A. Bès and P. Cégielski

NON-MAXIMAL DECIDABLE STRUCTURES

Abstract. Given any infinite structure \mathfrak{M} with a decidable first-order theory, we give a sufficient condition in terms of the Gaifman graph of \mathfrak{M}, which ensures that \mathfrak{M} can be expanded with some non-definable predicate in such a way that the first-order theory of the expansion is still decidable.

Dedicated to Yu. Matiyasevich on the occasion of his 60th birthday

1. Introduction

Elgot and Rabin ask in [3] whether there exist maximal decidable structures, i.e., structures \mathfrak{M} with a decidable elementary theory and such that the elementary theory of any expansion of \mathfrak{M} by a non-definable predicate is undecidable.

Soprunov proved in [10] (using a forcing argument) that every structure in which a regular ordering is interpretable is not maximal. A partial ordering $(B,<)$ is said to be regular if for every $a \in B$ there exist distinct elements $b_{1}, b_{2} \in B$ such that $b_{1}<a, b_{2}<a$, and no element $c \in B$ satisfies both $c<b_{1}$ and $c<b_{2}$. As a corollary he also proved that there is no maximal decidable structure if we replace "elementary theory" by "weak monadic second-order theory" ${ }^{1}$.

In [1] we considered a weakening of the Elgot-Rabin question, namely the question of whether all structures \mathfrak{M} whose first-order theory is decidable can be expanded by some constant in such a way that the resulting structure still has a decidable theory. We answered this question negatively by proving that there exists a structure \mathfrak{M} whose monadic second-order theory is decidable and such that any expansion of \mathfrak{M} by a constant has an undecidable elementary theory.

In this paper we address the initial Elgot-Rabin question, and provide a criterion for non-maximality. More precisely, given any structure \mathfrak{M} with

[^0]a decidable first-order theory, we give in Section 3 a sufficient condition in terms of the Gaifman graph of \mathfrak{M}, which ensures that \mathfrak{M} can be expanded with some non-definable predicate in such a way that the first-order theory of the expansion is still decidable. The condition is the following: for every natural number r and every finite set X of elements of the base set $|\mathfrak{M}|$ of \mathfrak{M} there exists an element $x \in|\mathfrak{M}|$ such that the Gaifman distance between x and every element of X is greater than r. This condition holds e.g. for the structure (\mathbb{N}, S), where S denotes the graph of the successor function, and more generally for any labelled infinite graph with finite degree and whose elementary theory is decidable, i.e., for any structure $\mathfrak{M}=\left(V, E, P_{1}, \ldots, P_{n}\right)$ where V is infinite, E is a binary relation of finite degree, the P_{i} 's are unary relations, and the elementary theory of \mathfrak{M} is decidable. Unlike Soprunov's condition, our condition expresses some limitation on the expressive power of the structure \mathfrak{M}.

In Section 2 we recall some important definitions and results. Section 3 deals with the main theorem. We conclude the paper with related questions.

2. Preliminaries

In the sequel we consider first-order logic with equality. We deal only with relational structures. Given a language \mathfrak{L} and an \mathfrak{L}-structure \mathfrak{M}, we denote by $|\mathfrak{M}|$ the base set of \mathfrak{M}. For every symbol $R \in \mathfrak{L}$ we denote by $R^{\mathfrak{M}}$ the interpretation of R in \mathfrak{M}. As usual we shall often confuse symbols and their interpretation. We denote by $F O(\mathfrak{M})$ the first-order (complete) theory of \mathfrak{M}, i.e., the set of first-order \mathfrak{L}-sentences φ such that $\mathfrak{M} \models \varphi$.

We say that an n-ary relation R over $|\mathfrak{M}|$ is elementary definable (shortly: definable) in \mathfrak{M} if there exists an \mathfrak{L}-formula φ with n free variables such that $R=\left\{\left(a_{1}, \ldots, a_{n}\right): \mathfrak{M} \models \varphi\left(a_{1}, \ldots, a_{n}\right)\right\}$.

We denote by $q r(F)$ the quantifier rank of the formula F, defined inductively by $q r(F)=0$ if F is atomic, $q r(\neg F)=q r(F), \operatorname{qr}(F \alpha G)=$ $\max (q r(F), q r(G))$ for $\alpha \in\{\wedge, \vee, \rightarrow\}$, and $q r(\exists x F)=q r(\forall x F)=q r(F)+$ 1. We define $F O_{n}(\mathfrak{M})$ as the set of \mathfrak{L}-sentences F such that $q r(F) \leq n$ and $\mathfrak{M} \models F$.

We say that the elementary diagram of a structure \mathfrak{M} is computable if there exists an injective map $f:|\mathfrak{M}| \rightarrow \mathbb{N}$ such that the range of f, as well as the relations

$$
\left\{\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)\left|a_{1}, \ldots, a_{n} \in\right| \mathfrak{M} \mid \quad \text { and } \quad \mathfrak{M} \mid=R\left(a_{1}, \ldots, a_{n}\right)\right\}
$$

for every relation R of \mathfrak{L}, are recursive (see e.g. [9]).

Let us recall useful definitions and results related to the Gaifman graph of a structure [4] (see also [6]). Let \mathfrak{L} be a relational language, and \mathfrak{M} be an \mathfrak{L}-structure. The Gaifman graph of \mathfrak{M}, which we denote by $G(\mathfrak{M})$, is the undirected graph whose set of vertices is $|\mathfrak{M}|$, and such that for all $x, y \in|\mathfrak{M}|$, there is an edge between x and y if and only if either $x=y$ or there exist some n-ary relational symbol $R \in \mathfrak{L}$ and some n-tuple \vec{t} of elements of $|\mathfrak{M}|$ which contains both x and y and satisfies $\vec{t} \in R^{\mathfrak{M}}$.

