answered this question negatively
by proving that there exists a structure 9t whose monadic second-order
theory is decidable and such that any expansion of 9t by a constant has
an undecidable elementary theory.

In this paper we address the initial Elgot—Rabin question, and provide
a criterion for non-maximality. More precisely, given any structure 9t with

IThese results, and the Elgot-Rabin question itself, were brought to our attention
by Semenov’s paper [8].

23



24 A. BES AND P. CEGIELSKI

a decidable first-order theory, we give in Section 3 a sufficient condition in
terms of the Gaifman graph of 91, which ensures that 9t can be expanded
with some non-definable predicate in such a way that the first-order theory
of the expansion is still decidable. The condition is the following: for every
natural number r and every finite set X of elements of the base set |9
of M there exists an element z € |M| such that the Gaifman distance
between x and every element of X is greater than r. This condition holds
e.g. for the structure (N, S), where S denotes the graph of the successor
function, and more generally for any labelled infinite graph with finite
degree and whose elementary theory is decidable, i.e., for any structure
m=(V,E,P,...,P,) where V is infinite, E is a binary relation of finite
degree, the P;’s are unary relations, and the elementary theory of 9t
is decidable. Unlike Soprunov’s condition, our condition expresses some
limitation on the expressive power of the structure 91.

In Section 2 we recall some important definitions and results. Section
3 deals with the main theorem. We conclude the paper with related ques-
tions.

2. PRELIMINARIES

In the sequel we consider first-order logic with equality. We deal only
with relational structures. Given a language £ and an £-structure 9, we
denote by |90t] the base set of M. For every symbol R € £ we denote by
R™ the interpretation of R in 9. As usual we shall often confuse symbols
and their interpretation. We denote by FO(9) the first-order (complete)
theory of 9, i.e., the set of first-order £-sentences ¢ such that I = .

We say that an n-ary relation R over |91| is elementary definable
(shortly: definable) in 9 if there exists an £-formula ¢ with n free vari-
ables such that R = {(a1,...,a,) : M = p(a1,...,a,)}.

We denote by ¢r(F) the quantifier rank of the formula F', defined in-
ductively by ¢r(F) = 0 if F' is atomic, gr(—F) = ¢r(F), gr(FaG) =
max(qr(F),qr(Q)) for a € {A,V,—}, and gr(3zF) = qr(VzF) = qr(F) +
1. We define FO,,(9M) as the set of £—sentences F such that gqr(F) <n
and M = F.

We say that the elementary diagram of a structure 9 is computable
if there exists an injective map f : |9t] — N such that the range of f, as
well as the relations

{(f(ar),-.., f(an)) | a1,...,an € || and M E R(a,...,a,)}

for every relation R of £, are recursive (see e.g. [9]).
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Let us recall useful definitions and results related to the Gaifman graph
of a structure [4] (see also [6]). Let £ be a relational language, and 9 be
an £-structure. The Gaifman graph of 9M, which we denote by G(9M), is
the undirected graph whose set of vertices is |91, and such that for all
x,y € |9M|, there is an edge between z and y if and only if either z = y
or there exist some n-ary relational symbol R € £ and some n-tuple £ of
elements of [90| which contains both 2 and y and satisfies i € R™.

The distance d(z,y) between two elements z,y € |91| is defined as the
usual distance in the sense of the graph G(9t). We denote by B,(z) the
r-ball with center z, i.e., the set of elements y of |91 such that d(z,y) < r.
It should be noted that for every fixed r the binary relation “y € B,.(x)”
is definable in 9. For every X C |90 we define B,.(X) as B.(X) =

U Br(x).

zeX
An r-local formula (21, ...,z,) is a formula whose quantifiers are all

relativized to B,({z1,...,z,}). We shall use the notation (") to indicate
that ¢ is r-local.
Let us now state Gaifman’s theorem about local formulas.

Theorem 1 ([4]). Let & = (x1,...,%,), and let (Z) be an L-formula.
From ¢ one can compute effectively a formula which is equivalent to ¢
and is a boolean combination of formulas of the form:

o (@)

o Trp...dz, ( /\ o™ (z;) A /\ d(z;,x;) > 2r)

1<i<s 1<i<j<s

where s < qr(y) +n and r < 7.

Moreover if ¢ is a sentence then only sentences of the second kind occur
in the resulting formula.

