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Abstract. A function on an algebra is congruence preserving if, for any congruence,
it maps pairs of congruent elements onto pairs of congruent elements. We show that
on the algebra of full binary trees whose leaves are labeled by letters of an alphabet
containing at least three letters, a function is congruence preserving if and only if it
is polynomial. This exhibits an example of a non commutative and non associative
1-affine complete algebra. As far as we know, it is the first example of such an
algebra.

Mathematics Subject Classification. 06A99, 08A30, 08B20.

Keywords. Congruence, Affine completeness, Full binary trees.

1. Introduction

A function on an algebra is congruence preserving if, for any congruence, it maps pairs
of congruent elements onto pairs of congruent elements. Such functions were introduced
in Grétzer [], where they are said to have the “substitution property”.

A polynomial function on an algebra is a function defined by a term of the algebra
using variables, constants and the operations of the algebra. Obviously, every polynomial
function is congruence preserving. In most algebras this inclusion is strict. A very simple
example where the inclusion is strict is the additive algebra of natural integers (N, +),
cf. [I]. Up to the example studied in [2], all affine complete algebras studied so far were
commutative and associative, see [3 7, B, [9]. The example in [2] is the free monoid on an
alphabet with at least three letters: its operation is non commutative but associative.
The present paper is a follow-up of [2] though it does not depend on it. We here prove
that the free algebra with one binary operation and at least three generators is 1-affine
complete, i.e., every unary function preserving congruences is polynomial. This gives a
nontrivial example of a non associative and non commutative 1-affine complete algebra.

* Corresponding author.
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2. Preliminary definitions

For an algebra A with domain A, a congruence ~ on A is an equivalence relation on A
which is compatible with the operations of A.

Lemma 2.1. Let A = (A, x), B= (B, %) be two algebras with binary operations x and
x, and 0: A — B a homomorphism. Then ~yg defined on A by x ~g y iff 0(z) = 0(y) is
a congruence called the kernel ker(0) of 0.

Definition 2.2. Let X be a nonempty alphabet whose elements are called letters. The
free monoid generated by ¥ is the algebra (X*,-). Its elements are the finite sequences
(or words) of elements from ¥. It is endowed with the concatenation operation and the
unit element is the empty word denoted by e. The free monoid will be abbreviated as
>* in the sequel.

The length of a word w € ¥* is the total number of occurrences of letters in w and
it is denoted |w|.

As usual X1 denotes the set X* \ {e}.

Definition 2.3. Let I" be a subset of X. The projection 7rr is the homomorphism ¥* — I'*
which erases all letters not in I and leaves those in I" unchanged.

By Lemma the relation (x,y) € ker(nr) is a congruence. We shall use the
following homomorphisms on »*.

Definition 2.4. Let a € ¥ and u € ¥*. Then the substitution 1, _,, is the homomorphism
>* — ¥* which maps the letter a onto the word w and leaves other letters unchanged.

3. Full binary trees and their congruences

Let ¥ be an alphabet, let = = { «,o ,» } be an alphabet disjoint from ¥ and let
O = X UZ. We shall represent the free groupoid with generators 3 as a set of words
T (%) on the alphabet © together with the binary product operation *.

Definition 3.1. The free binary algebra B = (T (X),*) generated by ¥ is defined as
follows:

e Its carrier set 7(X) is the least set of non empty words of ©F also called “trees”,
inductively defined by
(1) each letter a in ¥ is a tree a in T (%)
(2) if t and ¢’ are trees in T (X), then the word <t et'» is a tree in T(X)
e The binary product operation * is defined by: t xt' = €t e t'p»

This product is neither commutative nor associative. The elements of T (X) can be
viewed as full binary trees with leaves labeled by letters in the alphabet X. The trees of
T (X) are said to be full because every node has either 0 or 2 children. See Figure

Remark 3.2. Algebra B is most often called the free groupoid with generators 3 following
[8], it is also called free magma with generators ¥ [10]. We preferred the terminology
“full binary trees” because it gives a better support for intuition. The operation x
concatenates two trees as the left and right subtrees of a new root.
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As T(X) is freely generated by ¥ it enjoys the universal property stated below
which will be of constant use.

Lemma 3.3. Every mapping ¥ — T(X) can be uniquely extended to a homomorphism

T(X) = TX).
Lemma 3.4. For x,y,u,v € T(X), xxy =u*v implies x =y and v = v.