The distance $d(x, y)$ between two elements $x, y \in|\mathfrak{M}|$ is defined as the usual distance in the sense of the graph $G(\mathfrak{M})$. We denote by $B_{r}(x)$ the r-ball with center x, i.e., the set of elements y of $|\mathfrak{M}|$ such that $d(x, y) \leq r$. It should be noted that for every fixed r the binary relation " $y \in B_{r}(x)$ " is definable in \mathfrak{M}. For every $X \subseteq|\mathfrak{M}|$ we define $B_{r}(X)$ as $B_{r}(X)=$ $\bigcup_{x \in X} B_{r}(x)$.
An r-local formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a formula whose quantifiers are all relativized to $B_{r}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$. We shall use the notation $\varphi^{(r)}$ to indicate that φ is r-local.

Let us now state Gaifman's theorem about local formulas.
Theorem 1 ([4]). Let $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$, and let $\varphi(\vec{x})$ be an \mathfrak{L}-formula. From φ one can compute effectively a formula which is equivalent to φ and is a boolean combination of formulas of the form:

- $\psi^{(r)}(\vec{x})$
- $\exists x_{1} \ldots \exists x_{s}\left(\bigwedge_{1 \leq i \leq s} \alpha^{(r)}\left(x_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq s} d\left(x_{i}, x_{j}\right)>2 r\right)$
where $s \leq q r(\varphi)+n$ and $r \leq 7^{k}$.
Moreover if φ is a sentence then only sentences of the second kind occur in the resulting formula.

3. A SUFFICIENT CONDITION FOR NON-MAXIMALITY

The aim of this section is to prove the following theorem.
Theorem 2. Let \mathfrak{L} be a finite relational language, and \mathfrak{M} be an infinite countable \mathfrak{L}-structure which satisfies the following conditions:

1. $F O(\mathfrak{M})$ is decidable;
2. every element of $|\mathfrak{M}|$ is definable in \mathfrak{M};
3. for every finite set $X \subseteq|\mathfrak{M}|$ and every $r \in \mathbb{N}$, there exists $a \in|\mathfrak{M}|$ such that $d(a, X)>r$.
Then there exists a unary predicate symbol $R \notin \mathfrak{L}$ and an $(\mathfrak{L} \cup\{R\})$ expansion \mathfrak{M}^{\prime} of \mathfrak{M} such that:

- $F O\left(\mathfrak{M}^{\prime}\right)$ is decidable;
- the set $R^{\mathfrak{M}^{\prime}}$ is not definable in \mathfrak{M};
- the elementary diagram of \mathfrak{M}^{\prime} is computable.

Note that in the above Theorem, the construction of \mathfrak{M}^{\prime} from \mathfrak{M} can be repeated starting from \mathfrak{M}^{\prime}. Indeed \mathfrak{M}^{\prime} clearly satisfies conditions 1 and 2. Moreover expanding a structure by unary predicates does not modify its Gaifman graph, therefore we have $G\left(\mathfrak{M}^{\prime}\right)=G(\mathfrak{M})$, which implies that condition 3 also holds for \mathfrak{M}^{\prime}.

Let us illustrate Theorem 2 with a few examples.

- The structure $\mathfrak{M}=(\mathbb{N} ; S)$, where S denotes the graph of the function $x \mapsto x+1$, satisfies all conditions of Theorem 2. Indeed Langford [5] proved that $F O(\mathfrak{M})$ is decidable. Moreover condition 2 is easy to prove, and condition 3 is a straightforward consequence of the fact that $d(x, y)=|x-y|$ for all natural numbers x, y.
- The same holds for any structure of the form $\mathfrak{M}=\left(\mathbb{N} ; S, P_{1}, \ldots, P_{n}\right)$ where the P_{i} 's denote unary predicates and $F O(\mathfrak{M})$ is decidable (the Gaifman graph of any such structure is equal to the one of $(\mathbb{N} ; S)$, see the remark above).
- More generally Theorem 2 applies to any infinite labelled graph with finite degree, more precisely to any structure of the form $\mathfrak{M}=$ ($V ; E, P_{1}, \ldots, P_{n}$) where V is infinite, E is a binary relation with finite degree, the P_{i} 's denote unary predicates, $F O(\mathfrak{M})$ is decidable, and every element of V is definable in \mathfrak{M}. In this case the Gaifman graph of \mathfrak{M} has finite degree, which implies condition 3. Note that Theorem 2 also applies to some structures for which the degree of the Gaifman graph is infinite - see the last example.
- The structure $\mathfrak{M}=(\mathbb{N} ;<)$ does not satisfy condition 3 of Theorem 2 since $d(x, y) \leq 1$ for all $x, y \in \mathbb{N}$. Observe that $F O(\mathfrak{M})$ is decidable [5], and moreover \mathfrak{M} is not maximal: consider e.g. the structure $\mathfrak{M}^{\prime}=$ $(\mathbb{N} ;<,+)$ where + denotes the graph of addition; $F O\left(\mathfrak{M}^{\prime}\right)$ is decidable [7], and + is not definable in \mathfrak{M} since in \mathfrak{M} one can only define finite or co-finite subsets of \mathbb{N}.
One can prove actually that for every infinite structure \mathfrak{M} in which some linear ordering of elements of $|\mathfrak{M}|$ is definable, condition 3 does not hold. However the next example shows that Theorem 2 can be applied to some structures in which an infinite linear ordering is interpretable.
- Consider the disjoint union of ω copies of $(\mathbb{N} ;<)$ equipped with a
successor relation between copies, i.e., the structure

$$
\mathfrak{M}=(\mathbb{N} \times \mathbb{N} ;<, S u c)
$$

where
$-(x, y)<\left(x^{\prime}, y^{\prime}\right)$ if and only if $\left(x=x^{\prime}\right.$ and $\left.y<y^{\prime}\right)$;
$-\operatorname{Suc}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)$ if and only if $x^{\prime}=x+1$;
then \mathfrak{M} satisfies the conditions of Theorem 2: the first condition comes from the fact that $F O(\mathfrak{M})$ reduces to $F O(\mathbb{N} ;<)$ and the two other conditions are easy to check.