3. A SUFFICIENT CONDITION FOR NON-MAXIMALITY
The aim of this section is to prove the following theorem.

Theorem 2. Let £ be a finite relational language, and 9t be an infinite
countable £-structure which satisfies the following conditions:
1. FO(9M) is decidable;
2. every element of || is definable in 9;
3. for every finite set X C |9M| and every r € N, there exists a € |9
such that d(a, X) > r.
Then there exists a unary predicate symbol R ¢ £ and an (£ U {R})-
expansion 9’ of M such that:
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o FO(MV) is decidable;
e the set R™ is not definable in 9M;
e the elementary diagram of 9N’ is computable.

Note that in the above Theorem, the construction of 9 from 90 can be
repeated starting from 9. Indeed 9 clearly satisfies conditions 1 and 2.
Moreover expanding a structure by unary predicates does not modify its
Gaifman graph, therefore we have G(9) = G(9M), which implies that
condition 3 also holds for 27'.

Let us illustrate Theorem 2 with a few examples.

e The structure 9 = (N;5), where S denotes the graph of the func-

tion z — x + 1, satisfies all conditions of Theorem 2. Indeed Langford

[5] proved that FO(9M) is decidable. Moreover condition 2 is easy to

prove, and condition 3 is a straightforward consequence of the fact that

d(z,y) = |x — y| for all natural numbers z,y.

e The same holds for any structure of the form 9 = (N; S, Py, ..., P,)

where the P;’s denote unary predicates and FO(9) is decidable (the

Gaifman graph of any such structure is equal to the one of (N;.5), see

the remark above).

e More generally Theorem 2 applies to any infinite labelled graph

with finite degree, more precisely to any structure of the form 9t =

(V;E,Py,...,P,) where V is infinite, E is a binary relation with finite

degree, the P;’s denote unary predicates, FO (M) is decidable, and ev-

ery element of V is definable in 9. In this case the Gaifman graph of

I has finite degree, which implies condition 3. Note that Theorem 2

also applies to some structures for which the degree of the Gaifman

graph is infinite — see the last example.

e The structure 9 = (N; <) does not satisfy condition 3 of Theorem 2

since d(z,y) < 1 for all z,y € N. Observe that FO(OM) is decidable

[5], and moreover 9 is not maximal: consider e.g. the structure ' =

(N; <, +) where + denotes the graph of addition; FO(9') is decidable

[7], and + is not definable in 91 since in 9% one can only define finite

or co-finite subsets of N.

One can prove actually that for every infinite structure 9t in which
some linear ordering of elements of |91| is definable, condition 3 does not
hold. However the next example shows that Theorem 2 can be applied to
some structures in which an infinite linear ordering is interpretable.

e Consider the disjoint union of w copies of (N;<) equipped with a
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successor relation between copies, i.e., the structure
M = (N x N; <, Suc),

where

— (z,y) < (¢/,y") if and only if (zx = 2’ and y < ¢/);

— Suc((z,y), (2',y")) if and only if 2’ =z + 1;
then 901 satisfies the conditions of Theorem 2: the first condition comes
from the fact that FO(9M) reduces to FO(N; <) and the two other con-
ditions are easy to check.

Let us explain informally the structure of the proof of Theorem 2. Given
9 which fulfills all conditions of Theorem 2, we define R™ by marking
gradually elements of |9, some in R™ and some in its complement.
More precisely we define by induction on n the sequence (X,,),en with
X, = (Rn, Sn, T, Fp), where

e R, corresponds to a finite set of elements of R™ (we will say “marked

positively”);

e S, corresponds to a finite set of elements of the complement of R™

(we will say “marked negatively”);

e T, corresponds to a finite set of centers of balls whose elements (apart

from elements of R,,) are marked in the complement of Rm/;

e F, denotes the set of formulas of quantifier rank < n which will be

true in M.

The set R™ will be defined as the union of the sets R,. At each
step n, the partial marking X, ensures that R™ is not definable by any
formula of quantifier rank n, and also fixes FO,(9'). The possibility to
fix FO,,(9) whereas R™ is only partially defined, comes from Gaifman’s
Theorem 1 which reduces the satisfaction of sentences in 9 to the one of
sentences which only speak about a finite number of r-balls in |9V'] (these
are sentences of the second kind in Theorem 1), and thus can be evaluated
as soon as R™ is completely defined in these r-balls.