Definition 3.5. Let 1 ¢ X. The set S of skeletons is the least set of words of (U {1})*
inductively defined by
(i) 1 is a skeleton, and (ii) if s and s’ are skeletons, then € s e s'» is a skeleton.
— The skeleton of a tree t is the word o(t) = m=uq13(t) € (EU {1})* obtained by
replacing all letters in > with 1.
— The foliage of a tree ¢t in T(X) is the word ¢(t) = 7x(t) € X7 obtained by erasing
all letters not in .

Note that the skeleton of a tree indeed belongs to S.

t = ddaech e by / t' = da e 4c e bpp
‘= Ab o(t) = «dlelpolp v /\ o(t) =4leqlelpp
d ¢ o(t) = acdb c p p(t)=ach

FIGURE 1. A graphic representation of two trees

Proposition 3.6. For all t,t' € T(X),
(1) o(t x ) = 40(t) o ot}
(2) p(t*t") = o(t)p(t'),
(3) lo(t)| = 3[p(t)] - 3.

Proof. Point (3) is the variant (due to the extra symbols «, e ,») of the classical result
that a full binary tree has one more leaf than it has nodes. O

Proposition 3.7. (1) Let u € ¥t and s € S such that |s| = 3|u| — 3. Then there exists a
unique tree t = 7(u, s) with foliage ©(t) = u and skeleton o(t) = s.
(2) If t and t' are such that o(t) = @(t') and o(t) = o(t'), thent =1t'.

Proof. The proof is by induction on |u|. If |u| = 1 then v = a, s = € and 7(a,¢) = a.
If |u| > 1, there exists uj,us € X1, 51,82 € S, such that u = ujusz, s = 4s; ® s3p» and
|si| = 3|ui| — 3. Hence 7(u,s) = 7(u1, s1) * 7(uz, 52).

(2) immediately follows from (1). O
Example 3.8. We give two congruences defined as kernels of homomorphisms.

(1) Equality of skeletons: ¢ ~, " iff (t,t') € ker(c).

(2) Equality of foliages: ¢ ~, t" iff (¢,t") € ker(yp).

Other fundamental congruences are the kernels of the grafting homomorphisms
defined below.
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Definition 3.9. Let a € ¥ and 7 € T(X). Then v4—, : T(X) — T(X) is the homomor-
phism on the free algebra of trees such that, for b € X, the tree v,,,(b) is equal to 7 if
b = a, and to b otherwise.

The following Proposition and Lemma are easily proved by induction on t.

Proposition 3.10. For all 7,t € T(X), a € , ¢(Vausr(t)) = Yase(r)(@(t))), i.e., the
following diagram is commutative:

T(E) =5 T(®)
e e
E* w”'—W’(T) E*

Lemma 3.11. A grafting vy,—, is idempotent, i.e., Yo_sr © Ya—sr = Yasr, 4 and only if
the letter a does not appear in the foliage p(T).

4. Congruence preserving functions on trees

We now study congruence preserving functions on the algebra (7 (%), x). From now on,
f, g will be congruence preserving functions on 7 (X).

Definition 4.1. A function f: 7(X) — T(X) is congruence preserving (abbreviated into
CP) if for all congruences ~ on T(X), for all t,t' in T(X), t ~¢ = f(t) ~ f(¥).

We start with a very convenient result.

Proposition 4.2. Let v, = Yo_sr and vy = Yo+ be two graftings with a # b. For any t,t’
if Ya(t) = 7a(t') and y(t) = w(t') then t =1’

Proof. By induction on min(|¢|,|t']).

Basis If min(|¢[, |¢/|) = 1 either (i) or (ii) holds.

(i) Omne of t,t' is a letter ¢ € {a,b}. Say t = a. Then 7,(t) = a hence Y,(t') = a.
This implies: either ¢ = a hence t = ', as wanted, or ¢’ = b and 7 = a in which case
Ya(t') = b contradicting v, (¢') = 74 (t) since v,(t) = v4(a) = 7 = a.

(ii) One of ¢, t' is a letter ¢ & {a,b}. Say t = c¢. Then v,(¢) = y(c) = ¢, hence
Ya(t') = (t') = ¢ implying ¢’ = ¢ and ¢t = ¢’ as wanted.