Let us explain informally the structure of the proof of Theorem 2. Given \mathfrak{M} which fulfills all conditions of Theorem 2, we define $R^{\mathfrak{M}^{\prime}}$ by marking gradually elements of $|\mathfrak{M}|$, some in $R^{\mathfrak{M}^{\prime}}$ and some in its complement. More precisely we define by induction on n the sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ with $X_{n}=\left(R_{n}, S_{n}, T_{n}, F_{n}\right)$, where

- R_{n} corresponds to a finite set of elements of $R^{\mathfrak{M}}$ (we will say "marked
positively");
- S_{n} corresponds to a finite set of elements of the complement of $R^{\mathfrak{M}^{\prime}}$
(we will say "marked negatively");
- T_{n} corresponds to a finite set of centers of balls whose elements (apart from elements of R_{n}) are marked in the complement of $R^{\mathfrak{M}^{\prime}}$;
- F_{n} denotes the set of formulas of quantifier rank $\leq n$ which will be true in \mathfrak{M}^{\prime}.
The set $R^{\mathfrak{M}^{\prime}}$ will be defined as the union of the sets R_{n}. At each step n, the partial marking X_{n} ensures that $R^{\mathfrak{M}^{\prime}}$ is not definable by any formula of quantifier rank n, and also fixes $F O_{n}\left(\mathfrak{M}^{\prime}\right)$. The possibility to fix $F O_{n}\left(\mathfrak{M}^{\prime}\right)$ whereas $R^{\mathfrak{M}^{\prime}}$ is only partially defined, comes from Gaifman's Theorem 1 which reduces the satisfaction of sentences in \mathfrak{M}^{\prime} to the one of sentences which only speak about a finite number of r-balls in $\left|\mathfrak{M}^{\prime}\right|$ (these are sentences of the second kind in Theorem 1), and thus can be evaluated as soon as $R^{\mathfrak{M}{ }^{\prime}}$ is completely defined in these r-balls.

In the construction we impose some sparsity condition on $R^{\mathfrak{M}^{\prime}}$; this condition implies that there are few elements of $R^{\mathfrak{M}^{\prime}}$ in each r-ball, which in turn allows to express with \mathfrak{L}-sentences that an r-ball of $|\mathfrak{M}|$ can be marked conveniently, and then use the hypothesis that $F O(\mathfrak{M})$ is decidable in order to extend the marking in an effective way.

Proof of Theorem 2.

Assume that \mathfrak{M} is an \mathfrak{L}-structure which satisfies all conditions of the theorem. Let $R \notin \mathfrak{L}$ be a unary predicate symbol. For every $X \subseteq|\mathfrak{M}|$ we
shall denote by $\mathfrak{M}(X)$ the $(\mathfrak{L} \cup\{R\})$-expansion of \mathfrak{M} defined by interpreting R by X.

Throughout the proof we shall use the following interesting consequences of conditions 1 and 2 :

- the elementary diagram of \mathfrak{M} is computable. Indeed since \mathfrak{L} is finite we can enumerate all formulas $\varphi(x)$ with one free variable. Let us denote by $\left(\varphi_{i}(x)\right)_{i \geq 0}$ such an enumeration. Then the application $f:|\mathfrak{M}| \rightarrow \mathbb{N}$ which maps every element e of $|\mathfrak{M}|$ to the least integer i such that φ_{i} defines e is injective; moreover the range of f, and the relations
$\left\{\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right): \mathfrak{M} \models Q\left(a_{1}, \ldots, a_{n}\right)\right\}$ for every $\operatorname{symbol} Q$ of \mathfrak{L}, are recursive.
- if $\psi(x)$ is a formula with one free variable and $\mathfrak{M} \models \exists x \psi(x)$ then one can find in an effective way the first integer i which belongs to the range of f and such that $\mathfrak{M} \vDash \exists x\left(\varphi_{i}(x) \wedge \psi(x)\right)$. That is, one can find effectively some element $x \in|\mathfrak{M}|$ for which $\psi(x)$ holds in \mathfrak{M}.
- every finite or co-finite subset $A \subseteq|\mathfrak{M}|$ is definable in \mathfrak{M}. This will allow to use shortcuts such as " $x \in A$ " when we write formulas in the language \mathfrak{L}.
We now define by induction on $n \in \mathbb{N}$ the sequence $X_{n}=$ ($R_{n}, S_{n}, T_{n}, F_{n}$) such that:

1. R_{n}, S_{n}, T_{n} are finite subsets of $|\mathfrak{M}|$;
2. F_{n} is a set of $(\mathfrak{L} \cup\{R\})$-sentences with quantifier rank $\leq n$;
3. $R_{n} \cap S_{n}=\varnothing$;
4. $R_{n-1} \subseteq R_{n}$ and $S_{n-1} \subseteq S_{n}$ for every $n \geq 1$;
5. $R_{n} \cap\left(\left(S_{n-1} \cup \bigcup_{i \leq n-1} B_{7^{i}}\left(T_{i}\right)\right) \backslash R_{n-1}\right)=\varnothing$ for every $n \geq 1$;
6. $S_{n} \cap R_{n-1}=\varnothing$ for every $n \geq 1$;
7. $d(x, y) \geq 7^{n}$ for every pair of distinct elements of $R_{n} \backslash R_{n-1}$ (for $n \geq 1$;
8. $d\left(R_{n} \backslash R_{n-1}, R_{n-1}\right) \geq 7^{n}$ (for $n \geq 1$);
9. for every $R^{\prime} \subseteq|\mathfrak{M |}|$ such that $R_{n} \subseteq R^{\prime}$ and

$$
R^{\prime} \cap\left(\left(S_{n} \cup \bigcup_{i \leq n} B_{7^{i}}\left(T_{i}\right)\right) \backslash R_{n}\right)=\varnothing
$$