In the construction we impose some sparsity condition on th/; this
condition implies that there are few elements of R™ in each r-ball, which
in turn allows to express with £-sentences that an r-ball of |90| can be
marked conveniently, and then use the hypothesis that FO(90) is decid-
able in order to extend the marking in an effective way.

Proof of Theorem 2.
Agsume that 9 is an £-structure which satisfies all conditions of the
theorem. Let R ¢ £ be a unary predicate symbol. For every X C |9| we
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shall denote by DMM(X) the (LU{R})-expansion of M defined by interpret-
ing R by X.
Throughout the proof we shall use the following interesting conse-
quences of conditions 1 and 2:
e the elementary diagram of 9t is computable. Indeed since £ is finite
we can enumerate all formulas () with one free variable. Let us denote
by (¢i(x))i>0 such an enumeration. Then the application f : |9t — N
which maps every element e of |9| to the least integer i such that
p; defines e is injective; moreover the range of f, and the relations
{(f(a1),-.., f(an)) : M = Q(a,...,an)} for every symbol Q of £, are
recursive.
o if ¢(z) is a formula with one free variable and 9 = Jzy(z) then
one can find in an effective way the first integer 7 which belongs to the
range of f and such that 9 | Jx(p;(z) At (z)). That is, one can find
effectively some element z € |9 for which () holds in 9.
e every finite or co-finite subset A C |91 is definable in 9. This will
allow to use shortcuts such as “z € A” when we write formulas in the
language £.
We now define by induction on n € N the sequence X, =
(Rn, S, Th, Fy) such that:
1. Ry, Sn, T, are finite subsets of |9|;
2. F, is a set of (£ U {R})—sentences with quantifier rank < n;
3.R,NS, =a;
4. R, 1 C R, and S,_1 C S, for every n > 1;
5. Rp N ((Sp—1 U U B::(T3)) \ Rp—1) = @ for every n > 1;
i<n—1
6. S, NR,_1 = O for every n > 1,
7. d(z,y) > 7" for every pair of distinct elements of R, \ R,_1 (for
n > 1);
8. d(Rn \ Rn—1,Rn—1) > 7" (for n > 1);
9. for every R’ C |9 such that R, C R’ and

R'N <(sn U L(J B (T;)) \Rn> =@,

R’ is not definable in 9 by any £-formula of quantifier rank < n;
10. For every R’ C |9 such that R, C R/,

R N ((Sn Ul Br(Ty) \Rn) =0,

i<n
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d(R',R'\ R,) > 7"t}

and d(z,y) > 7" whenever z,y are distinct elements of R’ \ R,,, we
have
FO,(M(R')) = F,.

Conditions 4, 5 and 6 express that the marking associated with X,
extends the one associated with X,,_;, and 7 and 8 specify that elements
of Ry \ Rp—1 (i-e., new elements marked positively) are far away from
each other and also from elements of R, _;. Conditions 9 and 10 ensure
that for any set R’ C |91 which extends R, “sparsely” (this will hold in
particular for the sets R, 11, Rpt2,... and eventually for le), R’ is not
definable in 91 by any £-formula of quantifier rank < n, and moreover
FO,(OM(R’)) = F,, i.e., the partial marking X,, fixes FO,(9M(R’)).

We now define the sequence (X,,)nen-

Induction hypothesis: assume that (X;);<, is defined and satisfies
the required conditions.

Let us define X,,. The definition consists in two main steps: during
the first step we extend the marking in order to get condition 9, i.e.,
to ensure that R™ will not be definable in 9 with any £-formula with
quantifier rank n; this is the easiest step, and it involves condition 3 of the
Theorem. During the second step, we extend again the marking in order
to get condition 9, i.e., to fix FO,(9).

We set r = T7".

First step: during this step we mark a finite number of elements in

order to ensure that R™ will not be definable by any £-formula with
quantifier rank n.

Since we deal with a finite relational language, there exist up to equiva-
lence finitely many formulas with quantifier rank n. From £ one can com-
pute an integer k, and a finite set of £-formulas {a, () : 1 <i < k,}
such that every £-formula with quantifier rank n is equivalent to a dis-
junction of some of the ay, ;’s, and moreover such that the formulas a,, ;
are incompatible. For i = 1,...,k,, let us denote by E, ; the subset of
|90t] defined by ay,;(z). By construction the sequence (Ep1,...,Enk,)
is a partition of |91, and every subset of || definable by a formula of
quantifier rank n is a finite union of some of the subsets E, ;.