Induction Otherwise, we have ¢ = t; x to and ¢/ = ] * t§ with min(|¢;],|¢}]) <
min([¢], [¢']), for i = 1,2. By Lemma [3.4] v, (t1) * Yo (t2) = 7a (t]) %74 (t5) implies v, (¢;) =
~Ya(t;) and v (t;) = v(¢;). By the induction t; = ¢} hence t = t'. O

Proposition 4.3. If f is CP then for every idempotent grafting vo—t, we have vo—+(f(a)) =
7a—>t(f(t))'

Proof. As 7, is idempotent we have v,+(a) = Yast(Vast(a)). Now, yo:(a) = ¢
hence vg—t(a) = Ya—e(t). Since ker(v,-+) is a congruence and f is CP, we conclude

Ya—st(f(@)) = Yase(f (1)) U

Corollary 4.4. Lei f, g be CP. if f(a) = gla), then for any idempotent grafting Ya-s:,
we have Yot (f(t)) = Yoot (g(2)).
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Proof. By Proposition[d.3|we have, Yo—¢ (f(t)) = Ya—t(f(a)) and va—¢(g(a)) = Ya—i(g(t))
As f(a) = g(a), we infer va—¢(f(t)) = Ya—e(g(t))- 0

Proposition and its Corollary tell us that the knowledge of f(a) for all @ € ¥
gives a lot of information about the value of f on 7(X). The following theorem shows
that, in fact, f is completely determined by its value on 3.

Theorem 4.5. Suppose ¥ has at least three letters, if f and g are CP functions on T (X)
such that for all a € 3, f(a) = g(a) then for allt € T(X), f(t) = g(t).

Proof. Let t ¢ X. The proof depends on the number N (t) of letters of ¥ which do not
appear in the foliage ¢(t) of ¢.

1. Case N(t) >0

Subcase N(¢) > 1 Let a,b be two letters which do not occur in the foliage ¢(t)
of t. Graftings v,_,; and 7,_; are idempotent. By Corollary we have v.(f(t)) =
Yest(g(t)) for ¢ € {a, b}, and Proposition [1.2] yields g(t) = f(t).

Subcase N(t) =1 Let ¢ be any letter and let ¢. be the tree obtained by substi-
tuting c to all letters in t. Then N(¢) = |X| — 1 > 2, and thus g(t.) = f(¢.). The trees t
and t. obviously have the same skeleton hence t ~, t. (cf. Example (1)). As f and
g are congruence preserving, we thus have f(t) ~, f(t.) = g(tc) ~» g(t) and f(t) and
g(t) have the same skeleton.

Let ¢ be the letter which does not appear in ¢. As 7., is idempotent (cf. Lemma
B3-11), we have by Corollary Yest(f(t)) = 7Yest(g(t)). We prove the following Fact
which, when applied to u = f(t), v = g(t), yields the result.

Fact Let u,v,t € T(X), t € X, if u and v have the same skeleton, and if ye—t(u) =
Yest(V), then u = v.

The proof is by induction on the common size of u and v, |o(u)| = |o(v)|.

Basis If |o(u)| = |o(v)| = 1, then v = @ and v = b. If a = b the result is proved.
Otherwise, we have v.+(a) = 7.—+(b) which is possible only if one of the letters a,b
(say a) is equal to c¢. But then we get t = v.:(a) = vYewt(b) = b contradicting the
requirement that ¢ is not a letter.

Induction Otherwise, we have u = t1 xto and v = t} *t}, with with o(¢;) = o(t;) and
Yoot (1) = Yoyt (£1) % Vet (t2), Vet (V) = Yoot (81) % Yoot (85) Implying ye—yi (ti) = Yoot (t;)
by Lemma By the induction t; = t; hence u = v.

2. Case N(t) =0

Since |X| > 3 there exists a letter ¢ ¢ {a,b}. Then 7.,; is idempotent. Let ¢’ =
Ya—c(t). As N(t') =1, we have f(t') = g(t').