R^{\prime} is not definable in \mathfrak{M} by any \mathfrak{L}-formula of quantifier rank $\leq n$;
10. For every $R^{\prime} \subseteq|\mathfrak{M}|$ such that $R_{n} \subseteq R^{\prime}$,

$$
R^{\prime} \cap\left(\left(S_{n} \cup \bigcup_{i \leq n} B_{7^{i}}\left(T_{i}\right)\right) \backslash R_{n}\right)=\varnothing
$$

$$
d\left(R^{\prime}, R^{\prime} \backslash R_{n}\right) \geq 7^{n+1}
$$

and $d(x, y) \geq 7^{n+1}$ whenever x, y are distinct elements of $R^{\prime} \backslash R_{n}$, we have

$$
F O_{n}\left(\mathfrak{M}\left(R^{\prime}\right)\right)=F_{n}
$$

Conditions 4,5 and 6 express that the marking associated with X_{n} extends the one associated with X_{n-1}, and 7 and 8 specify that elements of $R_{n} \backslash R_{n-1}$ (i.e., new elements marked positively) are far away from each other and also from elements of R_{n-1}. Conditions 9 and 10 ensure that for any set $R^{\prime} \subseteq|\mathfrak{M}|$ which extends R_{n} "sparsely" (this will hold in particular for the sets R_{n+1}, R_{n+2}, \ldots and eventually for $R^{\mathfrak{M}}$), R^{\prime} is not definable in \mathfrak{M} by any \mathfrak{L}-formula of quantifier rank $\leq n$, and moreover $F O_{n}\left(\mathfrak{M}\left(R^{\prime}\right)\right)=F_{n}$, i.e., the partial marking X_{n} fixes $F O_{n}\left(\mathfrak{M}\left(R^{\prime}\right)\right)$.

We now define the sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$.
Induction hypothesis: assume that $\left(X_{i}\right)_{i<n}$ is defined and satisfies the required conditions.

Let us define X_{n}. The definition consists in two main steps: during the first step we extend the marking in order to get condition 9, i.e., to ensure that $R^{\mathfrak{M}^{\prime}}$ will not be definable in \mathfrak{M} with any \mathfrak{L}-formula with quantifier rank n; this is the easiest step, and it involves condition 3 of the Theorem. During the second step, we extend again the marking in order to get condition 9, i.e., to fix $F O_{n}\left(\mathfrak{M}^{\prime}\right)$.

We set $r=7^{n}$.
First step: during this step we mark a finite number of elements in order to ensure that $R^{\mathfrak{M}}$ will not be definable by any \mathfrak{L}-formula with quantifier rank n.

Since we deal with a finite relational language, there exist up to equivalence finitely many formulas with quantifier rank n. From \mathfrak{L} one can compute an integer k_{n} and a finite set of \mathfrak{L}-formulas $\left\{\alpha_{n, i}(x): 1 \leq i \leq k_{n}\right\}$ such that every \mathfrak{L}-formula with quantifier rank n is equivalent to a disjunction of some of the $\alpha_{n, i}$'s, and moreover such that the formulas $\alpha_{n, i}$ are incompatible. For $i=1, \ldots, k_{n}$, let us denote by $E_{n, i}$ the subset of $|\mathfrak{M}|$ defined by $\alpha_{n, i}(x)$. By construction the sequence $\left(E_{n, 1}, \ldots, E_{n, k_{n}}\right)$ is a partition of $|\mathfrak{M}|$, and every subset of $|\mathfrak{M}|$ definable by a formula of quantifier rank n is a finite union of some of the subsets $E_{n, i}$.

We shall mark elements in order that for some i, the subset $E_{n, i}$ contains at least an element marked positively and another element marked negatively. This will ensure that condition 9 is satisfied. More precisely, for $i=1, \ldots, k_{n}$, we mark positively (respectively, negatively) at most one
new element of $E_{n, i}$. We define the sets $R_{n, i}^{\prime}$ (resp., $S_{n, i}^{\prime}$) such that $R_{n, i}^{\prime}$ contains the set of new elements to mark positively (resp., negatively) in $E_{n, i}$ (each of the sets $R_{n, i}^{\prime}$ and $S_{n, i}^{\prime}$ is either empty or reduced to a singleton). We proceed as follows:

- if there exists some element of $E_{n, i}$ which is not marked yet, and moreover all marked elements of $E_{n, i}$ are marked positively, then we mark negatively the first unmarked element of $E_{n, i}$.
Formally, assume that the sets $R_{n, j}^{\prime}$ and $S_{n, j}^{\prime}$ have been defined for every $j<i$, and let

$$
Z_{n, i}=R_{n-1} \cup \bigcup_{j<i} R_{n, j}^{\prime} \cup S_{n-1} \cup \bigcup_{j<i} S_{n, j}^{\prime} \cup \bigcup_{i<n} B_{7^{i}}\left(T_{i}\right) .
$$

If

$$
\mathfrak{M} \vDash \exists x\left(\alpha_{n, i}(x) \wedge x \notin Z_{n, i}\right)
$$

and moreover

$$
\mathfrak{M} \vDash\left(E_{n, i} \cap Z_{n, i}\right) \subseteq\left(R_{n-1} \cup \bigcup_{j<i} R_{n, j}^{\prime}\right)
$$

(this property is expressible with an \mathfrak{L}-sentence), then we set $S_{n, i}^{\prime}$ as the singleton set consisting of the first element x such that

$$
\mathfrak{M} \vDash \exists x\left(\alpha_{n, i}(x) \wedge x \notin Z_{n, i}\right)
$$

Otherwise we set $S_{n, i}^{\prime}=\varnothing$.