We shall mark elements in order that for some i, the subset E,, ; con-
tains at least an element marked positively and another element marked
negatively. This will ensure that condition 9 is satisfied. More precisely,
fori =1,...,k,, we mark positively (respectively, negatively) at most one
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new element of E, ;. We define the sets R/, ; (resp., S;, ;) such that R ;
contains the set of new elements to mark positively (resp., negatively)
in E,,; (each of the sets R ; and S) ; is either empty or reduced to a
singleton). We proceed as follows:
o if there exists some element of E,; which is not marked yet, and
moreover all marked elements of E, ; are marked positively, then we
mark negatively the first unmarked element of E,, ;.
Formally, assume that the sets R; ; and S}, ; have been defined for

every 7 < i, and let

Zni=Rp_1 U U R;z,,j US,_1 U U S;z,,j @] U By (Tl)
j<i j<i i<n
If
M = Jz(an,i(z) ANx & Zn ;)

and moreover

Mm ): (En,i N Zn,i) c (Rn—l ) U R;’L,j)

j<i

(this property is expressible with an £-sentence), then we set S}, ; as the
singleton set consisting of the first element z such that

M = Fz(an,i(z) Nz & Zn ;).

Otherwise we set S}, ; = @.

e Then, if all currently marked elements of F, ; are marked negatively,
and moreover there exists some unmarked element x of E,, ; at distance
> 7"+ from already marked elements, then we mark positively the first
such element x.

Formally, let
Zyi=7ZniUS) ;.

If
M = (Eni N (B U J Ry ) =2
j<i
and moreover
M = o (on,i(z) Nd(z, 2, ;) > T

then let R], ; be the singleton set consisting of the first such . Otherwise
we set R, , = @.
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Note that the above construction is effective (see the remarks at the
beginning of the proof).

Second step: during this step we extend the marking in order to fix
FO, ().

Up to equivalence, there exist finitely many (£U{R})-sentences F' such
that gr(F') = n. By Theorem 1, every such sentence F' is equivalent to a
boolean combination of sentences of the form

Joy ... Fas ( /\ oM (z;) A /\ d(z;,xj) > 2r).

1<i<s 1<i<j<s

Consider an enumeration G, 1, ..., Gy m, of all sentences of the previ-
ous form which arise when we apply Theorem 1 to formulas F' such that
gr(F) = n.

During this step we shall fix which sentences G, ; will be true in 9V,
which will suffice (using again Theorem 1 to fix which sentences F' with
quantifier rank n will be true in 9V).

The first idea is to check, for every j, whether there exists R’ C ||
which extends in a convenient way the current marking and such that
M(R') = G,,;. If the answer is positive, then we shall extend our marking
just enough to ensure that any extension of the marking will be such that
M |= G,,,;. If the answer is negative, then we do not extend the marking,
and then every extension of the marking will be such that M = =G, ;.

We define by induction on j < m,, the sets R} ; and T}, ;, such that R ;
contains new elements to mark positively, and Tr’L’ ; contains the centers
of new r-balls whose elements are marked negatively.

We proceed as follows. Fix j, and assume that the sets R, ; and T, ;
have been defined for every i < j. We have

Gp,j: Jz1 ... Fx, ( /\ a;?(:vz) A /\ d(z;,xj) > 27")

1<i<s 1<i<j<s

for some r-local formula ax; (formally s depend on n and j, but we omit
the subscripts for the sake of readability).

Let R; ; be the set of elements currently marked positively, i.e.,

Rf;=R,,u |J R,,UlJR,

i<kn i<j
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and let R, j be the set of elements currently marked negatively, that is

R;j=<5n_1UUS U Br(T) U B ( m)\R

i<kn i<n i<j

We want to check whether there exists R’ C |91] such that

LM(R) |= Gn,j;

2. R} CR and R, ;N R =0 (ie., R extends the current marking);

3. d(R}, R\ RY) = T

4. d(z,y) > 7" for every pair of distinct elements of R’\ Rj;]

Let us denote by (x) the conjunction of these four conditions. Let us
prove that one can express (x) with an £-sentence.