But ¢ and ¢’ are congruent for the congruence ker(v,—.), and as f is CP, we also
have Yaoye(f(t)) = Yase(f (). Similarly Ya—c(9(t)) = Ya—se(g(t)). As f(t') = g(t'), we
infer Yo (f(£)) = Ya—c(g(t)). Similarly, vp—c(f(t)) = Y—c(g(t)). Thus, by Proposition

7(t) = g(t). O

5. The algebra of full binary trees is 1-affine complete

Throughout this section, f is a fixed CP function on 7 (X). We first define polynomials
on trees.
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Definition 5.1. Let ¢ ¥ be a variable. A polynomial T'(x) is a tree on the alphabet
YU {z}.

With every polynomial T'(x) we associate a polynomial function 7: 7(X) — T (%)
defined by T'(t) = vz (T(z)). Obviously, every polynomial function is CP.

This section is devoted to proving the converse which amounts to saying that the
algebra (T (X), x) is 1-affine complete.

Theorem 5.2. Every CP function is polynomial.

By theorem a CP function f is polynomial if there exists a polynomial Tf(x)
such that for all a € ¥, f(a) = Ty(a). Hence to prove Theorem 5.2} we will construct
such a polynomial in the next subsection.

As o(a) = ¢ for all @ € X, if f is CP then all f(a) have the same skeleton. For
any pair a,b € ¥ with a # b, we have v,5(a) = Ya—s(b) and hence, by Lemma
Ya—sb(f(a)) = Yasp(f(b)). Thus, the next proposition can be applied to f.

Proposition 5.3. Let g : X — T(X) such that

(1) all g(a) have the same skeleton s and

(2) Ya # b, Ya—b(9(a)) = Ya—ss(g(b)). Then there exists a polynomial T, such that
g(a) =Ty(a) for alla € X.

Proof. The proof is by induction of the size of the common skeleton s.

Basis If s = ¢ then each g(a) is a letter in X. By assumption (2), we have
Ya—b(g(a)) = Yasp(g(b)). This last equality can happen when (i) g(a) = g(b), or (ii)
{9(a),9(0)} = {a,b}.

We first show that if there exists an a such that g(a) = ¢ € {a,b} then Vb # a,
g(b) = c. First for all b # ¢ we have either (i) g(a) = g(b) or (ii) {a,b} = {g(a),g(b)}:
(ii) is impossible since g(a) = ¢ ¢ {a,b}. Hence (i) holds and ¢(b) = g(a) = c. Next,
for b = ¢, if g(c) # ¢ = g(a), we would infer from ~y,.(g9(a)) = Vasc(g(c)) that
{a,c} = {¢,g(c)}; similarly vgc(g(d)) = Ya—c(g(c)) implies that {d,c} = {c, g(c)}:
hence g(c) € {a,c} N{d,c}, and thus g(c) = ¢ holds also for ¢. Hence T, = c.

Otherwise, Va, g(a) = a, hence T, = z.

Induction Each g(a) is equal to gi(a) % g2(a). It is easy to check that both g; satify
assumptions (1) and (2). Hence T, = Ty, * Ty,. O

6. Conclusion

We proved that, when ¥ has at least three letters, the algebra B of full binary trees
with leaves labeled by letters of ¥ is a 1-affine complete algebra (non commutative and
non associative). Our result extends to non commutative non associative algebras with
unit by adding a unit element to 7(X). By forgetting skeletons and replacing graftings
Ya—s+ With substitutions ,_.,, the results in Sections 4 and 5 go through mutatis
mutandis when B is replaced by the free monoid ¥* on an alphabet ¥ with at least
three letters. This yields a simpler and shorter proof of the main result of [2], i.e., the
1-affine completeness of ¥*. Surprisingly, the free monoid X* when the alphabet 3 has
just one letter is not 1-affine complete: ¥* then reduces to the semigroup (N, +) where
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“polynomial” functions are a strict subset of CP functions, e.g., f(z) = [e'/%a®x!| for
a € N\ {0, 1} is a non polynomial CP function, see [I].

We conjecture that

(1) B is affine complete, i.e., that CP functions of any arity on 7(X) are also
polynomial, and

(2) the algebra of binary trees (i.e., non full trees whose nodes might have 0,1 or
2 children) and whose leaves are labeled by letters of an alphabet ¥ with at least three
letters is also affine complete.

Extending the previous results when ¥ has at most two letters yields open prob-
lems. The use of ¥ was essential in the proof that B is 1-affine complete. Whether
algebras of binary trees without labels would still be 1-affine complete is an open prob-
lem.
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