- Then, if all currently marked elements of $E_{n, i}$ are marked negatively, and moreover there exists some unmarked element x of $E_{n, i}$ at distance $\geq 7^{n+1}$ from already marked elements, then we mark positively the first such element x.
Formally, let

$$
Z_{n, i}^{\prime}=Z_{n, i} \cup S_{n, i}^{\prime} .
$$

If

$$
\mathfrak{M} \models\left(E_{n, i} \cap\left(R_{n-1} \cup \bigcup_{j<i} R_{n, j}^{\prime}\right)\right)=\varnothing
$$

and moreover

$$
\mathfrak{M} \vDash \exists x\left(\alpha_{n, i}(x) \wedge d\left(x, Z_{n, i}^{\prime}\right) \geq 7^{n+1}\right)
$$

then let $R_{n, i}^{\prime}$ be the singleton set consisting of the first such x. Otherwise we set $R_{n, i}^{\prime}=\varnothing$.

Note that the above construction is effective (see the remarks at the beginning of the proof).

Second step: during this step we extend the marking in order to fix $F \widehat{O_{n}\left(\mathfrak{M}^{\prime}\right)}$.

Up to equivalence, there exist finitely many $(\mathfrak{L} \cup\{R\})$-sentences F such that $q r(F)=n$. By Theorem 1, every such sentence F is equivalent to a boolean combination of sentences of the form

$$
\exists x_{1} \ldots \exists x_{s}\left(\bigwedge_{1 \leq i \leq s} \alpha^{(r)}\left(x_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq s} d\left(x_{i}, x_{j}\right)>2 r\right)
$$

Consider an enumeration $G_{n, 1}, \ldots, G_{n, m_{n}}$ of all sentences of the previous form which arise when we apply Theorem 1 to formulas F such that $q r(F)=n$.

During this step we shall fix which sentences $G_{n, j}$ will be true in \mathfrak{M}^{\prime}, which will suffice (using again Theorem 1 to fix which sentences F with quantifier rank n will be true in \mathfrak{M}^{\prime}).

The first idea is to check, for every j, whether there exists $R^{\prime} \subseteq|\mathfrak{M}|$ which extends in a convenient way the current marking and such that $\mathfrak{M}\left(R^{\prime}\right) \models G_{n, j}$. If the answer is positive, then we shall extend our marking just enough to ensure that any extension of the marking will be such that $\mathfrak{M}^{\prime} \models G_{n, j}$. If the answer is negative, then we do not extend the marking, and then every extension of the marking will be such that $\mathfrak{M}^{\prime} \vDash \neg G_{n, j}$.

We define by induction on $j \leq m_{n}$ the sets $R_{n, j}^{\prime \prime}$ and $T_{n, j}^{\prime}$, such that $R_{n, j}^{\prime \prime}$ contains new elements to mark positively, and $T_{n, j}^{\prime}$ contains the centers of new r-balls whose elements are marked negatively.

We proceed as follows. Fix j, and assume that the sets $R_{n, i}^{\prime \prime}$ and $T_{n, i}^{\prime}$ have been defined for every $i<j$. We have

$$
G_{n, j}: \exists x_{1} \ldots \exists x_{s}\left(\bigwedge_{1 \leq i \leq s} \alpha_{n, j}^{(r)}\left(x_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq s} d\left(x_{i}, x_{j}\right)>2 r\right)
$$

for some r-local formula $\alpha_{n, j}^{(r)}$ (formally s depend on n and j, but we omit the subscripts for the sake of readability).

Let $R_{n, j}^{+}$be the set of elements currently marked positively, i.e.,

$$
R_{n, j}^{+}=R_{n-1} \cup \bigcup_{i<k_{n}} R_{n, i}^{\prime} \cup \bigcup_{i<j} R_{n, i}^{\prime \prime}
$$

and let $R_{n, j}^{-}$be the set of elements currently marked negatively, that is

$$
R_{n, j}^{-}=\left(S_{n-1} \cup \bigcup_{i<k_{n}} S_{n, i}^{\prime} \cup \bigcup_{i<n} B_{7^{i}}\left(T_{i}\right) \cup \bigcup_{i<j} B_{7^{n}}\left(T_{n, i}^{\prime}\right)\right) \backslash R_{n, j}^{+}
$$

We want to check whether there exists $R^{\prime} \subseteq|\mathfrak{M}|$ such that

1. $\mathfrak{M}\left(R^{\prime}\right) \models G_{n, j}$;
2. $R_{n, j}^{+} \subseteq R^{\prime}$ and $R_{n, j}^{-} \cap R^{\prime}=0$ (i.e., R^{\prime} extends the current marking);
3. $d\left(R_{n, j}^{+}, R^{\prime} \backslash R_{n, j}^{+}\right) \geq 7^{n+1}$;
4. $d(x, y) \geq 7^{n+1}$ for every pair of distinct elements of $R^{\prime} \backslash R_{n, j}^{+}$.

Let us denote by $(*)$ the conjunction of these four conditions. Let us prove that one can express $(*)$ with an \mathfrak{L}-sentence.