Assume first that there exists R’ which satisfies (x). Let x1,...,2s €

|90t] be such that

MER)E (N aD@yn N daizg) > 2r).

1<i<s 1<i<j<s

Conditions 3 and 4 of (x) imply that each ball B,(z;) contains at most
one element of R'\ R} ., and moreover that if such an element exists, it
is the unique element of R’ in B,(z;). Thus we can assume without loss

of generality that there exist ¢ < s and yy,...,y: € |9 such that
By(z;) N (R'\ Ry ;) = {yi}

for every i < t, and
By(z;) N (R'\ Ry ;) =

for every i > t. Condition 3 yields d(R;j,yi) > 7+ for every 4, and
condition 4 yields d(y;,y;) > 7" for all distinct integers i, 5.

Let us consider first the r-balls B,.(z;) for i < t. By definition of z; we
have M(R’) = agz(acl) Now y; is the unique element of R’ N B,(z;) thus

(r)
n,j (xl) by

we have M [= ay, ;(z;,y;) where o], ;(7;,y;) is obtained from «

replacing every atomic formula of the form R(z) by (z = y;).
Now consider the r-balls B,(x;) for i > t. By definition we have
MR E o (:EZ), and B, (z;) contains no element of R’ \ R, .. Thus

(r) (

we have I |— 'yn ]( z;) where %(;”3 (zi) is obtained from a,, % (z;) by replac-
ing every atomic formula of the form R(z) by (z € B,.(z;) N R:,j).
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The previous arguments show that M = G, ; where G, ; is the £-
sentence (7, ; defined as follows:

Grj \ Hujs
t<s
where
Hn,j,t : Elxl...EIxsEIyl...Elyt< /\ d(l'i,xj)>27'/\
1<i<j<s
AN dlyiy)>Ten
1<i<j<t
AN dynBE) > Tra N By A N\ e )
1<i<t 1<i<lt t<i<s
with

BN @iy yi) v € Br(wi) Ayi & (Rf; URy ;) A Bu(wi) N R = @A

n,j
(r)
n,j (ﬂfi, yi)-

N

Conversely, assume that 91 = G, .. Let ¢, z1,..., 2, and y1,...,y; be
such that Hp ;; holds in 9. Then it we set R = R} U{y1,...,y}, one
checks easily that R’ satisfies ()

Therefore we have shown that the question whether there exists R’
which satisfies () is equivalent to the question whether M = G, ; for
some £-sentence which can be constructed effectively from G, ;.

If M |= =G, ; (which can be checked effectively since by our hypotheses
FO(Mm) is demdable) then we set

/! / !
R, =T,;,=F,;=
Now if 9 |= (], ; one can find effectively the least value of ¢ such that
M = Hpjt, and then z1,...,2; and yi1,...,y; for which the formula
holds. We set

Ry i ={y1, -5}, Ty =121, 25}, and  F, ;= {Gn;}.
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Note that the above definition of T’ means that all elements which were
not marked yet and belong to some r ball B,.(z;) are now marked nega-
tively.

This completes the second step of the construction of X,,.

We can now define X,, as follows: for n > 1 we set

R,=R.,U |J R,;u |J Ry,

i<kn j<mn

Sn=5.1UJ S,

i<kn

U T, ..

J<mn

and

For n = 0, the definitions are the same but we omit the set R,_1 (respec-
tively S,—1) in the definition of R, (respectively S,,).

In order to define Fj,, consider a sentence F' with quantifier rank n. By
Theorem 1, F'is equivalent to a formula F’ which is a boolean combination
of sentence of the form G, ;. Consider the truth value of F’ determined by
setting “true” all sentences G, j € F}, ;, and “false” sentences G ; € F, ;
Then we define F,, as the union of F,,_; and of all sentences F' for Wthh
F' is true.

We have defined X,,. There remains to show that X,, satisfies all con-
ditions required in the definition.

e Conditions 1 to 8 are easy consequences of the construction of X, (and
the induction hypotheses).
e Let us consider condition 9. Let R’ C |91 be such that R, C R’ and

((SnU | Bri(Ty) \ Rn) =

i<n

Let us prove that R’ is not definable by any £-formula of quantifier
rank < m. Since every subset of |91 definable by a £-formula with
quantifier rank n is the union of some of the sets E, ;, it suffices to
prove that R’ and its complement intersect some E,, ;.
By construction, the set X = R, US,,U |J T; is finite. Now by hypoth-
i<n
esis I satisfies condition 3 of Theorem 2, thus there exists z € |9 such
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that d(X,z) > 7". The element x belongs to some set E, ;. Let us prove
that R’ and its complement intersect E,, ;.