Assume first that there exists R^{\prime} which satisfies (*). Let $x_{1}, \ldots, x_{s} \in$ $|\mathfrak{M}|$ be such that

$$
\mathfrak{M}\left(R^{\prime}\right) \mid=\left(\bigwedge_{1 \leq i \leq s} \alpha_{n, j}^{(r)}\left(x_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq s} d\left(x_{i}, x_{j}\right)>2 r\right)
$$

Conditions 3 and 4 of $(*)$ imply that each ball $B_{r}\left(x_{i}\right)$ contains at most one element of $R^{\prime} \backslash R_{n, j}^{+}$, and moreover that if such an element exists, it is the unique element of R^{\prime} in $B_{r}\left(x_{i}\right)$. Thus we can assume without loss of generality that there exist $t \leq s$ and $y_{1}, \ldots, y_{t} \in|\mathfrak{M}|$ such that

$$
B_{r}\left(x_{i}\right) \cap\left(R^{\prime} \backslash R_{n, j}^{+}\right)=\left\{y_{i}\right\}
$$

for every $i \leq t$, and

$$
B_{r}\left(x_{i}\right) \cap\left(R^{\prime} \backslash R_{n, j}^{+}\right)=\varnothing
$$

for every $i>t$. Condition 3 yields $d\left(R_{n, j}^{+}, y_{i}\right) \geq 7^{n+1}$ for every i, and condition 4 yields $d\left(y_{i}, y_{j}\right) \geq 7^{n+1}$ for all distinct integers i, j.

Let us consider first the r-balls $B_{r}\left(x_{i}\right)$ for $i \leq t$. By definition of x_{i} we have $\mathfrak{M}\left(R^{\prime}\right) \models \alpha_{n, j}^{(r)}\left(x_{i}\right)$. Now y_{i} is the unique element of $R^{\prime} \cap B_{r}\left(x_{i}\right)$ thus we have $\mathfrak{M} \vDash \alpha_{n, j}^{\prime}\left(x_{i}, y_{i}\right)$ where $\alpha_{n, j}^{\prime}\left(x_{i}, y_{i}\right)$ is obtained from $\alpha_{n, j}^{(r)}\left(x_{i}\right)$ by replacing every atomic formula of the form $R(z)$ by $\left(z=y_{i}\right)$.

Now consider the r-balls $B_{r}\left(x_{i}\right)$ for $i>t$. By definition we have $\mathfrak{M}\left(R^{\prime}\right) \models \alpha_{n, j}^{(r)}\left(x_{i}\right)$, and $B_{r}\left(x_{i}\right)$ contains no element of $R^{\prime} \backslash R_{n, j}^{+}$. Thus we have $\mathfrak{M} \models \gamma_{n, j}^{(r)}\left(x_{i}\right)$ where $\gamma_{n, j}^{(r)}\left(x_{i}\right)$ is obtained from $\alpha_{n, j}^{(r)}\left(x_{i}\right)$ by replacing every atomic formula of the form $R(z)$ by $\left(z \in B_{r}\left(x_{i}\right) \cap R_{n, j}^{+}\right)$.

The previous arguments show that $\mathfrak{M} \models G_{n, j}^{\prime}$ where $G_{n, j}^{\prime}$ is the \mathfrak{L} sentence $G_{n, j}^{\prime}$ defined as follows:

$$
G_{n, j}^{\prime}: \bigvee_{t \leq s} H_{n, j, t}
$$

where

$$
\begin{gathered}
H_{n, j, t}: \exists x_{1} \ldots \exists x_{s} \exists y_{1} \ldots \exists y_{t}\left(\bigwedge_{1 \leq i<j \leq s} d\left(x_{i}, x_{j}\right)>2 r \wedge\right. \\
\wedge \bigwedge_{1 \leq i<j \leq t} d\left(y_{i}, y_{j}\right)>7 r \wedge
\end{gathered}
$$

$$
\left.\wedge \bigwedge_{1 \leq i \leq t} d\left(y_{i}, R_{n, j}^{+}\right)>7 r \wedge \bigwedge_{1 \leq i \leq t} \beta_{n, j}^{(r)}\left(x_{i}, y_{i}\right) \wedge \bigwedge_{t<i \leq s} \gamma_{n, j}^{(r)}\left(x_{i}\right)\right)
$$

with

$$
\begin{gathered}
\beta_{n, j}^{(r)}\left(x_{i}, y_{i}\right): y_{i} \in B_{r}\left(x_{i}\right) \wedge y_{i} \notin\left(R_{n, j}^{+} \cup R_{n, j}^{-}\right) \wedge B_{r}\left(x_{i}\right) \cap R_{n, j}^{+}=\varnothing \wedge \\
\wedge \alpha_{n, j}^{\prime(r)}\left(x_{i}, y_{i}\right) .
\end{gathered}
$$

Conversely, assume that $\mathfrak{M} \mid=G_{n, j}^{\prime}$. Let t, x_{1}, \ldots, x_{s}, and y_{1}, \ldots, y_{t} be such that $H_{n, j, t}$ holds in \mathfrak{M}. Then if we set $R^{\prime}=R_{n, j}^{+} \cup\left\{y_{1}, \ldots, y_{t}\right\}$, one checks easily that R^{\prime} satisfies ($*$)

Therefore we have shown that the question whether there exists R^{\prime} which satisfies $(*)$ is equivalent to the question whether $\mathfrak{M} \models G_{n, j}^{\prime}$ for some \mathfrak{L}-sentence which can be constructed effectively from $G_{n, j}$.

If $\mathfrak{M} \vDash \neg G_{n, j}^{\prime}$ (which can be checked effectively since by our hypotheses $F O(\mathfrak{M})$ is decidable), then we set

$$
R_{n, j}^{\prime \prime}=T_{n, j}^{\prime}=F_{n, j}^{\prime}=\varnothing
$$

Now if $\mathfrak{M} \models G_{n, j}^{\prime}$ one can find effectively the least value of t such that $\mathfrak{M} \models H_{n, j, t}$, and then x_{1}, \ldots, x_{s} and y_{1}, \ldots, y_{t} for which the formula holds. We set

$$
R_{n, j}^{\prime \prime}=\left\{y_{1}, \ldots, y_{t}\right\}, T_{n, j}^{\prime}=\left\{x_{1}, \ldots, x_{s}\right\}, \quad \text { and } \quad F_{n, j}^{\prime}=\left\{G_{n, j}\right\}
$$

Note that the above definition of $T_{n, j}^{\prime}$ means that all elements which were not marked yet and belong to some r-ball $B_{r}\left(x_{i}\right)$ are now marked negatively.