Consider the step of the construction of X, during which we marked el-
ements of I, ;. Recall that just before this step the set of marked elements
was

Zni=Rn 1 U|JR,;US, 10| JS,; Ul Br(Ty)
3<i i<i i<n
Since ¢ € E,; and d(X,z) > 7", the set E, ; \ Zy, is non-empty. Thus
either F, ; already contained an element marked negatively (and in this
case S, ; = @), or we marked one (from E, ; \ Z,;) and put it in S} ;
Therefore the complement of R’ intersects Ej, ;.

Just after this step, then either E, ; already contained some element
marked positively, or by definition of z there existed an element y of
E, ; at distance > 7" from currently marked elements, and thus we could
mark positively the first such element y. In both cases this ensures that
R’ intersects E, ;.

e Let us prove now that X, satisfies condition 10. Let R’ C |90| be such

that R, C R/,

<s Ul Bu(T; \R>

i<n

d(R',R\ R,) > 7"

and d(z,y) > 7"*! whenever z,y are distinct elements of R’ \ R,,. Let
us prove that FO,(9(R')) = F,. The case of formulas with quantifier
rank < n follows from our induction hypotheses. Consider now formulas
with quantifier rank n. Their truth values are completely determined by
the truth values of sentences G, ;. Thus it is sufficient to prove that for
every j we have MM(R') = G, ; if and only if F}, ; = {G}n ;}. Fix j, and
consider the step of the construction of X,, during which we dealt with
the sentence G, ;. If M = G}, ; then in this case F}, ; = {Gn ;}, and
the definition of R} ; and T}, ; 1mp1y that the sentence Gr,; holds for
every R’ which extends (in a convement way) the marking (R, Sn, T»),
thus we have M(R') |= G, ;. On the other hand if M = G, ;, then the
property () cannot be satisfied, and we have set F}, ; = @. In particular
R’ does not satisfy (*). Now the hypotheses on R’ yield that R’ satisfies
the three last conditions of (x), thus the first condition is not satisfied,
that is M(R’) [~ G ;.
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This concludes the proof that there exists a sequence (Xp,),>0 which
satisfies all conditions required in the definition.
Now let 9 be the (£ U {R})—expansion of 9t defined by

R™ = | J R,.

n>0

Let us prove that 9 satisfies the properties required in Theorem 2.

The definition of R™ implies that for every n, R™ is not definable by
any £-sentence with quantifier rank n, and moreover that FO,,(9') = F,,.
Therefore R™ is not definable in 9, and FO(9M') is decidable.

Let us prove that the elementary diagram of 9 is computable. Con-
sider the function f used for the elementary diagram of 9t; it is sufficient
to prove that {f(a) | M’ = R(a) , a € |9M|} is recursive. Since every
element e of |M| is definable, there exists n,i such that E, ; = {e}. Dur-
ing the construction of X,,, and more precisely just before the marking of
Ey;, then either e had already been marked, or e is marked during this
step. Thus eventually every element of [91] is marked in ™ or in its com-
plement. Moreover the whole construction is effective. This implies that
both {f(a) | M" = R(a) , a € [M[} and {f(a) | M’ [~ R(a) , a € [M[}
are recursively enumerable, from which the result follows.

This concludes the proof of Theorem 2.

4. CONCLUSION

We gave a sufficient condition in terms of the Gaifman graph of the
structure 9 which ensures that 9t is not maximal. A natural problem is
to extend Theorem 2 to structures 9t which do not satisfy condition 3.
In particular one can consider the case of labelled linear orderings, i.e.,
infinite structures (A4; <, Py,...,P,;) where < is a linear ordering over A
and the P;’s denote unary predicates; the Gaifman distance is trivial for
these structures. Another related general problem is to find a way to refine
the notion of Gaifman distance; for some recent progress see [2].

Finally, it would also be interesting to study the complexity gap be-
tween the decision procedure for the theory of 991 and the one for the
structure M’ constructed in the proof of Theorem 2.
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