This completes the second step of the construction of X_{n}.
We can now define X_{n} as follows: for $n \geq 1$ we set

$$
\begin{gathered}
R_{n}=R_{n-1} \cup \bigcup_{i \leq k_{n}} R_{n, i}^{\prime} \cup \bigcup_{j \leq m_{n}} R_{n, j}^{\prime \prime} \\
S_{n}=S_{n-1} \cup \bigcup_{i \leq k_{n}} S_{n, i}^{\prime}
\end{gathered}
$$

and

$$
T_{n}=\bigcup_{j \leq m_{n}} T_{n, j}^{\prime}
$$

For $n=0$, the definitions are the same but we omit the set R_{n-1} (respectively S_{n-1}) in the definition of R_{n} (respectively S_{n}).

In order to define F_{n}, consider a sentence F with quantifier rank n. By Theorem $1, F$ is equivalent to a formula F^{\prime} which is a boolean combination of sentence of the form $G_{n, j}$. Consider the truth value of F^{\prime} determined by setting "true" all sentences $G_{n, j} \in F_{n, j}^{\prime}$, and "false" sentences $G_{n, j} \notin F_{n, j}^{\prime}$. Then we define F_{n} as the union of F_{n-1} and of all sentences F for which F^{\prime} is true.

We have defined X_{n}. There remains to show that X_{n} satisfies all conditions required in the definition.

- Conditions 1 to 8 are easy consequences of the construction of X_{n} (and the induction hypotheses).
- Let us consider condition 9 . Let $R^{\prime} \subseteq|\mathfrak{M}|$ be such that $R_{n} \subseteq R^{\prime}$ and

$$
R^{\prime} \cap\left(\left(S_{n} \cup \bigcup_{i \leq n} B_{7^{i}}\left(T_{i}\right)\right) \backslash R_{n}\right)=\varnothing
$$

Let us prove that R^{\prime} is not definable by any \mathfrak{L}-formula of quantifier rank $\leq n$. Since every subset of $|\mathfrak{M}|$ definable by a \mathfrak{L}-formula with quantifier rank n is the union of some of the sets $E_{n, i}$, it suffices to prove that R^{\prime} and its complement intersect some $E_{n, i}$.
By construction, the set $X=R_{n} \cup S_{n} \cup \bigcup_{i \leq n} T_{i}$ is finite. Now by hypothesis \mathfrak{M} satisfies condition 3 of Theorem 2 , thus there exists $x \in|\mathfrak{M}|$ such
that $d(X, x)>7^{n}$. The element x belongs to some set $E_{n, i}$. Let us prove that R^{\prime} and its complement intersect $E_{n, i}$.

Consider the step of the construction of X_{n} during which we marked elements of $E_{n, i}$. Recall that just before this step the set of marked elements was

$$
Z_{n, i}=R_{n-1} \cup \bigcup_{j<i} R_{n, j}^{\prime} \cup S_{n-1} \cup \bigcup_{j<i} S_{n, j}^{\prime} \cup \bigcup_{i<n} B_{7^{i}}\left(T_{i}\right) .
$$

Since $x \in E_{n, i}$ and $d(X, x)>7^{n}$, the set $E_{n, i} \backslash Z_{n, i}$ is non-empty. Thus either $E_{n, i}$ already contained an element marked negatively (and in this case $S_{n, i}^{\prime}=\varnothing$), or we marked one (from $E_{n, i} \backslash Z_{n, i}$) and put it in $S_{n, i}^{\prime}$. Therefore the complement of R^{\prime} intersects $E_{n, i}$.

Just after this step, then either $E_{n, i}$ already contained some element marked positively, or by definition of x there existed an element y of $E_{n, i}$ at distance $\geq 7^{n}$ from currently marked elements, and thus we could mark positively the first such element y. In both cases this ensures that R^{\prime} intersects $E_{n, i}$.

- Let us prove now that X_{n} satisfies condition 10 . Let $R^{\prime} \subseteq|\mathfrak{M |}|$ be such that $R_{n} \subseteq R^{\prime}$,

$$
\begin{gathered}
R^{\prime} \cap\left(\left(S_{n} \cup \bigcup_{i \leq n} B_{7^{i}}\left(T_{i}\right)\right) \backslash R_{n}\right)=\varnothing \\
d\left(R^{\prime}, R \backslash R_{n}\right) \geq 7^{n+1}
\end{gathered}
$$

and $d(x, y) \geq 7^{n+1}$ whenever x, y are distinct elements of $R^{\prime} \backslash R_{n}$. Let us prove that $F O_{n}\left(\mathfrak{M}\left(R^{\prime}\right)\right)=F_{n}$. The case of formulas with quantifier rank $<n$ follows from our induction hypotheses. Consider now formulas with quantifier rank n. Their truth values are completely determined by the truth values of sentences $G_{n, j}$. Thus it is sufficient to prove that for every j we have $\mathfrak{M}\left(R^{\prime}\right) \models G_{n, j}$ if and only if $F_{n, j}^{\prime}=\left\{G_{n, j}\right\}$. Fix j, and consider the step of the construction of X_{n} during which we dealt with the sentence $G_{n, j}$. If $\mathfrak{M} \models G_{n, j}^{\prime}$ then in this case $F_{n, j}^{\prime}=\left\{G_{n, j}\right\}$, and the definition of $R_{n, j}^{\prime \prime}$ and $T_{n, j}^{\prime}$ imply that the sentence $G_{n, j}$ holds for every R^{\prime} which extends (in a convenient way) the marking $\left(R_{n}, S_{n}, T_{n}\right)$, thus we have $\mathfrak{M}\left(R^{\prime}\right) \models G_{n, j}$. On the other hand if $\mathfrak{M} \not \vDash G_{n, j}^{\prime}$, then the property (*) cannot be satisfied, and we have set $F_{n, j}=\varnothing$. In particular R^{\prime} does not satisfy (*). Now the hypotheses on R^{\prime} yield that R^{\prime} satisfies the three last conditions of $(*)$, thus the first condition is not satisfied, that is $\mathfrak{M}\left(R^{\prime}\right) \not \models G_{n, j}$.

This concludes the proof that there exists a sequence $\left(X_{n}\right)_{n \geq 0}$ which satisfies all conditions required in the definition.

Now let \mathfrak{M}^{\prime} be the $(\mathfrak{L} \cup\{R\})$-expansion of \mathfrak{M} defined by

$$
R^{\mathfrak{M}^{\prime}}=\bigcup_{n \geq 0} R_{n}
$$

Let us prove that \mathfrak{M}^{\prime} satisfies the properties required in Theorem 2.
The definition of $R^{\mathfrak{M}}$ implies that for every $n, R^{\mathfrak{M}^{\prime}}$ is not definable by any \mathfrak{L}-sentence with quantifier rank n, and moreover that $F O_{n}\left(\mathfrak{M}^{\prime}\right)=F_{n}$. Therefore $R^{\mathfrak{M}^{\prime}}$ is not definable in \mathfrak{M}, and $F O\left(\mathfrak{M}^{\prime}\right)$ is decidable.

Let us prove that the elementary diagram of \mathfrak{M}^{\prime} is computable. Consider the function f used for the elementary diagram of \mathfrak{M}; it is sufficient to prove that $\left\{f(a)\left|\mathfrak{M}^{\prime}\right|=R(a), a \in|\mathfrak{M}|\right\}$ is recursive. Since every element e of $|\mathfrak{M}|$ is definable, there exists n, i such that $E_{n, i}=\{e\}$. During the construction of X_{n}, and more precisely just before the marking of $E_{n, i}$, then either e had already been marked, or e is marked during this step. Thus eventually every element of $|\mathfrak{M}|$ is marked in $R^{\mathfrak{M}^{\prime}}$ or in its complement. Moreover the whole construction is effective. This implies that both $\left\{f(a)\left|\mathfrak{M}^{\prime} \models R(a), a \in\right| \mathfrak{M} \mid\right\}$ and $\left\{f(a)\left|\mathfrak{M}^{\prime} \not \vDash R(a), a \in\right| \mathfrak{M} \mid\right\}$ are recursively enumerable, from which the result follows.

This concludes the proof of Theorem 2.

4. Conclusion

We gave a sufficient condition in terms of the Gaifman graph of the structure \mathfrak{M} which ensures that \mathfrak{M} is not maximal. A natural problem is to extend Theorem 2 to structures \mathfrak{M} which do not satisfy condition 3 . In particular one can consider the case of labelled linear orderings, i.e., infinite structures $\left(A ;<, P_{1}, \ldots, P_{n}\right)$ where $<$ is a linear ordering over A and the P_{i} 's denote unary predicates; the Gaifman distance is trivial for these structures. Another related general problem is to find a way to refine the notion of Gaifman distance; for some recent progress see [2].

Finally, it would also be interesting to study the complexity gap between the decision procedure for the theory of \mathfrak{M} and the one for the structure \mathfrak{M}^{\prime} constructed in the proof of Theorem 2.

5. Acknowledgement

We wish to thank the anonymous referee for useful suggestions.

References

1. A. Bès and P. Cégielski, Weakly maximal decidable structures. - RAIRO - Theor. Inf. Appl., 42, No. 1 (2008), 137-135.
2. A. Blumensath, Locality and Modular Ehrenfeucht-Fraisse Games. - Preprint (2006).
3. Calvin C. Elgot and Michael O. Rabin, Decidability and undecidability of extensions of second (first) order theory of (generalized) successor. - J. Symb. Log., 31, No. 2 (1966), 169-181.
4. H. Gaifman, On local and non-local properties. - In: Logic Colloquium 81, Proc. Herbrand Symp., Marseille 1981, Stud. Logic Found. Math. 107 (1982), pp. 105-135.
5. C. H. Langford, Theorem on deducibility (second paper). - Annals of Math., 2 (1927), 459-471.
6. L. Libkin, Elements of Finite Model Theory, Springer (2004).
7. M. Presburger, Über de vollständigkeit eines gewissen systems der arithmetic ganzer zahlen, in welchen, die addition als einzige operation hervortritt. - In: Comptes Rendus du Premier Congrès des Mathématicienes des Pays Slaves, Warsaw (1927), pp. 92-101, 395.
8. Alexei L. Semenov, Decidability of monadic theories. - In: Michal Chytil and Václav Koubek, editors, MFCS, Lecture Notes in Computer Science, 176 (1984), pp. 162-175.
9. Valentina S. Harizanov, Computably-theoretic complexity of countable structures. - Bulletin of Symbolic Logic, 8 (2002), 457-477.
10. S. Soprunov, Decidable expansions of structures. - Vopr. Kibern., 134 (1988), 175-179.

LACL, Université Paris-Est, France
Поступило 22 мая 2007 г.
E-mail: E-mail:\{bes,cegielski\} @univ-paris12.fr

[^0]: ${ }^{1}$ These results, and the Elgot-Rabin question itself, were brought to our attention by Semenov's paper [8].

